Redalyc.Egg-Guarding Behavior of the Treehopper Ennya Chrysura
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Prairie Restoration on Hemiptera
CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Biology By Stephanie Kay Gunter, B.A. Dayton, Ohio August 2021 CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Name: Gunter, Stephanie Kay APPROVED BY: Chelse M. Prather, Ph.D. Faculty Advisor Associate Professor Department of Biology Ryan W. McEwan, Ph.D. Committee Member Associate Professor Department of Biology Mark G. Nielsen Ph.D. Committee Member Associate Professor Department of Biology ii © Copyright by Stephanie Kay Gunter All rights reserved 2021 iii ABSTRACT CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Name: Gunter, Stephanie Kay University of Dayton Advisor: Dr. Chelse M. Prather Ohio historically hosted a patchwork of tallgrass prairies, which provided habitat for native species and prevented erosion. As these vulnerable habitats have declined in the last 200 years due to increased human land use, restorations of these ecosystems have increased, and it is important to evaluate their success. The Hemiptera (true bugs) are an abundant and varied order of insects including leafhoppers, aphids, cicadas, stink bugs, and more. They play important roles in grassland ecosystems, feeding on plant sap and providing prey to predators. Hemipteran abundance and composition can respond to grassland restorations, age of restoration, and size and isolation of habitat. -
Does Gray Squirrel (Sciurus Carolinensis) Response to Heterospecific Alarm Calls Depend on Familiarity Or Acoustic Similarity?
Ethology RESEARCH PAPER Does Gray Squirrel (Sciurus carolinensis) Response to Heterospecific Alarm Calls Depend on Familiarity or Acoustic Similarity? Cynthia M. Getschow, Pearl Rivers, Samantha Sterman, David C. Lumpkin & Keith A. Tarvin Department of Biology, Oberlin College, Oberlin, OH, USA Correspondence Abstract Keith A. Tarvin, Department of Biology, Oberlin College, 119 Woodland Street, In habitats in which multiple species are prey to the same predators, indi- Oberlin, OH 44074, USA. viduals can greatly benefit from recognizing information regarding preda- E-mail: [email protected] tors that is provided by other species. Past studies have demonstrated that various mammals respond to familiar heterospecific alarm calls, but Received: January 28, 2013 whether acoustic similarity to a familiar call can prompt a mammal’s Initial acceptance: May 14, 2013 recognition of an unfamiliar call has yet to be shown. We presented alarm Final acceptance: August 2, 2013 calls to free-ranging eastern gray squirrels (Sciurus carolinensis) and (D. Zeh) recorded behavioral changes in vigilance and antipredatory response. Playbacks included alarm calls of a sympatric bird (American robin, Turdus doi: 10.1111/eth.12145 migratorius), an allopatric bird with a call structure similar to that of the robin (common blackbird, Turdus merula), and an allopatric bird with a distinct call structure (New Holland honeyeater, Phylidonyris novaehollan- diae). Squirrels responded significantly more frequently to squirrel alarm calls (positive control) than to robin song (negative control) or honeyeater calls. Squirrel response to robin and blackbird alarm calls was statistically similar to their response to squirrel alarm calls, indicating that squirrels responded to those alarm calls as if they provided information about the presence of predators. -
Aspirating Smoke Detection APPLICATIONS GUIDE: ASPIRATING SMOKE DETECTION Aspirating Smoke Detection
APPLICATIONS GUIDE Aspirating Smoke Detection APPLICATIONS GUIDE: ASPIRATING SMOKE DETECTION Aspirating Smoke Detection Contents Aspirating Smoke Detection ...............................................................................3 Design Best Practices .......................................................................................21 Codes and Standards .......................................................................................4 More on Hot Aisle/ Cold Aisle Configurations .................................................22 Definitions ............................................................................................................4 Coordination and Interface with other Systems ..............................................26 United States Definitions and Requirements .....................................................4 Common Issues / Application Troubleshooting .............................................26 Requirements of SFD systems according to NFPA 72 .....................................4 Telecommunications .......................................................................................28 Requirements of EWFD systems according to NFPA 76 .................................4 Application Overview.........................................................................................28 Requirements of VEWFD systems according to NFPA 76 ...............................5 Benefits of Aspirating Smoke Detection ..........................................................29 European EN 54-20 Requirements -
Hemiptera, Membracidae, Smiliinae) with a New Synonym, a New Combination, and a New Country Record
A peer-reviewed open-access journal ZooKeys 557: 85–91 (2016)First Immature of the New World Treehopper tribe Thuridini... 85 doi: 10.3897/zookeys.557.6602 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research First Immature of the New World Treehopper tribe Thuridini (Hemiptera, Membracidae, Smiliinae) with a new synonym, a new combination, and a new country record Stuart H. McKamey1, Mitchell J. Porter2 1 USDA/ARS Systematic Entomology Lab, c/o NMNH MRC-168, Smithsonian Institution, Washington, DC 20560, USA 2 Department of Biology, University of Maryland, College Park, MD 20742 Corresponding author: Stuart H. McKamey ([email protected]) Academic editor: M. Webb | Received 16 September 2015 | Accepted 8 December 2015 | Published 28 January 2016 http://zoobank.org/E3D490F4-5654-47E4-95AA-3407F41648CE Citation: McKamey SH, Porter MJ (2016) First Immature of the New World Treehopper tribe Thuridini (Hemiptera: Membracidae: Smiliinae) with a new synonym, a new combination, and a new country record. ZooKeys 557: 85–91. doi: 10.3897/zookeys.557.6602 Abstract The species Thuris depressus Sakakibara (1975) is proposed as a syn. n. of Thuris binodosus (Goding 1926), comb. n. The distribution of the genus is expanded from Brazil and Peru to include Ecuador and Venezuela, and the immature is described based on 75 characters. Keywords Thuris, Parantonae, nymph, syn. n., comb. n., Ecuador, Venezuela Introduction Adult treehoppers (Membracidae, Aetalionidae, and Melizoderidae) are well known for the expanded, -
Social Behaviour and Life History of Membracine Treehoppers
Journal of Natural History, 2006; 40(32–34): 1887–1907 Social behaviour and life history of membracine treehoppers CHUNG-PING LIN Department of Entomology, Cornell University, Ithaca, NY, USA and Department of Life Science, Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, Taiwan (Accepted 28 September 2006) Abstract Social behaviour in the form of parental care is widespread among insects but the evolutionary histories of these traits are poorly known due to the lack of detailed life history data and reliable phylogenies. Treehoppers (Hemiptera: Membracidae) provide some of the best studied examples of parental care in insects in which maternal care involving egg guarding occurs frequently. The Membracinae exhibit the entire range of social behaviour found in the treehoppers, ranging from asocial solitary individuals, nymphal or adult aggregations, to highly developed maternal care with parent–offspring communication. Within the subfamily, subsocial behaviour occurs in at least four of the five tribes. The Aconophorini and Hoplophorionini are uniformly subsocial, but the Membracini is a mixture of subsocial and gregarious species. The Hypsoprorini contains both solitary and gregarious species. Accessory secretions are used by many treehoppers to cover egg masses inserted into plant tissue while oviposition on plant surfaces is restricted to a few species. Presumed aposematic colouration of nymphs and teneral adults appears to be restricted to gregarious and subsocial taxa. Ant mutualism is widespread among membracine treehoppers and may play an important role in the evolutionary development of subsocial behaviour. The life history information provides a basis for comparative analyses of maternal care evolution and its correlation with ant mutualism in membracine treehoppers. -
Structure and Development of the Complex Helmet of Treehoppers
Adachi et al. Zoological Letters (2020) 6:3 https://doi.org/10.1186/s40851-020-00155-7 RESEARCH ARTICLE Open Access Structure and development of the complex helmet of treehoppers (Insecta: Hemiptera: Membracidae) Haruhiko Adachi1, Keisuke Matsuda1, Kenji Nishida2, Paul Hanson3, Shigeru Kondo1 and Hiroki Gotoh4,5* Abstract Some insects possess complex three-dimensional (3D) structures that develop under the old cuticle prior to the last imaginal molt. Adult treehoppers (Insecta: Hemiptera: Auchenorrhyncha: Membracidae) have one such complex 3D structure, known as a helmet, on their dorsal side. The adult helmet likely forms inside the nymphal pronotum during the final instar nymphal stage. Previous morphological studies have reported that the adult helmet is a large, bi-layered, plywood-like structure, whereas the nymphal pronotum is a monolayer, sheath-like structure. The adult helmet is much larger than nymphal helmet. Thus, the emergence of the adult helmet involves two structural transitions: a transition from a monolayer, sheath-like pronotum to a bi-layer, plywood-like helmet, and a transition in size from small to large. However, when, how, and in what order these transitions occur within the nymphal cuticle is largely unknown. To determine how adult helmet development occurs under the nymphal cuticle, in the present study we describe the morphology of the final adult helmet and investigate developmental trajectories of the helmet during the final instar nymphal stage. We used micro-CT, scanning electron microscope and paraffin sections for morphological observations, and used Antianthe expansa as a model species. We found that the structural transition (from monolayer, sheath-like structure to bi-layer, roof-like structure) occurs through the formation of a “miniature” of the adult helmet during the middle stage of development and that subsequently, extensive folding and furrows form, which account for the increase in size. -
Wednesday, March 14
Antipredator behavior Antipredator behavior Nonsocial species may rely on crypsis, aposematism or mimicry scorpionfish lonomia moth katydid Antipredator behavior Testing adaptations Nonsocial species may rely on We presume these are crypsis, aposematism or mimicry adaptations to predation, but how to be sure? against conspicuous background Catocala spp. Detection index Detection against cryptic background Müllerian mimicry: unpalatable species converge Batesian mimicry: palatable Trials mimic unpalatable model Testing adaptations What about the aposematic hindwings of Catocala spp.? Blue jays trained on: Then presented with: Result: Cryptic hindwings Aposematic hindwings Startled! Aposematic hindwings Aposematic hindwings Not startled Aposematic hindwings Different aposematic hindwings Startled! How does this affect hindwing coloration across the genus? 1 Scarlet kingsnake, Lampropeltis triangulum Eastern coral snake, Micrurus fulvius Scarlet kingsnake, Lampropeltis triangulum Eastern coral snake, Micrurus fulvius Non-venomous Highly venomous Hypothesis Bright coloration with striking Bright coloration with striking Kingsnakes are protected from predators banding patterns banding patterns because they mimic venomous coral snakes (red + black) (red + yellow) Kingsnakes ONLY Kingsnakes Coral snakes Coral snakes and Hypothesis Kingsnakes Kingsnakes are protected from predators because they mimic venomous coral snakes Scarlet kingsnake, Lampropeltis triangulum Eastern coral snake, Micrurus fulvius Scarlet kingsnake, Lampropeltis triangulum -
Bibliography – Auchenorrhyncha
Bibliography of Oklahoma Auchenorrhyncha Ahring, R. M. & D. E. Howell. 1968. A Suggested Method of Collecting Insects Associated with Forage Grass Seed Production. Journ. Econ. Entom. 61(4):975-981. Ball, E. D. & R. H. Beamer. 1940. A Revision of the Genus Athysanella and Some Related Genera (Homoptera – Cicadellidae). Univ. Kansas Sci. Bull. 41(22):5-82. Bartlett, C. R. and L. L. Deitz. 2000. Revision of the New World Delphacid Planthopper Genus Pissonotus (Hemiptera: Fulgoroidea). Thomas Say Publications in Entomology: Monographs. 234 pp. Beamer, R. H. 1947. Some New Species of Delphacodes (Continued) with Two Old Ones. Journ. Kansas Entom. Soc. 20(2):58-71. Blocker, H. D. 1967. Classification of the Western Hemisphere Balclutha (Homoptera: Cicadellidae). Proc. U. S. Nat. Mus. 122(3581):1-55. Blocker, H. D. & J. W. Johnson. 1990a. Classification of Athysanella (Gladionura) (Homoptera: Cicadellidae: Deltocephalinae). Journ. Kansas Entom. Soc. 63(1):9-45. Blocker, H. D. & J. W. Johnson. 1990b. Classification of Athysanella (Amphipyga) (Homoptera: Cicadellidae: Deltocephalinae). Journ. Kansas Entom. Soc. 63(1):101-132. Blocker, H. D. & J. W. Johnson. 1990c. Classification of Five Subgenera of Athysanella (Homoptera: Cicadellidae: Deltocephalinae). Journ. Kansas Entom. Soc. 63(2):304-315. Blocker, H. D. & R. Reed. 1976. Leafhopper Populations of a Tallgrass Prairie (Homoptera: Cicadellidae): Collecting Procedures and Population Estimates. Journ. Kansas Entom. Soc. 49(2):145-154. Breakey, E. P. 1932. A Review of the Nearctic Species of Macropsis (Homoptera, Cicadellidae). Ann. Entom. Soc. America 25(4):787-840. Cole, J. A. 2008. A New Cryptic Species of Cicada Resembling Tibicen dorsatus Revealed by Calling Song (Hemiptera: Auchenorrhyncha: Cicadidae). -
Morphology-Based Phylogenetic Analysis of the Treehopper Tribe Smiliini (Hemiptera: Membracidae: Smiliinae), with Reinstatement of the Tribe Telamonini
Zootaxa 3047: 1–42 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Morphology-based phylogenetic analysis of the treehopper tribe Smiliini (Hemiptera: Membracidae: Smiliinae), with reinstatement of the tribe Telamonini MATTHEW S. WALLACE Department of Biological Sciences, East Stroudsburg University of Pennsylvania, 200 Prospect Street, East Stroudsburg, PA 18301- 2999, 570-422-3720. E-mail: [email protected] Table of contents Abstract . 1 Introduction . 2 Material and methods . 5 Results and discussion . 9 Smiliini Stål 1866 s. Wallace . 16 Telamonini Goding 1892 s. Wallace, synonym reinstated . 20 Antianthe, Hemicardiacus, and Tropidarnis, Smiliinae, incertae sedis . 25 Geographic patterns of the Smiliini, Telamonini, and unplaced genera . 34 Host plant families . 34 Phylogeny, geographical patterns, and host plants: clues to a geographic origin? . 35 Concluding remarks. 36 Acknowledgments . 40 Literature cited . 40 Abstract Members of the Smiliini, the nominotypical tribe of the large New World subfamily Smiliinae, are predominately Nearctic in distribution. This tribe included 169 mostly tree-feeding species in 23 genera. A parsimony-based phylogenetic analysis of an original dataset comprising 89 traditional and newly discovered morphological characters for 69 species, including representatives of 22 of the 23 described genera of Smiliini and five other previously recognized tribes of the subfamily, resulted in a single most parsimonious tree with three major clades. The broad recent concept of Smiliini (including Tela- monini as a junior synonym) was not recovered as monophyletic by the analysis. Instead, the analysis supported narrower definitions of both Telamonini, here reinstated from synonymy, and Smiliini. -
Biology, Ecology and Demography of the Tropical Treehopper Ennya
Ecological Entomology (2017), 42, 477–483 DOI: 10.1111/een.12410 Biology, ecology and demography of the tropical treehopper Ennya maculicornis (Hemiptera: Membracidae): relationships between female fitness, maternal care and oviposition sites LILIANA CACERES-SANCHEZ,1 DANIEL TORRICO-BAZOBERRY,1,2 ROMINA COSSIO,1,3 KENIA REQUE,1 SANDRA AGUILAR,1 HERMANN M. NIEMEYER2 andCARLOS F. , , PINTO1 2 3 1Laboratorio de Ecología Química, Facultad de Ciencias y Tecnología, Departamento de Biología, Universidad Mayor de San Simón, Cochabamba, Bolivia, 2Laboratorio de Química Ecológica, Facultad de Ciencias, Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile and 3Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Sucre, Bolivia Abstract. 1. Treehoppers (Hemiptera: Membracidae) exhibit a wide range of social behaviours related to maternal care and nymphal aggregation. Maternal care represents an investment in terms of time and energy leading to trade-offs which bear a strong relationship with parity and can thus affect population dynamics. These trade-offs can be modulated by biotic and abiotic features of the oviposition site. 2. Preliminary observations on Ennya maculicornis (Membracidae: Similinae: Polyg- lyptini) show that females generally lay a single egg mass, and occasionally two or three egg masses, and that maternal care is a plastic trait because some females abandoned their egg mass before it hatched while other females remained with their offspring after egg hatching. These features make this species an interesting model to study the rela- tionship between female fitness, maternal care and ecological factors such as oviposition site. 3. The biology and natural history of E. maculicornis are described and the relation- ships in question analysed using demographic parameters estimated by matrix models. -
Multimodal Alarm Behavior in Urban and Rural Gray Squir-Rels Studied By
Current Zoology 56 (3): 313−326, 2010 Multimodal alarm behavior in urban and rural gray squir- rels studied by means of observation and a mechanical robot Sarah R. PARTAN*, Andrew G. FULMER, Maya A. M. GOUNARD, Jake E. REDMOND Hampshire College School of Cognitive Science, Amherst, MA 01002 Massachusetts, USA Abstract Urbanization of animal habitats has the potential to affect the natural communication systems of any species able to survive in the changed environment. Urban animals such as squirrels use multiple signal channels to communicate, but it is un- known how urbanization has affected these behaviors. Multimodal communication, involving more than one sensory modality, can be studied by use of biomimetic mechanical animal models that are designed to simulate the multimodal signals and be pre- sented to animal subjects in the field. In this way the responses to the various signal components can be compared and contrasted to determine whether the multimodal signal is made up of redundant or nonredundant components. In this study, we presented wild gray squirrels in relatively urban and relatively rural habitats in Western Massachusetts with a biomimetic squirrel model that produced tail flags and alarm barks in a variety of combinations. We found that the squirrels responded to each unimodal component on its own, the bark and tail flag, but they responded most to the complete multimodal signal, containing both the acoustic and the moving visual components, providing evidence that in this context the signal components are redundant and that their combination elicits multimodal enhancement. We expanded on the results of Partan et al. (2009) by providing data on sig- naling behavior in the presence and absence of conspecifics, suggesting that alarm signaling is more likely if conspecifics are present. -
Revisão Taxonômica De Notogonioides Mckamey, 1997 (Hemiptera: Auchenorrhyncha: Membracidae)
Universidade Federal da Grande Dourados Faculdade de Ciências Biológicas e Ambientais Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade Revisão taxonômica de Notogonioides McKamey, 1997 (Hemiptera: Auchenorrhyncha: Membracidae) Andressa Figueiredo de Oliveira Dourados–MS maio de 2014 0 Universidade Federal da Grande Dourados Faculdade de Ciências Biológicas e Ambientais Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade Andressa Figueiredo de Oliveira REVISÃO TAXONÔMICA DE Notogonioides McKAMEY, 1997 (HEMIPTERA: AUCHENORRHYNCHA: MEMBRACIDAE) Dissertação apresentada à Universidade Federal da Grande Dourados (UFGD), como parte dos requisitos exigidos para obtenção do título de MESTRE EM ENTOMOLOGIA E CONSERVAÇÃO DA BIODIVERSIDADE. Área de Concentração: Biodiversidade e Conservação Orientadora: Adelita Maria Linzmeier Co–orientadora: Olivia Evangelista de Souza Dourados–MS maio de 2014 1 Dados Internacionais de Catalogação na Publicação (CIP). O482r Oliveira, Andressa Figueiredo de. Revisão taxonômica de Notogonioides McKamey, 1997 Hemiptera : Auchenorrhyncha: Membracidae. / Andressa Figueiredo de Oliveira. – Dourados, MS : UFGD, 2014. 89f. Orientadora: Profa. Dra. Adelita Maria Linzmeier. Co-orientadora: Dra. Olivia Evangelista de Souza. Dissertação (Mestrado em Entomologia e Conservação da Biodiversidade) – Universidade Federal da Grande Dourados. 1. Smiliinae. 2. Polyglyptini. 3. Taxonomia. 4. Cigarrinha. I. Título. CDD – 595.7 Ficha catalográfica elaborada pela Biblioteca Central – UFGD. ©Todos os direitos reservados. Permitido a publicação parcial desde que citada a fonte. 2 3 Biografia da Acadêmica Andressa Figueiredo de Oliveira, nascida na cidade de Campo Grande, Mato Grosso do Sul, em 29 de novembro de 1990, é filha de Maria Aparecida Figueiredo de Oliveira e Altamiro Carneiro de Oliveira. Cursou o ensino fundamental no Colégio Almirante Tamandaré e o ensino médio na Escola Moderna Associação Campo-grandense de Ensino – MACE.