Impact of Integrated Pest Management Modules on the Activity of Natural Enemies in Castor Ecosystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
To Us Insectometers, It Is Clear That Insect Decline in Our Costa Rican
SPECIAL FEATURE: PERSPECTIVE To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’sbekindto SPECIAL FEATURE: PERSPECTIVE the survivors Daniel H. Janzena,1 and Winnie Hallwachsa Edited by David L. Wagner, University of Connecticut, and accepted by Editorial Board Member May R. Berenbaum November 11, 2020 (received for review April 6, 2020) We have been field observers of tropical insects on four continents and, since 1978, intense observers of caterpillars, their parasites, and their associates in the 1,260 km2 of dry, cloud, and rain forests of Area´ de Conservaci ´onGuanacaste (ACG) in northwestern Costa Rica. ACG’s natural ecosystem restoration began with its national park designation in 1971. As human biomonitors, or “insectometers,” we see that ACG’s insect species richness and density have gradually declined since the late 1970s, and more intensely since about 2005. The overarching perturbation is climate change. It has caused increasing ambient tempera- tures for all ecosystems; more erratic seasonal cues; reduced, erratic, and asynchronous rainfall; heated air masses sliding up the volcanoes and burning off the cloud forest; and dwindling biodiversity in all ACG terrestrial ecosystems. What then is the next step as climate change descends on ACG’s many small-scale successes in sustainable biodevelopment? Be kind to the survivors by stimulating and facilitating their owner societies to value them as legitimate members of a green sustainable nation. Encourage national bioliteracy, BioAlfa. climate change | BioAlfa | conservation by rewilding | biodevelopment | insect decline As “insectometers,” also known as human biomoni- eventually focused into Area´ de Conservaci ´onGuana- tors, we have watched the conspicuous ongoing de- caste (ACG) in northwestern Costa Rica (8–13) (Fig. -
Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, <I
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2009 Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M Gabriela Murua Estación Experimental Agroindustrial Obispo Colombres, CONICET Jamie Molina Ochoa Universidad de Colima, University of Nebraska-Lincoln Patricio Fidalgo CRILAR Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Murua, M Gabriela; Ochoa, Jamie Molina; and Fidalgo, Patricio, "Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina" (2009). Faculty Publications: Department of Entomology. 384. http://digitalcommons.unl.edu/entomologyfacpub/384 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Insect Science: Vol. 9 | Article 20 Murúa et al. Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M. Gabriela Murúaa,b, Jaime Molina-Ochoac,d and Patricio Fidalgoe aEstación Experimental Agroindustrial Obispo Colombres, Sección Zoología Agrícola, CC 9, Las Talitas (T4101XAC), Tucumán, Argentina bCONICET cUniversidad de Colima, Facultad de Ciencias Biológicas y Agropecuarias, Km. 40, autopista Colima-Manzanillo, Tecomán, Colima (28100), México dDepartment of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816, USA eCRILAR (CONICET), entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina Abstract To develop a better understanding of the natural distribution of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), and to update the knowledge of the incidence of its complex of parasitoids. -
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS INDONESIA January 2007 Forest Resources Development Service Working Paper FBS/19E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Indonesia DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Indonesia. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Indonesia TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases.................................................................................................................. -
Insects and Related Arthropods Associated with of Agriculture
USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H. -
Reproductive Biology and Longevity of Euplectrus Ronnai (Brèthes) (Hymenoptera: Eulophidae)
July - September 2003 481 BIOLOGICAL CONTROL Reproductive Biology and Longevity of Euplectrus ronnai (Brèthes) (Hymenoptera: Eulophidae) ANA C. YAMAMOTO AND LUÍS A. FOERSTER Depto. Zoologia, UFPR. C. postal 19.020, 81531-990, Curitiba, PR, e-mail: [email protected] Neotropical Entomology 32(3):481-485 (2003) Biologia Reprodutiva e Longevidade de Euplectrus ronnai (Brèthes) (Hymenoptera: Eulophidae) RESUMO - O ectoparasitóide Euplectrus ronnai (Brèthes) é um dos componentes do complexo de espécies que parasitam a lagarta do trigo Mythimna (Pseudaletia) sequax Franclemont (Lepidoptera: Noctuidae). Não há dados na literatura sobre o potencial de parasitismo, preferência por ínstares do hospedeiro e longevidade desse parasitóide, o que motivou a realização do presente trabalho. O parasitismo ocorreu entre o terceiro e o quinto ínstares do hospedeiro; lagartas de segundo instar inviabilizaram o desenvolvimento do parasitóide, e no primeiro e no sexto ínstares não houve oviposição pelas fêmeas de E. ronnai. O número de ovos depositados pelas fêmeas aumentou com o estádio de desenvolvimento do hospedeiro, variando de 1,5 ovos/lagarta no terceiro instar a 3,6 ovos/lagarta no quinto ínstar. A proporção de lagartas parasitadas entre os diferentes ínstares mostrou que E. ronnai apresenta preferência pelo quarto e quinto ínstares de M. sequax. Não houve diferença no tempo de desenvolvimento, na razão sexual, no número médio de lagartas parasitadas e na porcentagem de lagartas parasitadas em testes de livre escolha entre lagartas de quarto e de quinto ínstares. Entretanto, o número de parasitóides/hospedeiro foi significativamente maior em lagartas de quinto ínstar. A fecundidade média das fêmeas de E. ronnai foi de 63,7 ovos e cada fêmea parasitou a média de 20,3 lagartas. -
PACIFIC INSECTS MONOGRAPH Ll
PACIFIC INSECTS MONOGRAPH ll Lepidoptera of American Samoa with particular reference to biology and ecology By John Adams Comstock Published by Entomology Department, Bernice P. Bishop Museum Honolulu, Hawaii, U. S. A. 1966 PACIFIC INSECTS MONOGRAPHS Published by Entomology Department, Bernice P. Bishop Museum, Honolulu, Hawaii, 96819, U. S. A. Editorial Committee: J. L. Gressitt, Editor (Honolulu), S. Asahina (Tokyo), R. G. Fennah (London), R. A. Harrison (Christchurch), T. C. Maa (Honolulu & Taipei), C. W. Sabrosky (Washington, D. C), R. L. Usinger (Berkeley), J. van der Vecht (Leiden), K. Yasumatsu (Fukuoka), E. C. Zimmerman (New Hampshire). Assistant Editors: P. D. Ashlock (Honolulu), Carol Higa (Honolulu), Naoko Kunimori (Fukuoka), Setsuko Nakata (Honolulu), Toshi Takata (Fukuoka). Business Manager: C. M. Yoshimoto (Honolulu). Business Assistant: Doris Anbe (Honolulu). Business Agent in Japan: K. Yasumatsu (Fukuoka). Entomological staff, Bishop Museum, 1966: Doris Anbe, Hatsuko Arakaki, P. D. Ashlock, S. Azuma, Madaline Boyes, Candida Cardenas, Ann Cutting, M. L. Goff, J. L. Gressitt (Chairman), J. Harrell, Carol Higa, Y. Hirashima, Shirley Hokama, E. Holzapfel, Dorothy Hoxie, Helen Hurd, June Ibara, Naoko Kuni mori, T. C. Maa, Grace Nakahashi, Setsuko Nakata (Adm. Asst.), Tulene Nonomura, Carol Okuma, Ka tharine Pigue, Linda Reineccius, T. Saigusa, I. Sakakibara, Judy Sakamoto, G. A. Samuelson, Sybil Seto, W. A. Steffan, Amy Suehiro, Grace Thompson, Clara Uchida, J. R. Vockeroth, Nixon Wilson, Mabel Ya- tsuoka, C. M. Yoshimoto, E. C. Zimmermann. Field associates: M. J. Fitzsimons, E. E. Gless, G. E. Lip- pert, V. Peckham, D. S. Rabor, J. Sedlacek, M. Sedlacek, P. Shanahan, R. Straatman, J. Strong, H. M. Tor- revillas, A. -
Erebidae-Erebinae.Pdf
Erebidae Erebinae Achaea janata (Linnaeus, 1758) Taxonomy: Phalaena janata Linnaeus, 1758; 527.– . Phalaena melicerta Drury, [1773]:46,. – India (Bombay). Noctua tigrina Fabricius, 1775. Noctua cyathina Macleay, 1826 . Catocala traversii Fereday, 1877. Ophiusa ekeikei Bethune-Baker, 1906. melicertoides Strand, 1914: 74. Imago melicertella Strand, 1914: 74. Achaea melicertoides Gaede, 1938. Achaea melicertella Gaede, 1938. Hostplant: Flight period: viii. Altitude: 460 m. Distribution map Erebidae Erebinae Achaea serva (Fabricius, 1775) Taxonomy: Noctua serva Fabricius, 1775. Achaea fasciculipes Walker, 1858. fuscosuffusa Strand, 1914: 73. Achaea fuscosuffusa Gaede, 1938. Hostplant: Flight period: ix. Altitude: 2900 m. Imago Distribution map Erebidae Erebinae Agonista hypoleuca Guenee, 1852 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Arcte polygrapha Kollar, 1844 Taxonomy: Arcte polygrapha Kollar, 1844± ./ In- dia (Himalaya) Hostplant Flight period: v, viii. Altitude: 460-1975 m. Imago Distribution map Erebidae Erebinae Artena dotata (Fabricius, 1794) Taxonomy: Noctua dotata Fabricius, 1794: 55.– E. India. Hostplant: Flight period: v-vi. Altitude: 1580-2020 m. Imago Distribution map Erebidae Erebinae Blepharidia griseirufa Hampson, 1894 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Capnodes caustiplaga Hampson, 1895 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Capnodes pustulifera Walker, 1864 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Catocala nupta (Linnaeus, 1767) Taxonomy: Phalaena nupta Linnaeus, 1767: 841.– Germany. Catocala unicuba Walker, [1858]:1210.– India. Hostplant: Populus, P. nigra, Salix, S. fragilis Flight period: ix. Altitude: 2900 m. Imago Distribution map Erebidae Erebinae Chrysopera combinans (Walker, 1858) Taxonomy: Achaea combinans Walker, 1858: 1399.- Ceylon. -
Biology of Achaea Janata Linneaus on Castor and Rose N.K.S
Agric. Sci. Digest, 22 (3) : 213 - 214,2002 BIOLOGY OF ACHAEA JANATA LINNEAUS ON CASTOR AND ROSE N.K.S. Bhadauria, U.C. Singh and U.S. Dwivedi Department of Entomology, College of Agriculture, JNKW Campus, Gwalior - 474 002, India ABSTRACT Biology ofAchaeajanata Linneaus was studied on the two principal hosts viz., castor and rose to find suitable host for development of this insect under laboratory conditions. Castor was found more suitable host than rose on the basis of more number of eggs, shorter larval and pupal period with lower larval and pupal mortality and higher per cent adult emergence. The castor semilooper, Achaeajanata with filter paper. The adults emerging on the (Lepidoptera: Noctuidati} is a serious pest of same day (Male, female) were paired and castor in many castor growing states of India. released for egg laying in oviposition cages (45 Besides castor, it feeds on different host plants x 45 x 45 cm). Honey sulution (5%) was like pomegranate, rose, dudhi etc. Food plants provided as foot to adults. Observations on play a vital role in the development, survival various developmental stages Le. eggs to adults and reproductive potential of insects (Painter, were recorded on both the hosts. Experiment 1951). The present contribution deals with was performed in four sets. the stYEIies on the biology of the pest on castor The number of eggs laid on castor was and rose. more (535.3 ± 26.8 egs/female) than rose The biology of castor semi looper was :(250.4 ± 12.5/female) (Table 1). Gaikwad studied in the laboratory. -
Influence of Castor Genotypes with Different Wax Blooms on Oviposition
Journal of Pharmacognosy and Phytochemistry 2018; 7(5): 2711-2715 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(5): 2711-2715 Influence of castor genotypes with different wax Received: 01-07-2018 Accepted: 03-08-2018 blooms on oviposition preference of endolarval parasitoid Snellenius maculipennis (Szepligate) of K Chakkani Priya Acharya N.G. Ranga castor semilooper Achaea janata L Agricultural University, Lam, Guntur, Andhra Pradesh, India KV Hari Prasad K Chakkani Priya, KV Hari Prasad, NC Venkateswarlu and V Umamahesh Acharya N.G. Ranga Agricultural University, Lam, Abstract Guntur, Andhra Pradesh, India The A. janata larvae reared on susceptible genotype DPC-9 had significantly greater parasitisation by S. maculipennis than the moderately resistant genotype 48-1 and resistant genotype GCH-4 tested under no- NC Venkateswarlu choice, dual-choice and multi-choice conditions, suggesting that host genotypes plays a significant role in Acharya N.G. Ranga the effectiveness of S. maculipennis in parasitisation of A. janata larvae. The increased parasitism of A. Agricultural University, Lam, Guntur, Andhra Pradesh, India janata larvae by S. maculipennis on the susceptible genotype DPC-9 might be due to the fact that the host larvae was healthy on the susceptible genotype because lack of resistance to the herbivore. Percentage V Umamahesh parasitism was greater under no-choice condition as compared to that under multi-choice and dual choice Acharya N.G. Ranga conditions, which may be largely because of non-availability of alternate host plant to the females of S. Agricultural University, Lam, maculipennis in no choice condition. The genotype DPC-9 was hospitable to S. -
Green Synthesis of Silver Nanoparticles Using Euphorbia Hirta
Euphorbia hirta silver nanopaticles JBiopest 5(1): 1-6 JBiopest 7(Supp.): 54-66(2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) G. Durga Devi* K. Murugan and C. Panneer Selvam ABSTRACT Biosynthesis of insecticides from plant extracts is currently under exploitation. Plant extracts are very cost effective and eco-friendly and thus can be an economic and efficient alternative for the large-scale synthesis of synthetic and other chemical insecticides. So the present study was carried out to establish the larvicidal effect of synthesized silver nanoparticles (AgNPs) using leaf extract of Euphorbia hirta (Euphorbiaceae) against the first to fourth instar larvae and pupae of the crop pest of cotton boll worm , Helicoverpa armigera. The production of the AgNPs synthesized using leaf extract of Euphorbia hirta was evaluated through a UV–Vis spectrophotometer in a wavelength range of 200 to 700 nm. An SEM micrograph showed 30- 60-nm-size aggregates of spherical- and cubic-shaped nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of silver. The results showed that the considerable larval mortality was found in the synthesized AgNPs against the I instar to IV instar larvae and pupae of Helicoverpa armigera. The leaf extract exhibited larval toxicity against the I instar to IV instar larvae and pupae of Helicoverpa armigera. The chi-square value was significant at p<0.05 level. Nanoparticle treatment showed toxicity against larval instars of Helicoverpa armigera and had impact on the biological parameters of Helicoverpa armigera. -
Redalyc.Parasitism and Biological Aspects of Tetrastichus Howardi
Ciência Rural ISSN: 0103-8478 [email protected] Universidade Federal de Santa Maria Brasil Hidalgo Barbosa, Rogério; Oliveira Kassab, Samir; Fagundes Pereira, Fabricio; Rossoni, Camila; Perassa Costa, Daniele; Avalo Berndt, Maykon Parasitism and biological aspects of Tetrastichus howardi (Hymenoptera: Eulophidae) on Erinnyis ello (Lepidoptera: Sphingidae) pupae Ciência Rural, vol. 45, núm. 2, febrero, 2015, pp. 185-188 Universidade Federal de Santa Maria Santa Maria, Brasil Available in: http://www.redalyc.org/articulo.oa?id=33133798001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência Rural, Santa Maria,Parasitism v.45, n.2, and p.185-188, biological fev, aspects 2015 of Tetrastichus howardi (Hymenoptera: http://dx.doi.org/10.1590/0103-8478cr20130896 Eulophidae) on... 185 ISSN 0103-8478 Parasitism and biological aspects of Tetrastichus howardi (Hymenoptera: Eulophidae) on Erinnyis ello (Lepidoptera: Sphingidae) pupae Parasitismo e aspectos biológicos de Tetrastichus howardi (Hymenoptera: Eulophidae) em pupas de Erinnyis ello (Lepidoptera: Sphingidae) Rogério Hidalgo BarbosaI* Samir Oliveira KassabI Fabricio Fagundes PereiraI, II Camila RossoniII Daniele Perassa CostaI Maykon Avalo BerndtII - NOTE - ABSTRACT Erinnyis ello (LINNAEUS, 1758) (Lepidoptera: Sphingidae), also known as Erinnyis ello is one of the main pests of the cassava crop, and its natural enemies including egg, caterpillar, and pupal “mandarová-da-mandioca” is one of the main pests of parasitoids. The aim of this study was to evaluate parasitism and the cassava crop (AGUIAR et al., 2010). -
Pests of Gingelly, Castor, Mustard and Linseed
Lecture No 9 PESTS OF GINGELLY, CASTOR, MUSTARD AND LINSEED Pests of Gingelly Though a dozen pests attack gingelly, only leaf webber, gall fly and leaf hopper as vector are important and cause economic damage in gingelly. Major pests 1. Leaf webber Antigastra catalaunalis Pyralidae Lepidoptera 2. Sphinx moth Acherontia styx Sphingidae Lepidoptera 3. Gall fly Asphondylia sesami Cecidomyiidae Diptera 4. Leaf hopper Orosius albicinctus Cicadallidae Hemiptera 5. Pod bug Elasmolomus sordidus Lygaeidae Hemiptera Minor pests 6. Aphid Aphis gossypii Aphididae Hemiptera I. Leaf feeders 1. Leaf webber: Antigastra catalaunalis (Pyralidae: Lepidoptera) Distribution and status: India, Africa, South Europe, Malta, Burma, Bangladesh, Indonesia, Sri Lanka and U.S.S.R. Host range: Sesame, Antirrhinum and Duranta. Damage symptoms Larva webs the top leaves together and bore the tender shoots in the vegetative phase. Flowers and young capsules are bored at reproductive stage. Bionomics Moth is brown with yellowish brown wings. It lays eggs on tender parts of plants. The egg period is 4-5 days. Fully grown pale green larva with black head and dots all over the body measures 20 mm in length. The larval period is 11-16 days. It pupates in leaf folds in a white silken cocoon for 4-7 days. ETL: 2 webbed leaves/sq.m. (or) 10% damage. Management 1. Culture of sesame like EH7, 57, 84, 105, 106 and 156 should be encouraged as these are observed to be completely resistant against A. catalaunalis. 2. Dusting the crop with 2% parathion. 3. Spraying with dimethoate 30 EC 500 ml or methyl parathion 50 EC 500 ml or endosulfan 35 EC 1.25 L or carbaryl 50% WP I kg in 700 L water per hectare.