C:\Users\Hp\Desktop\22-2-19 FI

Total Page:16

File Type:pdf, Size:1020Kb

C:\Users\Hp\Desktop\22-2-19 FI UNIT 4 WEATHER RELATED/ COASTAL HAZARDS Structure 4.0 Introduction 4.1 Objectives 4.2 Tropical Cyclones: Hurricane, Typhoon and Cyclones 4.2.1 Classification of Cyclones 4.2.2 Formation of Cyclones 4.3 Thunderstorms 4.3.1 Formation of Thunderstorms 4.4 Tornadoes 4.4.1 Formation of Tornadoes 4.4.2 Tornadoes Destruction 4.5 Introduction to Coastal Hazards 4.6 Introductions to Tsunamis 4.7 El Nino/Southern Oscillation (ENSO) 4.8 Let Us Sum Up 4.9 Key Words 4.10 References and Suggested Further Readings 4.11 Answers to Check your Progress 4.0 INTRODUCTION The last few years have seen enormous damage and loss of life from weather related disaster and hazards. A disaster or catastrophe is defined as ‘a situation or event which overwhelms local capacity, necessitating a request to a national or international level for external assistance, an unforeseen and often sudden event that causes great damage, destruction and human suffering’. Nine out of every 10 of these disasters are now climate related. High impact weather events have drastic impacts on society, natural ecosystems and leads great economical and personal damage. Extreme events are of both natural and anthropogenic origin and are of widespread concern mainly because of their damaging consequences. The most damaging weather related hazards or disaster includes tropical cyclones or hurricanes, thunderstorm, tornadoes, coastal storms, tsunami, ElNino, floods etc. This unit will describe tropical cyclones also popularly known as hurricanes or typhoons, thunderstorm, tornadoes, coastal storms, tsunami, and global warming. 65 Natural Hazards 4.1 OBJECTIVES After completing this unit, you will be able to: describe tropical cyclones (Hurricane, Typhoon and Cyclones) and the process of their formation; explain the characteristics and the process of formation of thunderstorm; describe the process of formation of tornadoes and destruction caused by them; and explain Tsunami and El Nino. 4.2 TROPICAL CYCLONES: HURRICANE, TYPHOON AND CYCLONES Tropical region is considered as the region between the Tropic of Cancer (230 North) and the Tropic of the Capricorn (230 South) of the earth. The weather characterized in this region is called tropical weather and Tropical cyclones (TC) are one of the most important tropical weather system and among the most devastating of all natural hazards. Tropical cyclones are capable of producing very strong winds, particularly near its centre, torrential rainfall and associated storm surge. Globally, tropical cyclones rank with floods as the most lethal geophysical hazards. Tropical Cyclone can also be very destructive, often causing severe and widespread damage to coastal communities, infrastructure and ecosystems. Technically, a tropical cyclone is a cyclone that originates over tropical oceans and is driven principally by heat transfer from the ocean. Intense synoptic scale cyclones in the tropics are called tropical cyclones. As for all cyclones, tropical cyclones have low pressure in the cyclone centre near sea level. Also, the low altitude winds rotate cyclonically (counter clockwise in the N. Hemisphere) around the storm and spiral in towards the centre. Tropical cyclones are called hurricanes over the Atlantic, Caribbean, Gulf of Mexico and eastern Pacific Oceans. They are called typhoons over the western Pacific. Over the Indian Ocean and near Australia they are called cyclones. Hurricanes differ from mid latitude cyclones in that hurricanes do not have fronts. Hurricanes have warm cores while mid latitude cyclones have cold cores. Hurricanes can persist two to three times longer than typical mid latitude cyclones. At maturity, the tropical cyclone is one of the most intense and feared storms of the world; winds exceeding 90 ms-1 (175 knots) have been measured, and its rains are torrential. Tropical cyclones are initiated by a large variety of disturbances, including easterly waves and monsoon troughs. Once formed, they are maintained by the extraction of heat from the ocean at high temperature and heat export at the low temperatures of the tropical upper troposphere. After formation, tropical cyclones usually move to the west and generally slightly pole ward, then may “recurve,” that is, move into the mid latitude westerlies and back toward the east. Not all tropical cyclones recurve. Many dissipate after entering a continent in the Tropics, and a smaller number die over the tropical oceans. 66 4.2.1 Classification of Cyclones Weather Related/Coastal Hazards Cyclones are classified as tropical or extra-tropical based on their place of origin and the temperature of their centre or core region. 1. Tropical Cyclones (TCs) derive their energy from latent heat acquired from evaporation of water at the ocean surface that is subsequently released upon condensation at greater heights. Earth’s rotation drives cyclonic winds at low levels in the atmosphere toward the resulting low pressure (the eye). Although other factors are involved, the three primary conditions for TC formation are: sufficiently high (>26 °C) sea surface temperatures (SSTs); sufficiently low vertical wind shear (change in wind velocity with height); sufficiently high contribution from Earth’s rotation (formation >5 degrees N and S). 2. Extratropical Cyclones (ETCs) unlike tropical cyclones derive much of their energy from the ambient horizontal temperature (and associated density) difference (gradient) in the atmosphere. This gradient represents a pool of potential energy that a developing storm can convert to rotational wind, or kinetic, energy. As colder, denser air wedges itself under the warmer air, the center of gravity is lowered and the resulting reduction in potential energy is manifested as kinetic energy by the developing cyclone. The density difference across the temperature front is supported by vertical wind shear or increasing westerly wind speed with height in the mid latitudes. 3. Subtropical Cyclone (STCs) are a non frontal low pressure system that has characteristics of both tropical and extratropical cyclones. Like tropical cyclones, they are non frontal, synoptic scale cyclones that originate over tropical or subtropical waters, and have a closed surface wind circulation about a well-defined center. In addition, they have organized moderate to deep convection, but lack a central dense overcast. Unlike tropical cyclones, subtropical cyclones derive a significant proportion of their energy from baroclinic sources, and are generally cold-core in the upper troposphere, often being associated with an upper level low or trough. In comparison to tropical cyclones, these systems generally have a radius of maximum winds occurring relatively far from the center (usually greater than 60 nm), and generally have a less symmetric wind field and distribution of convection. Although cyclone is the general meteorological term applied to a large low- pressure system with winds circulating inward toward its center, various terms are used to describe these systems in different parts of the world. The terminology for strong tropical cyclones: Hurricane, Typhoon and Cyclones are different terms used for tropical cyclones. The term Hurricane is used in the western North Atlantic, Central and Eastern North Pacific, Caribbean Sea and Gulf of Mexico and the term Typhoon are used in the Western North Pacific in the Indian Ocean and Western South Pacific, tropical cyclones are called Cyclones. In the case of tropical cyclones, 67 Natural Hazards when the maximum sustained wind near the centre exceeds 119 km/h, they are called “severe cyclonic storm” in the North Indian Ocean. The possibility for the formation of tropical cyclones in the South Atlantic Ocean and the South Atlantic Ocean and the South Eastern Pacific is very low due to the cooler sea surface temperature and higher vertical wind shear. TC’s develop at latitudes usually greater than 05O from the equator and they reach their highest intensity while they are located over warm tropical waters. In the Atlantic and eastern Pacific Oceans, these storms are called hurricanes after a Caribbean word for an evil god of winds and destruction. In the Pacific Ocean west of the International Dateline (180o longitude) and north of the equator, the storms are called typhoons after a Chinese word for “scary wind” or “wind from four directions”. Hurricanes in the Pacific Ocean south of the equator and Indian Ocean are referred to using some variation of cyclone, a term coined from the Greek word meaning “coil of a snake”. Table 4.1: Classification of Cyclones/Hurricanes/Typhoons Based on Geographic Location Hurricane NorthAtlantic Ocean the northeast Pacific Ocean east of the dateline, or the South Pacific east of 160E Typhoon Northwest Pacific Ocean west of the dateline Severe Tropical Cyclone Southwest Pacific Ocean west of 160E or southeast Indian Ocean east of 90E Severe Cyclone North Indian Ocean Tropical Cyclone Southwest Indian Ocean The oceanic basins where tropical cyclones form on regular basis are: 1. Atlantic basin (including the North Atlantic Ocean, the Gulf of Mexico, and the Caribbean Seal. 2. Northeast Pacific basin (from Mexico to about the dateline) 3. Northwest Pacific basin (from the dateline to Asia including the South China Sea) 4. North Indian basin (including the Bay of Bengal and the Arabian Sea) 5. Southwest Indian basin (from Africa to about 100 E) 6. Southeast Indian/Australian basin (100 E to 142 E) 7. Australian/Southwest Pacific basin (142 E to about 120 W) Naming Cyclones Only a small percentage of all cyclones are given names, either to identify where they form or to track their movement. Extratropical cyclones, especially those that become snowstorm, are sometimes named for the geographic area where they form (e.g., Alberta Clipper). In contrast, all tropical depressions 68 that develop into tropical storms and hurricanes are given individual names by government forecasting centers. These names are established by international Weather Related/Coastal agreement through the World Meteorological Organisation (WMO). An official Hazards name is assigned once the maximum sustained winds of a tropical depression exceed 63 km (~39 mi.) per hour and it becomes a tropical storm.
Recommended publications
  • Storm Data Publication
    FEBRUARY 2008 VOLUME 50 SSTORMTORM DDATAATA NUMBER 2 AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION noaa NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE NATIONAL CLIMATIC DATA CENTER, ASHEVILLE, NC Cover: This cover represents a few weather conditions such as snow, hurricanes, tornadoes, heavy rain and flooding that may occur in any given location any month of the year. (Photos courtesy of NCDC) TABLE OF CONTENTS Page Outstanding Storm of the Month …..…………….….........……..…………..…….…..…..... 4 Storm Data and Unusual Weather Phenomena ....…….…....…………...…...........…............ 5 Reference Notes .............……...........................……….........…..….…............................................ 278 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: William Angel Assistant Editors: Stuart Hinson and Rhonda Herndon STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events re- sulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service’s (NWS) Storm Prediction Center. STORM DATA contains all confi rmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition. Except for limited editing to correct grammatical errors, the data in Storm Data are published as received. Note: “None Reported” means that no severe weather occurred and “Not Received” means that no reports were received for this region at the time of printing.
    [Show full text]
  • …Top 10 Weather Events of 2012…
    …Top 10 weather events of 2012… In terms of severe weather, 2012 started out fast and furious, and then petered out by late March. 1) By anyone’s measure, the tornado outbreak on the 2nd of March must qualify as our top event of 2012. The 49 mile long EF-4 tornado that tracked across southern Indiana became the first EF-4 in our forecast area since the northern Bullitt County tornado on May 28, 1996. Seven other tornadoes also developed on March 2, with 3 confirmed tornadoes in Trimble County alone. The image to the left shows two supercells following similar paths across southern Indiana. The first cell was producing an EF-4 tornado at this time. The second storm later brought softball sized hail and an EF-1 tornado just south of Henryville. Also, excessively large hail fell across both southern Indiana and south central Kentucky. Outside of several reports of softball-sized hail near Henryville, Indiana, associated with the second of two supercells that tracked over nearly the same path, our most damaging hailstorm developed across southwestern Adair County. This storm produced a hail swath more than 10 miles long, smashing the windshields of hundreds of vehicles before knocking out the skylights of a Walmart store in Columbia. The first picture, courtesy Simon Brewer of The Weather Channel, shows a large tornado in Washington County, IN. The image at left shows hail damage to a golf course near Henryville. 2) The Leap Day tornado outbreak on February 29 featured a squall line that spawned 6 tornadoes across central and south central Kentucky.
    [Show full text]
  • A Winter Forecasting Handbook Winter Storm Information That Is Useful to the Public
    A Winter Forecasting Handbook Winter storm information that is useful to the public: 1) The time of onset of dangerous winter weather conditions 2) The time that dangerous winter weather conditions will abate 3) The type of winter weather to be expected: a) Snow b) Sleet c) Freezing rain d) Transitions between these three 7) The intensity of the precipitation 8) The total amount of precipitation that will accumulate 9) The temperatures during the storm (particularly if they are dangerously low) 7) The winds and wind chill temperature (particularly if winds cause blizzard conditions where visibility is reduced). 8) The uncertainty in the forecast. Some problems facing meteorologists: Winter precipitation occurs on the mesoscale The type and intensity of winter precipitation varies over short distances. Forecast products are not well tailored to winter Subtle features, such as variations in the wet bulb temperature, orography, urban heat islands, warm layers aloft, dry layers, small variations in cyclone track, surface temperature, and others all can influence the severity and character of a winter storm event. FORECASTING WINTER WEATHER Important factors: 1. Forcing a) Frontal forcing (at surface and aloft) b) Jetstream forcing c) Location where forcing will occur 2. Quantitative precipitation forecasts from models 3. Thermal structure where forcing and precipitation are expected 4. Moisture distribution in region where forcing and precipitation are expected. 5. Consideration of microphysical processes Forecasting winter precipitation in 0-48 hour time range: You must have a good understanding of the current state of the Atmosphere BEFORE you try to forecast a future state! 1. Examine current data to identify positions of cyclones and anticyclones and the location and types of fronts.
    [Show full text]
  • Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change
    Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change Item Type Thesis Authors Ward, Jamie L. Download date 07/10/2021 05:51:34 Link to Item http://hdl.handle.net/10484/5573 Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change _______________________ A thesis Presented to The College of Graduate and Professional Studies Department of Earth and Environmental Systems Indiana State University Terre Haute, Indiana ______________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts _______________________ by Jamie L. Ward August 2014 Jamie L. Ward, 2014 Keywords: Alberta Clippers, Storm Tracks, Lee Cyclogenesis, Global Climate Change, Atmospheric Analogues ii COMMITTEE MEMBERS Committee Chair: Gregory D. Bierly (Ph.D.) Professor of Geography Indiana State University Committee Member: Stephen Aldrich (Ph.D.) Assistant Professor of Geography Indiana State University Committee Member: Jennifer C. Latimer Associate Professor of Geology Indiana State University iii ABSTRACT Alberta Clippers are extratropical cyclones that form in the lee of the Canadian Rocky Mountains and traverse through the Great Plains and Midwest regions of the United States. With the imminent threat of global climate change and its effects on regional teleconnection patterns like El Niño-Southern Oscillation (ENSO), properties of Alberta Clipper could be altered as a result of changing atmospheric circulation patterns. Since the Great Plains and Midwest regions both support a large portion of the national population and agricultural activity, the effects of global climate change on Alberta Clippers could affect these areas in a variety of ways.
    [Show full text]
  • A Synoptic-Climatology and Composite Analysis of the Alberta Clipper
    !"#$%&'()*+*,)-!(&,&.$"!%/"*&-'&#)(0"!%!,$#)#"&1 (20"!,304(!"*,)''04 !" #$%&'()*+),-./%01)234)5.'%,-%')(+)/%6,&'7 1!"#"$%$&$'()*%+,-./)0.1#")2+,34)!1441&")5+,'"/)6"7)!"81-$ 9:";+%#<",#)$=)>#<$4;."%1-)+,3)?-"+,1-)2-1",-"4 @,1A"%41#()$=)014-$,41,B!+314$, C99D)0E):+(#$,)2#E !+314$,/)0F)DGHIJ KJILM)9J9BNLOD P"<+%#1CQ714-E"3R 08!9:;;<4)=>?)@8!A:B2;:>3);>)0"+#."%)+,3)S$%"-+4#1,'C)7D)58A")7EEF "#$%&"'% $()*+,-.+/0.(11-)2+3).+/+456-6.*)78.9:-.;'<=>.%?@".0+9+6-9.+)-.(6-0.97.,7/69)(,9 +.,438+9747A5.7*.BCC."4D-)9+.'4311-)6.7E-).BF.D7)-+4.,740.6-+67/6.G?,97D-)2<+),:H.*)78 BIJK2JC.97.!LLL2LBM..%:-."4D-)9+.'4311-).G:-)-+*9-).638145.!"#$$%&H.7,,()6.8769.*)-N(-/945 0()3/A.O-,-8D-).+/0.P+/(+)5.+/0.6(D69+/93+445.4-66.*)-N(-/945.0()3/A.?,97D-).+/0.<+),:M %:-6-.,5,47/-6.A-/-)+445.87E-.67(9:-+69Q+)0.*)78.9:-.4--.7*.9:-.'+/+03+/.&7,R3-6.97Q+)0 7).S(69./7)9:.7*.T+R-.$(1-)37).D-*7)-.1)7A)-663/A.-+69Q+)0.3/97.67(9:-+69-)/.'+/+0+.7).9:- /7)9:-+69-)/.U/39-0.$9+9-6V.Q39:.4-66.9:+/.BLW.7*.,+6-6.3/.9:-.,438+9747A5.9)+,R3/A.67(9:.7* 9:-.@)-+9.T+R-6M ':+)+,9-)3693,6.7*.9:-.69)(,9()-.+/0.-E74(937/.7*.'4311-)6.0()3/A.+.XK2:.1-)370.4-+03/A (1.97.0-1+)9()-.7*.9:-.,5,47/-.*)78.9:-.4--.7*.9:-.'+/+03+/.&7,R3-6.+/0.+.KL2:.1-)370.+*9-) 0-1+)9()-.+6.9:-.,5,47/-.9)+E-)6-6.,-/9)+4.+/0.-+69-)/.Y7)9:."8-)3,+.+)-.-Z+83/-0.9:)7(A: ,7817639-.+/+456-6M..?E-).9:-.,7()6-.7*.9:-.1)-20-1+)9()-.1-)370V.+.,5,47/-.7E-).9:-.@(4*.7* "4+6R+.+11)7+,:-6.9:-.Q-69.,7+69.7*.Y7)9:."8-)3,+V.+/0.9:)7(A:.396.3/9-)+,937/.Q39:.9:- 87(/9+3/7(6.9-))+3/.7*.Q-69-)/.Y7)9:."8-)3,+.61+Q/6.+.6()*+,-.4--.9)7(A:V.,:+)+,9-)3[-0.D5
    [Show full text]
  • Synoptic Climatology of Lake-Effect Snow Events Off the Western Great Lakes
    climate Article Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes Jake Wiley * and Andrew Mercer Department of Geosciences, Mississippi State University, 75 B. S. Hood Road, Starkville, MS 39762, USA; [email protected] * Correspondence: [email protected] Abstract: As the mesoscale dynamics of lake-effect snow (LES) are becoming better understood, recent and ongoing research is beginning to focus on the large-scale environments conducive to LES. Synoptic-scale composites are constructed for Lake Michigan and Lake Superior LES events by employing an LES case repository for these regions within the U.S. North American Regional Reanalysis (NARR) data for each LES event were used to construct synoptic maps of dominant LES patterns for each lake. These maps were formulated using a previously implemented composite technique that blends principal component analysis with a k-means cluster analysis. A sample case from each resulting cluster was also selected and simulated using the Advanced Weather Research and Forecast model to obtain an example mesoscale depiction of the LES environment. The study revealed four synoptic setups for Lake Michigan and three for Lake Superior whose primary differences were discrepancies in a surface pressure dipole structure previously linked with Great Lakes LES. These subtle synoptic-scale differences suggested that while overall LES impacts were driven more by the mesoscale conditions for these lakes, synoptic-scale conditions still provided important insight into the character of LES forcing mechanisms, primarily the steering flow and air–lake thermodynamics. Keywords: lake-effect; climatology; numerical weather prediction; synoptic; mesoscale; winter weather; Great Lakes; snow Citation: Wiley, J.; Mercer, A.
    [Show full text]
  • January 21, 2014 Winter Storm by Heather Sheffield, General
    January 21, 2014 Winter Storm By Heather Sheffield, General Forecaster The snow forecast quickly escalated 36 hours prior to the first snowflakes on Tuesday, January 21, 2014. Model Guidance over the weekend and prior to the event became snowier with each model run and consistency led to the issuance of a Winter Storm Warning on Monday, January 20, 2014. An upper trough was located across the eastern half of the United States. The storm track leading up to this event featured numerous waves of low pressure, called Alberta clippers, diving southeastward around the upper trough from central Canada into the mid-Atlantic region. Alberta clippers typically produce little precipitation since they originate from central Canada- a region without a large source of moisture. However, the one Alberta clipper that moved into the Northern Plains on the Monday afternoon of January 20 was able to tap into deeper moisture from the Gulf of Mexico and Atlantic Ocean as low pressure rapidly developed in the Mid- Atlantic States on Tuesday. The strengthening of low pressure occurred in response to the position of several jet streaks in the upper levels of the troposphere- one over the northern Gulf Coast and another over New England (image below). An arctic cold front dropped southward into the region Tuesday morning, allowing cold air to sink southward into the region and precipitation with this event to be snow. Snow began to move over the Potomac Highlands early Tuesday morning. Reagan National Airport and Southern Maryland were in the upper 30s around sunrise Tuesday morning. Temperatures just before the snow arrived were above freezing across the greater Baltimore and DC metropolitan area due to light easterly surface flow and abundant cloud cover on Monday night, but quickly dropped once snow started to fall (note: temperatures at the NWS forecast office in Sterling, VA drop 5 degrees in 15 minutes at the onset).
    [Show full text]
  • Windstorms Intense Windstorms in the Northeastern United States F
    Windstorms Intense windstorms in the Northeastern United States F. Letson1, R. J. Barthelmie2, K.I. Hodges3 and S. C. Pryor1 1Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA 5 2Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA 3Environmental System Science Centre, University of Reading, Reading, United Kingdom Correspondence to: F. Letson ([email protected]), S.C. Pryor ([email protected]) Abstract. Windstorms are a major natural hazard in many countries. Windstorms Intense windstorms during the last four decades in the U.S. Northeast are identified and characterized using the spatial extent of locally extreme wind 10 speeds at 100 m height from the ERA5 reanalysis database. During all of the top 10 windstorms, wind speeds in excess of their local 99.9th percentile extend over at least one-third of land-based ERA5 grid cells in this high population density region of the U.S. Maximum sustained wind speeds at 100 m during these windstorms range from 26 to over 43 ms-1, with wind speed return periods exceeding 6.5 to 106 years (considering the top 5% of grid cells during each storm). The propertyProperty damage associated with these storms, (inflation adjusted to January 2020,) is ranges 15 from $24 million to over $29 billion. Two of these windstorms are linked to decaying tropical cyclones, three are Alberta Clippers and the remaining storms are Colorado Lows. Two of the ten re-intensified off the east coast leading to development of Nor’easters. These windstorms followed frequently observed cyclone tracks, but exhibit maximum intensities as measured using 700 hPa relative vorticity and mean sea level pressure that are five to ten times mean values for cyclones that followed similar tracks over this 40-year period.
    [Show full text]
  • NOAA Technical Memorandum NWSTM CR 38 .U61 No.38 U.S
    F QC 995 NOAA Technical Memorandum NWSTM CR 38 .U61 no.38 U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Weather Service [ SNOW FORECASTING FOR SOUTHEASTERN WISCONSIN Rheinhart W. Harms CENTRAL REGION KANSAS CITY,MO NOV. 1970 DEC 7 1370 154 187 NO A4 TECHNICAL MEMORANDUM* Central Region Subseries The Central Region Subseries provides a medium for quick dissemination of material not appropriate or not yet ready for formal publication. Material is primarily of regional interest and for regional people. References to this series should identify them as unpublished reports. 1 Precipitation Probability Forecast Verification Summary Nov. 1965 - Mar. 1966. 2 A Study of Summer Showers Over the Colorado Mountains. * 3 Areal Shower Distribution - Mountain Versus Valley Coverage. 4 Heavy Rains in Colorado June 16 and 17, 1965- 5 The Plum Fire. 6 Precipitation Probability Forecast Verification Summary Nov. 1965 - July 1966. 7 Effect of Diurnal Weather Variations on Soybean Harvest Efficiency. 8 Climatic Frequency of Precipitation at Central Region Stations. 9 Heavy Snow or Glazing. 10 Detection of a Weak Front by WSR-57 Radar. 11 Public Probability Forecasts. 12 Heavy Snow Forecasting in the Central United States(An Interim Report). 13 Diurnal Surface Geostrophic Wind Variations Over The Great Plains. 14 Forecasting Probability of Summertime Precipitation at Denver. 15 Improving Precipitation Probability Forecasts Using the Central Region Verification Printout. 16 Small-Scale Circulations Associated With Radiational Cooling. 17 Probability Verification Results (6-Month and 18-Month). 18 On The Use and Misuse Of The Brier Verification Score. 19 Probability Verification Results (24 Months). 20 Radar Depiction of the Topeka Tornado.
    [Show full text]
  • Fish & Wildlife Branch Research Permit Environmental Condition
    Fish & Wildlife Branch Research Permit Environmental Condition Standards Fish and Wildlife Branch Technical Report No. 2013-21 December 2013 Fish & Wildlife Branch Scientific Research Permit Environmental Condition Standards First Edition 2013 PUBLISHED BY: Fish and Wildlife Branch Ministry of Environment 3211 Albert Street Regina, Saskatchewan S4S 5W6 SUGGESTED CITATION FOR THIS MANUAL: Saskatchewan Ministry of Environment. 2013. Fish & Wildlife Branch scientific research permit environmental condition standards. Fish and Wildlife Branch Technical Report No. 2013-21. 3211 Albert Street, Regina, Saskatchewan. 60 pp. ACKNOWLEDGEMENTS: Fish & Wildlife Branch scientific research permit environmental condition standards: The Research Permit Process Renewal working group (Karyn Scalise, Sue McAdam, Ben Sawa, Jeff Keith and Ed Beveridge) compiled the information found in this document to provide necessary information regarding species protocol environmental condition parameters. COVER PHOTO CREDITS: http://www.freepik.com/free-vector/weather-icons-vector- graphic_596650.htm CONTENT PHOTO CREDITS: as referenced CONTACT: [email protected] COPYRIGHT Brand and product names mentioned in this document are trademarks or registered trademarks of their respective holders. Use of brand names does not constitute an endorsement. Except as noted, all illustrations are copyright 2013, Ministry of Environment. ii Contents Introduction .......................................................................................................................
    [Show full text]
  • Downloaded 10/05/21 01:39 PM UTC MAY 2014 R O S E N O W E T a L
    1538 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 71 Vertical Velocity and Physical Structure of Generating Cells and Convection in the Comma Head Region of Continental Winter Cyclones ANDREW A. ROSENOW,DAVID M. PLUMMER,ROBERT M. RAUBER, GREG M. MCFARQUHAR, AND BRIAN F. JEWETT Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois DAVID LEON Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming (Manuscript received 14 August 2013, in final form 17 December 2013) ABSTRACT The vertical motion and physical structure of elevated convection and generating cells within the comma heads of three continental winter cyclones are investigated using the Wyoming W-band cloud radar mounted on the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) C-130, supplemented by analyses from the Rapid Update Cycle model and Weather Surveillance Radar-1988 Doppler (WSR-88D) data. The cyclones followed three distinct archetypical tracks and were typical of those producing winter weather in the midwestern United States. In two of the cyclones, dry air in the middle and upper troposphere behind the Pacific cold front intruded over moist Gulf of Mexico air at lower altitudes within the comma head, separating the comma head into two zones. Elevated convection in the southern zone extended from the cold-frontal surface to the tropopause. The 2 2 stronger convective updrafts ranged from 2 to 7 m s 1 and downdrafts ranged from 22to26ms 1. The horizontal scale of the convective cells was approximately 5 km. The poleward zone of the comma head was characterized by deep stratiform clouds topped by cloud-top generating cells that reached the tropopause.
    [Show full text]
  • Blizzards! LEVELED BOOK • L a Reading A–Z Level L Leveled Book Word Count: 491
    Blizzards! LEVELED BOOK • L A Reading A–Z Level L Leveled Book Word Count: 491 Connections Blizzards! Writing and Art Imagine being in the middle of a blizzard. Write a journal entry about what happened, including how you prepared for the blizzard and what you saw. Science Use a Venn diagram to compare a blizzard with another type of storm. Share your Venn diagram with a partner. • O I • L Written by Susan Lennox Visit www.readinga-z.com for thousands of books and materials. www.readinga-z.com Words to Know Blizzards! biting hurricane blizzard whiteout dangerous wind chill Photo Credits: Front cover, back cover: © Roger Coulam/Alamy Stock Photo; title page (main): © Mario Tama/Getty Images News/Thinkstock; title page (background), background used throughout: © Vlastimil Šesták/123RF; page 3: © National Geographic Creative/Alamy Stock Photo; page 4: © Buyenlarge\UIG/Universal Images Group/age fotostock; page 5: © Bettmann/Getty Images; page 6: © CBW/Alamy Stock Photo; page 7: © Clark Mishler/Alaska Stock - Design Pics/ SuperStock; page 8: © Olga Volodina/Alamy Stock Photo; page 9: © REUTERS/ Lindsay DeDario; page 10: © Greg E. Mathieson, Sr./REX Shutterstock; page 13: © REUTERS/Yuri Maltsev; page 14: © Jacquelyn Martin/AP Images; page 15: © Image Source/Alamy Stock Photo Written by Susan Lennox www.readinga-z.com Blizzards! Focus Question Level L Leveled Book Correlation © Learning A–Z LEVEL L Written by Susan Lennox What is a blizzard, and how does Fountas & Pinnell K it affect people? All rights reserved. Reading Recovery 18 www.readinga-z.com DRA 20 Horse carts in New York City haul snow away after the Blizzard of 1888.
    [Show full text]