Oscilloscopes, Part One

Total Page:16

File Type:pdf, Size:1020Kb

Oscilloscopes, Part One Continuing Education Oscilloscopes, Part One An introduction to the complex educational tool that has varied uses. by David Herres In this frst of a two-part series, we will confgured so that the location relative to the Y consider the oscilloscope as an educational tool. axis represents voltage, and the location relative It is a wonderful gateway into the world of to the X axis represents time. Crossing the axes electronics, and it seems there is no end to the at right angles to them are lines (known as multiple layers of elementary particle interaction “divisions”) that make it possible to gauge the it can reveal. voltage level of the signal at specifc time When one takes a new oscilloscope out of the intervals. Te trace so constituted may be box, the frst reaction may be, “What was I moving or static, but, either way, it conveys an thinking? How did I ever get myself into this? So immense amount of information about the signal many knobs and buttons, and endless cryptic being investigated. menus!” But don’t worry. Te operating manual, print or online, clarifes a great deal, and History remaining information gaps disappear one by To understand how the oscilloscope works, one as frst elementary and then successively Value: 1 it is instructive to take a look at its history, more complex exercises are performed. particularly in regard to two milestones: contact Te modern digital oscilloscope consists of probes; analog channels (usually two or four); triggering and the digital storage scope. Te hour analog-to-digital conversion; processing and frst oscilloscopes involved capturing (0.1 CEU) memory; and, fnally, waveforms by means of measuring voltages at a display (now various points along the circumference of a Approved for predominantly on a spinning rotor. A permanent record in the form Continuing fat screen). Typically, of a graphical image was made by hand drawing Education by Learning Objectives there are two axes, X the image on paper. Needless to say, frequency NAEC for CET® and Y, that intersect response was limited by the speed and and CAT®. After reading this article, you at the center of the endurance of the artist(s). EW Continuing should have learned about: screen. A spot of light Subsequent oscilloscope innovations were Education is moves vertically and ♦ Te history of the oscilloscope incremental. Te frst major breakthrough currently approved horizontally across ♦ Te principal components of involved use of a galvanometer, which moved a in the following the screen to form the an oscilloscope display pen across a strip of paper wrapped about a states: AL, AR, FL, trace, which is a ♦ Te purpose of the X and Y drum. It rotated at a constant clock-driven rate, GA, IL, IN, KY, MS, graphic axes which provided the time base. Similar MT, OK, PA, VT, VA, ♦ Important innovations in representation of the subsequent methods also involved moving WV and WI. Please oscilloscope development voltage applied at the parts, and because these machines were check for specifc ♦ input of the Disadvantages of TV course verifcation instrument. mechanical (as opposed to electronic), inertia conversion and the computer- of approval at www. based oscilloscope In its most of rest placed a severe limit on frequency elevatorbooks.com. common application, response. the oscilloscope is Continued May 2016 • ELEVATOR WORLD 55 Breakthroughs triggered-sweep oscilloscope, which An analog-to-digital converter in Hybrid equipment, where refected light facilitated a stable and coherent display of a conjunction with memory chips permit from a trembling mirror created waveform recurrent waveform. Tis expedient contemporary oscilloscopes to record and images on photographic paper, ramped permitted multiple waveform images to store a digital representation of any sort of oscilloscope frequency response as high as coincide on the oscilloscope screen, electrical waveform. Tis development 10 kHz by the 1920s. Later in that century, replacing the meaningless blur of light facilitated the fat-screen display. Together two substantial innovations occurred that resulting from lack of synchronization. An with efective triggering, digitization has made possible the oscilloscopes used unchanging frequency sweep input was not created a work platform that is immensely universally today. required for image stability. useful to engineers, technicians and Te frst of these was triggering, Te other signifcant development students to visualize diverse electronic introduced by Howard Vollum and Jack occurred prior to the 1980s, when Walter phenomena and solve many problems that Murdock, founders of Tektronix. In 1946, LeCroy, founder of LeCroy Corp., arise in research, development and they brought out the Tektronix Model 511 introduced the digital storage oscilloscope. maintenance. Types “Electronic technician” is a broad term and can include the electrical engineer who Replacement DOORS conceives of, designs and may be called upon to debug new innovations. Ten, there MEI Offers Both & is the “repair professional,” whose job Entrance Cab Doors description includes diagnosing and repairing dysfunctional electrical systems • 2-3 Week Lead Time and equipment. Tis task may range from • Competitive Pricing very simple (like resetting a tripped breaker • Entrance Doors are UL Labeled or replacing a worn power cord) to very • 1 or 2 Speed difcult (like troubleshooting an elevator • Side or Center Opening motion controller that cuts out at odd Standard Equipment intervals for no apparent reason). Another • Door Gibs category is the serious independent • Sight Guards inventor or home hobbyist. Tese folks • Astragals range from brilliant innovators who are • Bumpers occasionally at the cutting edge of some altogether new technologies to delusional cranks who break more than they fx. Any of these individuals can beneft greatly by having the use of an advanced oscilloscope. Te sad reality, however, is that a top-of-the-line instrument costs far more than many of us can aford. (Te most Powder Coating or expensive Agilent is priced at approximately Stainless Finish! Quality Crating Keeps US$500,000.) But, the good news is that the Doors Straight! midrange oscilloscopes are much less costly. Many vendors ofer fnancing designed to attract buyers. It is not difcult to imagine that one’s enhanced earning power will What our customers are saying... accompany and justify the expenditure. If Let us make a difference in your next project! “The doors we’ve received from MEI have far exceeded our lead time expectations. MEI has provided a solution to our not, there are other low-cost options, and Contact MEI today for a quote! two largest problems with doors by providing quick lead times we will consider them one at a time, and sturdy packaging. On top of that the doors provided are 1-800-450-3060 straight and provide all the correct drillings needed.” beginning with the cheapest. - James Snider Jr, Quality Elevator - TV Email: [email protected] An old black-and-white portable TV can Website: www.meielevatorsolutions.com “MEI is very impressive with the speed, craftsmanship, and care in which they design, build and ship their be converted into a viable oscilloscope. Te doors! When I see that crate with neatly stacked doors price of materials is about US$1, assuming a arrive from MEI, I am confdent I am getting a product that will impress my customers!” suitable TV can be had at no cost and the - Eric Crowley, Pincus Elevator Co., Inc. - solder and fux, wire, grommets and voltmeter probes are already available. Continued 56 www.elevatorworld.com • May 2016 Before starting, remember that TVs specialized signal-acquisition board. It low-end market, while others have been harbor hazardous high voltages retained in takes diferent forms, typically an external and are currently investing in R&D, the electrolytic capacitors associated with USB or parallel-port device. Another type seeking to provide top-level quality and their power supplies. (High voltage levels of PCO consists of a card installed in the functionality. Te big players are are needed for the defection circuitry computer. For hardware, there is an Tektronix, LeCroy and Agilent (recently capable of moving the beam of electrons electrical interface providing isolation and spun of into Keysight Technologies but away from the center of the screen.) automatic gain controls, some analog-to- keeping essentially the same product line). Moreover, the cathode-ray tube (CRT) digital converters and bufer memory, or Tese vendors ofer high quality, very itself can store electrical energy. Ten, an internal digital signal processor. Display advanced and durable oscilloscopes that there is also such a thing as distributed and control interfaces are provided by the should be valuable for years to come. capacitance throughout the set. Te chassis computer, and it is for that reason that the must be removed from the cabinet and cost of a PCO is much less than that of a these hazardous voltages discharged to full-scale oscilloscope. ground potential before starting to work As may be expected, there are some on the set. If you are at all uncertain of the signifcant disadvantages in going the PCO procedure, call a professional to help with route, despite the surprising functionality this phase of the project. And, remember of some of the better instruments. Te that if the set is reenergized, the principal drawback is that the computer is discharging process will have to be a source of power supply and repeated. electromagnetic noise. If
Recommended publications
  • The Absolute Measurement of Capacity
    THE ABSOLUTE MEASUREMENT OF CAPACITY. By Edwakd B. Rosa and Frederick "W. Grover. 1. The Method Employed. The usual method of determining the capacity of a condenser in electromagnetic measure is Maxwell's bridge method, using a tuning fork or a rotating commutator to charge and discharge the condenser, Fig. 1. which is placed in the fourth arm of a Wheatstone bridge. This is a null method, is adapted to measuring large and small capacities equally well, and requires an accurate knowledge only of a resistance and the rate of the fork or commutator. 153 154 BULLETIN OF THE BUREAU OF STANDARDS. [vol.1, no. 2. The formula for the capacity C of the condenser as given by J. J Thomson, is as follows: * i_L a (a+h+d){a+c+g) 0= (1) ncd \} +c{a+l+d))\} + d(a+c+g)) in which <z, c, and d are the resistances of three arms of a Wheatstone bridge, b and g are battery and galvanometer resistances, respectively, and n is the number of times the condenser is charged and discharged per second. When the vibrating arm P touches Q the condenser is charged, and when it touches P it is short circuited and discharged. When Pis not touching Q the arm BD of the bridge is interrupted and a current flows from D to C through the galvanometer; when P touches Q the condenser is charged by a current coming partly through c and partly through g from C to D. Thus the current through the galvanometer is alternately in opposite directions, and when these opposing currents balance each other there is no deflection of the gal- vanometer.
    [Show full text]
  • An Analysis of Inertial Seisometer-Galvanometer
    NBSIR 76-1089 An Analysis of Inertial Seisdmeter-Galvanorneter Combinations D. P. Johnson and H. Matheson Mechanics Division Institute for Basic Standards National Bureau of Standards Washington, D. C. 20234 June 1976 Final U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU Of STANDARDS • TABLE OF CONTENTS Page SECTION 1 INTRODUCTION ^ 1 . 1 Background 1.2 Scope ^ 1.3 Introductory Details 2 ELECTROMAGNETIC SECTION 2 GENERAL EQUATIONS OF MOTION OF AN INERTIAL SEISMOMETER 3 2.1 Dynaniical Theory 2 2.1.1 Mechanics ^ 2.1.2 Electrodynamics 5 2.2 Choice of Coordinates ^ 2.2.1 The Coordinate of Earth Motion 7 2.2.2 The Coordinate of Bob Motion 7 2.2.3 The Electrical Coordinate 7 2.2.4 The Magnetic Coordinate 3 2.3 Condition of Constraint: Riagnet 3 2.4 The Lagrangian Function • 2.4.1 Mechanical Kinetic Energy 10 2.4.2 Electrokinetic and Electro- potential Energy H 2.4.3 Gravitational Potential Energy 12 2.4.4 Mechanical Potential Energy 13 2.5 Tne General Equations of Motion i4 2.6 The Linearized Equations of Motion 2.7 Philosophical Notes and Interpretations 18 2.8 Extension to Two Coil Systems 18 2.8.1 General 2.8.2 Equations of Motion -^9 2.8.3 Reciprocity Calibration Using the Basic Instrument 21 2.8.4 Reciprocity Calibration Using Auxiliary Calibrating Coils . 23 2.9 Application to Other Electromagnetic Transducers - SECTION 3 RESPONSE CFARACTERISTICS OF A SEISMOMETER WITH A- RESISTIVE LOAD 3.1 Introduction 3.2 Seismometer with Resistive Load II TABLE GF CONTENTS Page 3.2.1 Steady State Response 27 3.
    [Show full text]
  • Electrical & Electronics Measurement Laboratory Manual
    DEPT. OF I&E ENGG. DR, M, C. Tripathy CET, BPUT Electrical & Electronics Measurement Laboratory Manual By Dr. Madhab Chandra Tripathy Assistant Professor DEPARTMENT OF INSTRUMENTAION AND ELECTRONICS ENGINEERING COLLEGE OF ENGINEERING AND TECHNOLOGY BHUBANESWAR-751003 PAGE 1 | EXPT - 1 ELECTRICAL &ELECTRONICS MEASUREMENT LAB DEPT. OF I&E ENGG. DR, M, C. Tripathy CET, BPUT List of Experiments PCEE7204 Electrical and Electronics Measurement Lab Select any 8 experiments from the list of 10 experiments 1. Measurement of Low Resistance by Kelvin’s Double Bridge Method. 2. Measurement of Self Inductance and Capacitance using Bridges. 3. Study of Galvanometer and Determination of Sensitivity and Galvanometer Constants. 4. Calibration of Voltmeters and Ammeters using Potentiometers. 5. Testing of Energy meters (Single phase type). 6. Measurement of Iron Loss from B-H Curve by using CRO. 7. Measurement of R, L, and C using Q-meter. 8. Measurement of Power in a single phase circuit by using CTs and PTs. 9. Measurement of Power and Power Factor in a three phase AC circuit by two-wattmeter method. 10. Study of Spectrum Analyzers. PAGE 2 | EXPT - 1 ELECTRICAL &ELECTRONICS MEASUREMENT LAB DEPT. OF I&E ENGG. DR, M, C. Tripathy CET, BPUT DO’S AND DON’TS IN THE LAB DO’S:- 1. Students should carry observation notes and records completed in all aspects. 2. Correct specifications of the equipment have to be mentioned in the circuit diagram. 3. Students should be aware of the operation of equipments. 4. Students should take care of the laboratory equipments/ Instruments. 5. After completing the connections, students should get the circuits verified by the Lab Instructor.
    [Show full text]
  • Manual S/N Prefix 11
    HP Archive This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web ! On-line curator: Glenn Robb This document is for FREE distribution only! OPERATING AND SERVICING MANUAL FOR MODEL 475B TUNABLE BOLOMETER MOUNT Serial 11 and Above Copyright 1956 by Hewlett-Packard Company The information contained in this booklet is intended for the operation and main· tenance oC Hewlett-Packard equipment and is not to be used otherwise or reproduced without the written consent of the Hewlett­ Packard Company. HEWLETT-PACKARD COMPANY 275 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U. S. A. 475BOOl-1 SPECIFICATIONS FREQUENCY RANGE: Approximately 1000 - 4000 MC (varies with SWR and phase of source and value of bolometer load.) POWER RANGE: 0.1 to 10 milliwatts (with -hp- Model 430C Microwave Power Meter.) FITTINGS: Input Connector - Type N female (UG 23/U). Output Connector (bolometer dc connec­ tion) - Type BNC (UG 89/U). Type N Male Connector (UG 21/U) sup­ plied to replace bolometer connector so that mount may be used as a conven­ tional double -stub transformer. POWER SENSITIVE ELEMENT: Selected 1/100 ampere instrument fuse. Sperry 821 or Narda N821 Barretter. Western Electric Type D166382 Ther­ mistor. OVERALL DIMENSIONS: 1811 long x 7-3/8" wide x 3-5/811 deep. WEIGHT: 8 pounds. ...... ...... Pl ::l P. Pl 0-' o <: Cil >+>­ -J lJ1 lJj o o ...... ......I • OPERATING INSTRUC TIONS INSPECTION This instrument has been thoroughly tested and inspected before being shipped and is ready for use when received. After the instrument is unpacked, it should be carefully inspected for any damage received in transit.
    [Show full text]
  • (Ohmmeter). Aims: • Calibrating of a Sensitive Galvanometer for Measuring a Resistance
    Exp ( ) Calibrating of a sensitive galvanometer for measuring a resistance (Ohmmeter). Aims: • Calibrating of a sensitive galvanometer for measuring a resistance. The theory When a galvanometer is used as an ohmmeter for measuring an ohmic resistance R, the deviation angle θ of the galvanometer’s coil is directly proportional to the flowing current through the coil and inversely proportional to the value of the resistance. The deviation will reach to the maximum end when the resistance equals to zero or the current has the maximum value. For this reason, the scale will be divide by inversely way in comparison with the ammeter and the voltmeter. The original circuit as shown in Fig(1) consists of a dry cell(E) , rheostat and ammeter (A) are connected in series with small resistor s has the range of 1 omega. The two terminals of “s” are connected in parallel to another combination includes a sensitive galvanometer “G” which has internal resistance “r” and a resistors box “R”, this combination is called the measuring circuit. When the value of R equals zero, and by moving the rheostat in the original circuit, it is possible to set the flowing electric current in measuring the circuit as a maximum value od deviation in the galvanometer. By assigning different values of R, the deviation θ is decreasing with increasing the value of R or by another meaning when the flowing current through the galvanometer decreases. Therefore, the current through the galvanometer is inversely proportional to the value of R according the following Figure 1: Ohmmeter Circuit diagram equation; V=I(R+r) R=V/I-r or R=V/θ-r 1 | P a g e This is a straight-line equation between R and (1/θ) as shown in Fig(2).
    [Show full text]
  • Ballastic Galvanometer This Is a Sophisticated Instrument. This
    Ballastic galvanometer This is a sophisticated instrument. This works on the principle of PMMC meter. The only difference is the type of suspension is used for this meter. Lamp and glass scale method is used to obtain the deflection. A small mirror is attached to the moving system. Phosphorous bronze wire is used for suspension. When the D.C. voltage is applied to the terminals of moving coil, current flows through it. When a current carrying coil kept in the magnetic field, produced by permanent magnet, it experiences a force. The coil deflects and mirror deflects. The light spot on the glass scale also move. This deflection is proportional to the current through the coil. Q i = , Q = it = idt t Q , deflection Charge Fig 2.27 Ballastic galvanometer Measurements of flux and flux density (Method of reversal) D.C. voltage is applied to the electromagnet through a variable resistance R1 and a reversing switch. The voltage applied to the toroid can be reversed by changing the switch from position 2 to position ‘1’. Let the switch be in position ‘2’ initially. A constant current flows through the toroid and a constant flux is established in the core of the magnet. A search coil of few turns is provided on the toroid. The B.G. is connected to the search coil through a current limiting resistance. When it is required to measure the flux, the switch is changed from position ‘2’ to position ‘1’. Hence the flux reduced to zero and it starts increasing in the reverse direction. The flux goes from + to - , in time ‘t’ second.
    [Show full text]
  • 802314-3) Laboratory Manual (Fall 2016: Term 1, 1437/1438H
    اﳌﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ KINGDOM OF SAUDI ARABIA Ministry of Higher Education وزارة اﻟﺘﻌﻠﻴﻢ اﻟﻌﺎﱄ - ﺟﺎﻣﻌﺔ أم اﻟﻘﺮى Umm Al-Qura University ﻛﻠﻴﺔ اﳍﻨﺪﺳﺔ و اﻟﻌﻤﺎرة اﻹﺳﻼﻣﻴﺔ College of Engineering and Islamic Architecture ﻗﺴﻢ اﳍﻨﺪﺳﺔ اﻟﻜﻬﺮ?ﺋﻴﺔ Electrical Engineering Department ELECTRICAL AND ELECTRONIC MEASUREMENTS (802314-3) Laboratory Manual (Fall 2016: Term 1, 1437/1438H) Prepared by: Dr. Makbul Anwari Approved by: Control Sequence Committee Table of Contents Page 1. Introduction 3 2. Laboratory Safety 3 3. Lab Report 5 4. Experiment # 1: 6 5. Experiment # 2: 11 6. Experiment # 3: 19 7. Experiment # 4: 25 8. Experiment # 5: 29 2 Introduction This manual has been prepared for use in the course 802314-3, Electrical and Electronic Measurements. The laboratory exercises are devised is such a way as to reinforce the concepts taught in the lectures. Before performing the experiments the student must be aware of the basic laboratory safety rules for minimizing any potential dangers. The students must complete and submit the pre-lab report of each exercise before performing the experiment. The objective of the experiment must be kept in mind throughout the lab experiment. Laboratory Safety: ∑ Safety in the electrical engineering laboratory, as everywhere else, is a matter of the knowledge of potential hazards, following safety regulations and precautions, and common sense. ∑ Observing safety precautions is important due to pronounced hazards in any electrical engineering laboratory. ∑ All the UQU Electrical Engineering Students, Teaching Assistants, Lab Engineers, and Lab technicians are required to be familiar with the LABORATORY SAFETY GUIDELINES FOR THE UQU ELECTRICAL ENGINEERING UNDERGRADUATE LAB AREAS published on the department web-page.
    [Show full text]
  • TI S4 Audio Frequency Test Apparatus.Pdf
    TECHNICAL INSTRUCTION S.4 Audio-frequency Test Apparatus BRITISH BROADCASTING , CORPORATION ENGINEERING DlVlSlON - ', : . iv- TECHNICAL INSTRUCTION S.4 Third Issue 1966 instruction S.4 Page reissued May. 1966 CONTENTS Page Section I . Amplifier Detector AD14 . 1.1 Section 2 . Variable Attenuator AT119 . Section 3 . Wheatstone Bridge BG/I . Section 4 . Calibration IJnit CALI1 . Section 5. Harmonic Routine Tester FHP/3 . Section 6 . 0.B. Testing Unit 0BT/2 . Section . 7 . Fixed-frequency Oscillators OS/9. OS/ 10. OS/ IOA . Section 8 . Variable-frequency Oscillators TS/5 .. TS/7 . 1' . TS/8 . TS/9 . TS/ 10. TS/ 1OP . Section 9 . Portable Oscillators PTS/9 . PTS/IO . ... PTS/12 . PTS/13 . PTS/l5 .... PTS/l6 .... Appendix . The Zero Phase-shift Oscillator with Wien-bridge Control Section 10. Transmission Measuring Set TM/I . Section 1 I . Peak Programme Meter Amplifiers PPM/2 ..... PPM/6 . TPM/3 . Section 12 Valve Test Panels VT/4. VT/5 "d . Section 13. Microphone Cable Tester MCT/I . Section 14 . Aural Sensitivity Networks ASN/3. ASN/4 Section 15 . Portable Amplifier Detector PAD19 . Section 16. Portable Intermodulation Tester PIT11 Section 17. A.C. Test Meters ATM/I. ATM/IP . Section 18 . Routine Line Testers RLT/I. RLT/IP . Section 19. Standard Level Panel SLP/3 . Section 20 . A.C. Test Bay AC/55 . Section 21 . Fixed-frequency Oscillators: OS2 Series Standard Level Meter ME1611 . INSTRUCTION S.4 Page reissued May 1966 ... CIRCUIT DIAGRAMS AT END Fig. 1. Amplifier Detector AD14 Fig. 2. Wheatstone Bridge BG/1 Fig. 3. Harmonic Routine Tester FHP/3 Fig. 4. Oscillator OS/9 Fig.
    [Show full text]
  • A History of Impedance Measurements
    A History of Impedance Measurements by Henry P. Hall Preface 2 Scope 2 Acknowledgements 2 Part I. The Early Experimenters 1775-1915 3 1.1 Earliest Measurements, Dc Resistance 3 1.2 Dc to Ac, Capacitance and Inductance Measurements 6 1.3 An Abundance of Bridges 10 References, Part I 14 Part II. The First Commercial Instruments 1900-1945 16 2.1 Comment: Putting it All Together 16 2.2 Early Dc Bridges 16 2.3 Other Early Dc Instruments 20 2.4 Early Ac Bridges 21 2.5 Other Early Ac Instruments 25 References Part II 26 Part III. Electronics Comes of Age 1946-1965 28 3.1 Comment: The Post-War Boom 28 3.2 General Purpose, “RLC” or “Universal” Bridges 28 3.3 Dc Bridges 30 3.4 Precision Ac Bridges: The Transformer Ratio-Arm Bridge 32 3.5 RF Bridges 37 3.6 Special Purpose Bridges 38 3,7 Impedance Meters 39 3.8 Impedance Comparators 40 3.9 Electronics in Instruments 42 References Part III 44 Part IV. The Digital Era 1966-Present 47 4.1 Comment: Measurements in the Digital Age 47 4.2 Digital Dc Meters 47 4.3 Ac Digital Meters 48 4.4 Automatic Ac Bridges 50 4.5 Computer-Bridge Systems 52 4.6 Computers in Meters and Bridges 52 4.7 Computing Impedance Meters 53 4.8 Instruments in Use Today 55 4.9 A Long Way from Ohm 57 References Part IV 59 Appendices: A. A Transformer Equivalent Circuit 60 B. LRC or Universal Bridges 61 C. Microprocessor-Base Impedance Meters 62 A HISTORY OF IMPEDANCE MEASUREMENTS PART I.
    [Show full text]
  • Complex Circuits Paige Cooper, Adriana Knight, Liz Larsen, Ryan Olesen Meters
    Complex Circuits Paige Cooper, Adriana Knight, Liz Larsen, Ryan Olesen Meters Voltmeters are devices that measure voltage → use parallel connections Ammeters are devices that measure current → use series connections If charges only flow in one direction, then the circuit is considered a Direct Current. In this unit we are talking about meters that utilize DCs. Parallel Connection - A parallel circuit has more than one resistor (anything that uses electricity to do work) and gets its name from having multiple (parallel) paths to move along . Charges can move through any of several paths. - More current flows through the smaller resistance. (More charges take the easiest path.) - As the charges move through the resistors they do work on the resistor and as a result, they lose electrical energy. - By the time each charge makes it back to the battery, it has lost all the electrical energy given to it by the battery. - a charge can only do as much work as was done on it by the battery Series Connection In a series connection the currents all go through the same series of components in the circuit. Because of this, all of the components carry the same current. There is only one path in which the current may go. Analog Meters : Galvanometers ● Analog: Needles that swivel and point at number on the scale ● Digital meters: numerical readouts ● Current flows through the Galvanometers and produces a proportional needle deflection ● Current sensitivity→ It is deflection produced in the galvanometer per unit current flowing through it, the maximum current that the instrument can measure. ● The internal resistance of galvanometers are close to zero.
    [Show full text]
  • The OHM Meter an Ohmmeter Is an Electrical Instrument That Measures
    The OHM meter An ohmmeter is an electrical instrument that measures electrical resistance, the opposition to an electric current. Micro-ohmmeters (microhmmeter or microohmmeter) make low resistance measurements. Megohmmeters (aka megaohmmeter or in the case of a trademarked device Megger) measure large values of resistance. The unit of measurement for resistance is ohms (). The original design of an ohmmeter provided a small battery to apply a voltage to a resistance. It uses a galvanometer to measure the electric current through the resistance. The scale of the galvanometer was marked in ohms, because the fixed voltage from the battery assured that as resistance is decreased, the current through the meter would increase. Ohmmeters form circuits by themselves, therefore they cannot be used within an assembled circuit. A more accurate type of ohmmeter has an electronic circuit that passes a constant current (I) through the resistance, and another circuit that measures the voltage (V) across the resistance. According to the following equation, derived from Ohm's Law, the value of the resistance (R) is given by: On the ohms ranges of a normal multimeter the unknown resistance is connected in series with a battery and the meter and the scale reads backwards. A variable resistor is included in the circuit so that the meter can be adjusted to read full scale with the test terminals shorted (Fig 1). In the shunt ohmmeter a battery and variable resistor are connected across a milli ammeter and the resistor is adjusted so that the meter reads full scale with the test terminals are unconnected (Fig.2).
    [Show full text]
  • Megohmmeter Model 1000N (Catalog# 185.100) Repair and Calibration Manual
    Rev. 8 3/04 MEGOHMMETER MODEL 1000N (CATALOG# 185.100) REPAIR AND CALIBRATION MANUAL MODEL 1000N REPAIR AND CALIBRATION MANUAL CAT. #185.100 TABLE OF CONTENTS Repair and Technical Services....................................................................................... 3 Introduction..................................................................................................................... 4 Specific Features............................................................................................................ 4 Principal Characteristics ................................................................................................. 4 Specifications ..................................................................................................................6 Operation........................................................................................................................ 7 Calibration .................................................................................................................... 11 Taking the Instrument Apart ......................................................................................... 14 Troubleshooting............................................................................................................ 17 Summary of Malfunctions ............................................................................................. 20 Component Parts List................................................................................................... 21 Mechanical
    [Show full text]