Schinopsis Brasiliensis Engl. to Combat the Biofilm-Dependents Diseases in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

Schinopsis Brasiliensis Engl. to Combat the Biofilm-Dependents Diseases in Vitro An Acad Bras Cienc (2020) 92(4): e20200408 DOI 10.1590/0001-3765202020200408 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal HEALTH SCIENCES Schinopsis brasiliensis Engl. to combat the Running title: S. brasiliensis to biofilm-dependents diseases in vitro combat biofilm oral diseases Academy Section: Health Sciences PEDRO HENRIQUE SETTE-DE-SOUZA, CLEILDO P. DE SANTANA, ILZA MARIA O. SOUSA, MARY ANN FOGLIO, FRANCINALVA D. DE MEDEIROS & ANA CLÁUDIA D. DE MEDEIROS e20200408 Abstract: Dental caries and periodontal disease are the most prevalent of the biofilm- dependent diseases. With numerous side effects on the use of chlorhexidine, the 92 (4) search for new safe therapeutic alternatives for microorganisms involved with these 92(4) diseases increases every day. This study aimed to evaluate the antimicrobial activity and cytotoxicity of extracts made from the bark of Schinopsis brasiliensis Engl. against five oral microorganisms and analyze their phytochemical and thermal degradation profile. The liquid-liquid partition was performed with hexane, chloroform and ethyl acetate. The identification and quantification of the chemical marker was done. Antimicrobial activity was evaluated based on the minimum inhibitory concentration. The cytotoxicity was analyzed based on the hemolysing potential of the samples. The thermal degradation profile was performed by two different methods. Gallic acid was identified as the main compound of the samples and showed the highest amount in the chloroform fraction. All samples were able to inhibit the growth of the microorganisms tested and showed no cytotoxicity. The ethanol extract absorbs less heat than the fractions. All samples exhibited exothermic peak consistent with degradation of gallic acid. Based on the results, the samples used are potential candidates for use in dental formulations for biofilm control. Key words: antibacterial agents, natural products, oral diseases, Schinopsis brasiliensis. INTRODUCTION Dental caries is a widely prevalent disease problem globally (Bagramian et al. 2009). It is a The resistance of microorganisms to antibiotics multifactorial and prevalent chronic infectious has become a big problem for medicine, seeking resulting from tooth-adherent specific bacteria, to develop new antimicrobial therapies with primarily Streptococcus spp, that metabolize high resistance to microorganisms (Pereira et sugars to produce acid, which over time, al. 2011). Therefore, research on herbal products demineralizes tooth structure (Abranches et is growing gradually. In dentistry, these studies al. 2018). Streptococcus mitis, S. oralis, and S. mainly examine the effect of bacteria and fungi salivarius are associated with an initial bacteria on the most prevalent oral diseases such as tooth-adhesion, which can be used as a bridge dental caries and periodontal disease, which to other oral microbiota members such as other are considered biofilm-dependent (Lima et al. streptococci and periodontopathogens (Butler 2014, Santamaria Junior et al. 2014, Sponchiado et al. 2017). Furthermore, there are reports of et al. 2014). meningitis caused by S. salivarius (Falomir et al. An Acad Bras Cienc (2020) 92(4) PEDRO HENRIQUE SETTE-DE-SOUZA et al. S. brasiliensis TO COMBAT BIOFILM ORAL DISEASES 2014, Suy et al. 2013, Vignier et al. 2014); whereas MATERIALS AND METHODS S. oralis and S. mitis can increase virulence Collection of Plant material and obtaining of factors of Candida albicans (Palma et al. 2019) the extract and cause bloodstream infections in pediatric The bark of Schinopsis brasiliensis Engl. was patients (Basaranoglu et al. 2019). The S. mutans collected from the semi-arid region in the State is the most frequently associated microorganism of Paraíba, Brazil. A voucher specimen was with caries development, being responsible prepared and identified in the herbarium of for initiated tooth demineralization acidifying Professor Jayme Coelho de Morais, at the Federal microenvironment and tooth surface (Abranches University of Paraíba and given the number et al. 2018; Baker et al. 2016). Moreover, S. EAN-14049. mutans is also associated with bacteremia and The plant material was dried at 40 ± 1 °C. endocarditis (Nakano et al. 2005, 2009). So, it is The ethanolic extract (EE) was obtained by crucial to research solutions to minimize these percolating bark powder, using ethanol (Merck - infections. Darmstadt, Hessen, Germany) as a solvent for five Therefore, many studies using bioactive days in three cycles at 30 °C, and concentrated compounds and plants have been done (Lima in a vacuum rotary evaporator (40 °C, 55 rpm) et al. 2014, Macedo-Costa et al. 2017, Veloso et until complete solvent removal was achieved. al. 2020, Sette-de-Souza et al. 2014, Silva et al. 2012). In this context, the Schinopsis brasiliensis Partition of the ethanolic extract Engl., is used in folk medicine to combat various The EE was subjected to liquid-liquid partition. diseases, including toothache, diarrhea, flu, and The EE was then solubilized in a solvent system inflammations (Agra et al. 2006, Albuquerque of ethanol:water (80:20, v/v) in a 1:1 (v/v). EE 2006, Albuquerque et al. 2007, 2012). The bark of solution was put in a separatory funnel and the S. brasiliensis presents polyphenols, flavonoids, solvents [hexane - Hex, chloroform – Chlo, and tannins, and saponins (Chaves et al. 2015, ethyl acetate – EtAc - (Merck - Darmstadt, Hessen, Fernandes et al. 2015) and a lot of compounds Germany)] were sequentially added in a 1:1 (v/v) with biological activities have been isolated and stirred. The funnel was allowed to stand (Cardoso et al. 2005, 2015, Santos et al. 2017). In for about 10 minutes so that there was phase this way, Santos et al (2014) detected flavonoids separation. The process was repeated three and tannins in the hydroalcoholic extract of the times for each solvent to reach the appropriate bark of S. brasiliensis, along with the absence amount of each fraction. Subsequently, each of toxicity. These phenolic compounds in the fraction was concentrated in a vacuum rotary bark of this plant are degraded in temperatures evaporator (40 °C, 55 rpm) until complete above 125 °C (Fernandes et al. 2013). solvent removal was achieved. The objective of this study was to evaluate the antimicrobial activity against oral bacteria Minimum Inhibitory Concentration and the cytotoxicity of extract and fractions For this stage the standard strains used were produced from the bark of S. brasiliensis Engl. the American Type Culture Collection (ATCC) and analyze its phytochemical and thermal Streptococcus mutans (25175), Streptococcus degradation profile. oralis (10557), Streptococcus mitis (903) and Streptococcus salivarius (7073), which were An Acad Bras Cienc (2020) 92(4) e20200408 2 | 11 PEDRO HENRIQUE SETTE-DE-SOUZA et al. S. brasiliensis TO COMBAT BIOFILM ORAL DISEASES provided by the Oswaldo Cruz Foundation was washed three times with 1% saline solution. (FIOCRUZ-RJ). The erythrocytes were re-suspended in the same The minimum inhibitory concentration (MIC) solution, and the volume was adjusted to 5%. determination was performed as recommended Then 1.5 mL of 5% erythrocyte suspension was by the Clinical and Laboratory Standards Institute added together with 1.5 mL of the test solution (CLSI 2009). The inoculum was standardized at concentrations of 1.0 mg/mL, 2.5 mg/mL, and in tubes containing 5 mL of 0.9% sterile saline 5.0 mg/mL in tubes, remaining for 1 hour at room solution. The microbial suspension was adjusted temperature for the hemolysis to occur. After using a spectrophotometer (Shimadzu UV-mini this period, each tube was centrifuged at 2500 1240 – São Paulo, Brazil) at a wavelength of rpm for 10 minutes, and the supernatant was 625 nm, equivalent to 106 Colony Forming Units removed for reading in a spectrophotometer per mL (CFU/mL). For this step, the extract and (Shimadzu UV-mini - 1240) at a wavelength of the fractions were solubilized in 10% dimethyl 540 nm (Cruz-Silva et al. 2001). The positive sulfoxide (DMSO - Merck - Darmstadt, Hessen, control used was Turk’s solution 1% negative and Germany). One hundred microliters of each 1% saline solution. The analysis was performed fraction or extract at a concentration of 500 mg/ in triplicate. The calculation of the potential mL was serially diluted in brain heart infusion hemolyzing substances followed the following broth (BHI – Difco - Detroit, MI, USA) in a 96-well equation: plate (TPP - Trasadingen, Switzerland) along with Ae− Ab Hp= x100 the positive control (0.12% Chlorhexidine - Sigma- At (1) Aldrich - St. Louis, MO, USA). Ten microliters of inoculation with the microorganism were added Where: to the wells. The plates were incubated at 37 ± Hp = Hemolyzing potential (in percentage) 0.5 °C for 24 hours. The bacterial growth was Ae = Absorbance of the test sample indicated by the addition of 20 µL of aqueous Ab = Absorbance of the Negative Control resazurin (Sigma-Aldrich - St. Louis, MO, USA) At = Absorbance of the Positive Control at 0.01% with subsequent incubation at 37 ± From the data generated from each sample’s 0.5 °C for two hours. Viable bacteria reduce linearity, it was possible to determine the the dye, changing its color to blue, and the MIC appropriate concentration of each extract that was defined as the lowest concentration of test would cause hemolysis of red blood cells by substance that inhibited the change of color of 50% (IC50). These data were used to determine resazurin. the selectivity index (SI) of each extract for the bacteria tested, and enabled the calculation Cytotoxicity and Selectivity Index according to the methodology proposed by The red blood cells’ preparation for the Protopopova et al. (2005) using the equation: cytotoxicity assay followed the method described IC SI 50 by Cruz-Silva et al. (2000). Whole blood from a = MIC (2) voluntary individual working in our laboratory, type O+, was collected and placed in a tube Where: containing heparin. The plasma was removed SI = Selectivity Index after centrifugation at 2500 rpm for 5 minutes.
Recommended publications
  • Download This PDF File
    CHARACTERISTICS OF TEN TROPICAL HARDWOODS FROM CERTIFIED FORESTS IN BOLIVIA PART I WEATHERING CHARACTERISTICS AND DIMENSIONAL CHANGE R. Sam Williams Supervisory Research Chemist Regis Miller Botanist and John Gangstad Technician USDA Forest Service Forest Products Laboratory1 Madison, WI 53705-2398 (Received July 2000) ABSTRACT Ten tropical hardwoods from Bolivia were evaluated for weathering performance (erosion rate, dimensional stability, warping, surface checking, and splitting). The wood species were Amburana crarensis (roble), Anudenanthera macrocarpa (curupau), Aspidosperma cylindrocarpon Cjichituriqui), Astronium urundeuva (cuchi), Caesalpinia cf. pluviosa (momoqui), Diplotropis purpurea (sucupira), Guihourriu chodatiuna (sirari), Phyllostylon rhamnoides (cuta), Schinopsis cf. quebracho-colorudo (soto), and Tabeb~liuspp. (lapacho group) (tajibo or ipe). Eucalyptus marginatu Cjarrah) from Australia and Tectonu grandis (teak), both naturally grown from Burma and plantation-grown from Central America, were included in the study for comparison. The dimensional change for the species from Bolivia, commensurate with a change in relative humidity (RH) from 30% to 90%, varied from about 1.6% and 2.0% (radial and tangential directions) for Arnburunu cer~ren.risto 2.2% and 4.1% (radial and tangential) for Anadenanthera macrocarpu. The dimensional change for teak was 1.3% and 2.5% (radial and tangential) for the same change in relative humidity. None of the Bolivian species was completely free of warp or surface checks; however, Anadenanthera macrocarpu, Aspidosperma cy- lindrocurpon, and Schinopsis cf. quebracho-colorado performed almost as well as teak. The erosion rate of several of the wood species was considerably slower than that of teak, and there was little correlation between wood density and erosion rate. Part 2 of this report will include information on the decay resistance (natural durability) of these species.
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • Purpleheart Tree PREZ SEYZ 2
    FEBRUARY 2019 What’s Inside PREZ SEYZ Page 2 GALLERY OF BOWLS Page 4 TEN HARDEST WOODS Page 12 USE OF SPACER BLOCKS WITH PENS Page 15 PEN WOOD OF MONTH Page 18 Purpleheart Tree PREZ SEYZ 2 Hey woodturners, How you doing? What can I say, just keep shoveling! So much for a mild win- ter. As most of you are aware, the February meeting was canceled because of weath- er. If you didn't get the email notice, I apologize. It may have gone out on an older mailing list. So that being a situa- tion, if you need to send info out to club members, make sure you have the latest list. You can get it from Randy. If you have bowls yet for "Feed My People " please contact me at [email protected] and I will get them from you. Each of you who are signed up to do a demo at a club meeting, please just move your demo forward one month. If that can't work, let me know. We are always looking for new ideas for demos for club meetings. If you would like a demonstration on a given area of wood turning, let me know and we will try to get in in the schedule. For those of you who like to turn natural edge bowls, now is the time to cut the trees before the sap starts to flow. The bark is less likely to loosen. Obviously because on no meeting this month our letter will be somewhat shorter. I give Tom credit for his creativity in making it informative, Thanks Tom ! Well again as Bugs Bunny sez, "That's all folks" Prez Duane.
    [Show full text]
  • Schinopsis Spp. Family: Anacardiaceae Quebracho
    Schinopsis spp. Family: Anacardiaceae Quebracho Other Common Names: Barauva, Brauna, Quebracho hembra (Brazil), Quebracho colorado, Q. chaqueno, Q. santiagueno (Argentina). Distribution: Botanical range extends over northern Argentina, western Paraguay, a small portion of Bolivia, and to the interior of the state of Bahia in Brazil. The Tree: Scrubby growth 30 to 50 ft high; 12 to 36 in. in diameter. Trunks are often bent and twisted and swollen at the base. S. balansae reported to reach a height of 80 ft. and a diameter of 60 in. The Wood: General Characteristics: Heartwood light red, deepening to brick red, uniform or with black streaks; distinct but not sharply demarcated from the yellowish sapwood. Luster low to medium; texture fine and uniform; grain irregular, often roey; odor not distinctive, taste astringent. Heartwood contains 20 to 30% tannin. Weight: Basic specific gravity (ovendry weight/green volume) 1.00; air-dry density 75 pcf. Mechanical Properties: (Standard not known) Moisture content Bending strength Modulus of elasticity Maximum crushing strength (%) (Psi) (1,000 psi) (Psi) 15% (69) 19,800 2,190 NA 15% (69) 13,800 1,950 8,900 Drying and Shrinkage: Reported to check and warp severely, particularly when cut into thin boards. A kiln schedule similar to T1 -B1 has been suggested. No data available on shrinkage values. Working Properties: Very difficult to work, especially when dry, but takes a high natural polish. Durability: Highly durable, though standing trees are often defective as a result of heart rot. Preservation: No data available. Uses: Tannin extraction, railroad crossties, heavy construction, fence posts, poles, fuel.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.248,158 B2 Brown Et Al
    USOO92481.58B2 (12) United States Patent (10) Patent No.: US 9.248,158 B2 BrOWn et al. (45) Date of Patent: Feb. 2, 2016 (54) HERBAL SUPPLEMENTS AND METHODS OF 2008/022O101 A1* 9, 2008 Buchwald-Werner ... A23L 1,293 USE THEREOF 424,728 2008/0268024 A1* 10, 2008 Rull Prous et al. ........... 424/439 (71) Applicant: KBS Research, LLC, Plano, TX (US) 2010, 0008887 A1 1/2010 Nakamoto et al. (72) Inventors: Kenneth Brown, Plano, TX (US); FOREIGN PATENT DOCUMENTS Brandi M. Scott, Plano, TX (US) FR 2770228 A1 * 4, 1999 WO 2012131728 A2 10, 2012 (73) Assignee: KBS RESEARCH, LLC, Plano, TX (US) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Zotte et al., Dietary inclusion of tannin extract from red quebracho patent is extended or adjusted under 35 trees (Schinopsis spp.) in the rabbit meat production, 2009, Ital J U.S.C. 154(b) by 0 days. Anim Sci., 8:784-786.* Becker, K., et al. “Effects of dietary tannic acid and quebracho tannin on growth performance and metabolic rates of common carp (21) Appl. No.: 14/072,502 (Cyprinus carpio L.), Aquaculture, May 15, 1999, vol. 175, Issues Filed: Nov. 5, 2013 3-4, pp. 327-335. (22) Durmic, Z. et al. “Bioactive plants and plant products: Effects on Prior Publication Data animal function, health and welfare'. Animal Feed Science and Tech (65) nology, Sep. 21, 2012, vol. 176, Issues 1-4, pp. 150-162. US 2014/01.41108A1 May 22, 2014 Search Report and Written Opinion mailed Jan. 29, 2014, in corre sponding International Patent Application No.
    [Show full text]
  • ! Rco C- C 0 Oi0otl 4 Document Title/Translated Title
    ENTER INFORMATION ONLY IF NOT INCLUDED ON COVER OFi TITLE PAGE OF DOCUMENT I Project/Subproject Number 2. Contract/Grant Number 3. Publication Date ! rco c- c_0 oi0otL 4 Document Title/Translated Title 5. Author(s) 13. 6. Contributing OrganizationIs) 7. Pa ination 8. Report Number 9. Sponsoring A.I.D. Office 10. Abstract (optional - 250 word limit) 11. Subject Keywords (optional) II 4. 2 5. -3. 6. 12 Supplementary Notes 13 Submitting Official 14. Telephone Number 15. Today's Date ........................... ............... D O N O T w rite below this line .................................................... 16. DOCID 17. Document Disposition F DOCRD [) INV DUPLICATE I All) 590-7 (10/88) THE EFFECTS OF TRADE AND CONCESSION POLICIES IN BOLIVIA'S FOREST SECTOR: A Methodological Framework for Analysis Final Draft Rigoberto Stewart Hector Claure David Gibson THE EFFECTS OF TRADE AND CONCESSION POLICIES IN BOLIVIA'S FOREST SECTOR: A Methodological Framework for Analysis Rigoberto Stewart* Hector Claure David Gibson Rigoberto Stewart is President and a consultant with Stewart Associates in Heredia, Costa Rica. Hector Claure is a lumber trader and a timber marketing specialist in La Paz, Bolivia. David Gibson is the Regional Forestry and Natural Resources Planning and Policy Advisor for the LAC TECH Project in the Bureau for Latin America and the Caribbean, Office of Rural Development (LAC/DR/RD), USAID/Washington. GLOSSARY OF ABBREVIATIONS CAO = C~mara Agropecuaria del Oriente CBBA = Cochabamba CDF = Centro de Desarrollo Forestal CIDOB = Central Indigena del Oriente Boliviano CNF = Cdmara Nacional Forestal CNRA = Consejo Nacional de Reforma Agraria CORDECRUZ = Corporaci6n Regional de Desarrollo de Santa Cruz FAN = Fundaci6n Amigos de la Naturaleza FONAMA = Fondo Nacional del Medio Ambiente INC = Instituto Nacional de Colonizaci6n (Colonization) MACA = Ministerio de Agricultura y Asuntos Campesinos SENMA = Secretarla Nacional del Medio Ambiente SPECIES IDENTIFICATION Common Spanish Name Scientific Name English Nam Ajo Ajo Gallesia integrifolia Cedro Cedrella Sp.
    [Show full text]
  • In Vitro Effects of Three Woody Plant and Sainfoin Extracts on Third-Stage Larvae and Adult Worms of Three Gastrointestinal Nematodes
    TITLE : IN VITRO EFFECTS OF THREE WOODY PLANT AND SAINFOIN EXTRACTS ON THIRD-STAGE LARVAE AND ADULT WORMS OF THREE GASTROINTESTINAL NEMATODES. V. PAOLINI 1*, I. FOURASTE 2 and H. HOSTE 1. 1: Unité Mixte de Recherches 1225 INRA/DGER, “Interactions Hôte Pathogène”. Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, F31076 Toulouse. France. 2: Faculté des Sciences Pharmaceutiques, Université Paul Sabatier Toulouse III, 35 Chemin des Maraîchers, F31062 Toulouse. France. *Corresponding author: V.PAOLINI Unité Mixte de Recherches 1225 INRA/DGER, “ Interactions Hôte Pathogène ”. Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, F31076 Toulouse. France. Email: [email protected] Tel: +(33) 05-61-19-38-75 Fax: +(33) 05-61-19-32-43. Running title : In vitro effects of tanniferous plants on nematodes 1 SUMMARY Most studies on the effects of tanniferous plants on nematodes have examined forages but have neglected the woody plants. Therefore, in vitro effects of extracts from 3 woody plants (Rubus fructicosus , Quercus robur , Corylus avellana ) have been tested on trichostrongyles and compared to sainfoin, a legume forage. Because some in vivo results indicated that the effects of tannins differed depending on the parasitic species and/or stages, the effects were measured on third-stage larvae (L3) and adult worms of Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis . The effects of plant extracts varied according to the plant sources, the parasite species and stages. For the woody plants, significant inhibitory effects were obtained on both stages of abomasal species. Results for T. colubriformis were more variable. Effects of sainfoin extracts were significant on T.
    [Show full text]
  • A Guide to Lesser Known Tropical Timber Species July 2013 Annual Repo Rt 2012 1 Wwf/Gftn Guide to Lesser Known Tropical Timber Species
    A GUIDE TO LESSER KNOWN TROPICAL TIMBER SPECIES JULY 2013 ANNUAL REPO RT 2012 1 WWF/GFTN GUIDE TO LESSER KNOWN TROPICAL TIMBER SPECIES BACKGROUND: BACKGROUND: The heavy exploitation of a few commercially valuable timber species such as Harvesting and sourcing a wider portfolio of species, including LKTS would help Mahogany (Swietenia spp.), Afrormosia (Pericopsis elata), Ramin (Gonostylus relieve pressure on the traditionally harvested and heavily exploited species. spp.), Meranti (Shorea spp.) and Rosewood (Dalbergia spp.), due in major part The use of LKTS, in combination with both FSC certification, and access to high to the insatiable demand from consumer markets, has meant that many species value export markets, could help make sustainable forest management a more are now threatened with extinction. This has led to many of the tropical forests viable alternative in many of WWF’s priority places. being plundered for these highly prized species. Even in forests where there are good levels of forest management, there is a risk of a shift in species composition Markets are hard to change, as buyers from consumer countries often aren’t in natural forest stands. This over-exploitation can also dissuade many forest willing to switch from purchasing the traditional species which they know do managers from obtaining Forest Stewardship Council (FSC) certification for the job for the products that they are used in, and for which there is already their concessions, as many of these high value species are rarely available in a healthy market. To enable the market for LKTS, there is an urgent need to sufficient quantity to cover all of the associated costs of certification.
    [Show full text]
  • Growth in Saplings of Schinopsis Balansae Engl
    Umbruch 1_2008 28.08.2008 10:29 Uhr Seite 27 ECOTROPICA 14: 27–35, 2008 © Society for Tropical Ecology GROWTH IN SAPLINGS OF SCHINOPSIS BALANSAE ENGL. *C. Alzugaray1, N.J. Carnevale1, 2 & A.R. Salinas 1, 2 1Facultad de Ciencias Agrarias, 2Consejo de Investigaciones de la Universidad Nacional de Rosario. Campo Experimental Villarino. C.C.14. S2125ZAA. Zavalla. Santa Fe, Argentina. Abstract. Schinopsis balansae is a characteristic tree of the Chaco province in northern Argentina, whose timber and tannin values are very high. At present it can be found in forests under intense exploitation. The object of this work was to evaluate the growth of young trees in two types of soil: typical Natraqualf (TN) and vertic Argiudoll (VA) at six, nine, and 12 months old. Leaf area (LA), total mass (TM), root mass (RM), stem mass (SM), and total root length (TRL) were evaluated. The allocation of biomass, the relative growth rates (RGR), the net assimilation rates (NAR), and the percentage increase of the total mass from the seed dry mass (=100%) were analyzed. The plant´s growth between the two types of soil was compared. Schinopsis balansae showed higher TM, RM, and SM (p < 0.05) in VA at nine months old. At 12 months old, there were higher LA and SM (p < 0.01) in VA. Allocation of biomass tended to balance at 1:1 (SM:RM) while the plants were becoming older in both types of soil. RGR, NAR, and the increase in TM at nine months old showed a peak growth of 27 mg.g–1 day–1; 0.33 mg.cm–2 day–1 and 23 100% in VA soil (p < 0.05 ).
    [Show full text]
  • Wood Toxicity: Symptoms, Species, and Solutions by Andi Wolfe
    Wood Toxicity: Symptoms, Species, and Solutions By Andi Wolfe Ohio State University, Department of Evolution, Ecology, and Organismal Biology Table 1. Woods known to have wood toxicity effects, arranged by trade name. Adapted from the Wood Database (http://www.wood-database.com). A good reference book about wood toxicity is “Woods Injurious to Human Health – A Manual” by Björn Hausen (1981) ISBN 3-11-008485-6. Table 1. Woods known to have wood toxicity effects, arranged by trade name. Adapted from references cited in article. Trade Name(s) Botanical name Family Distribution Reported Symptoms Affected Organs Fabaceae Central Africa, African Blackwood Dalbergia melanoxylon Irritant, Sensitizer Skin, Eyes, Lungs (Legume Family) Southern Africa Meliaceae Irritant, Sensitizer, African Mahogany Khaya anthotheca (Mahogany West Tropical Africa Nasopharyngeal Cancer Skin, Lungs Family) (rare) Meliaceae Irritant, Sensitizer, African Mahogany Khaya grandifoliola (Mahogany West Tropical Africa Nasopharyngeal Cancer Skin, Lungs Family) (rare) Meliaceae Irritant, Sensitizer, African Mahogany Khaya ivorensis (Mahogany West Tropical Africa Nasopharyngeal Cancer Skin, Lungs Family) (rare) Meliaceae Irritant, Sensitizer, African Mahogany Khaya senegalensis (Mahogany West Tropical Africa Nasopharyngeal Cancer Skin, Lungs Family) (rare) Fabaceae African Mesquite Prosopis africana Tropical Africa Irritant Skin (Legume Family) African Padauk, Fabaceae Central and Tropical Asthma, Irritant, Nausea, Pterocarpus soyauxii Skin, Eyes, Lungs Vermillion (Legume Family)
    [Show full text]
  • In Vitro Propagation of Tropical Hardwood Tree Species – a Review (2001-2011)
    Propagation of Ornamental Plants Vol. 12, № 1, 2012: 25-51 Invited paper IN VITRO PROPAGATION OF TROPICAL HARDWOOD TREE SPECIES – A REVIEW (2001-2011) Paula M. Pijut1*, Rochelle R. Beasley2, Shaneka S. Lawson2, Kaitlin J. Palla2, Micah E. Stevens2, and Ying Wang2 1USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center (HTIRC), 715 West State Street, West Lafayette, Indiana, USA 47907 *Fax: + 1-765-494-9461, *E-mail: [email protected] 2Purdue University, Department of Forestry and Natural Resources, HTIRC, 715 West State Street, West Lafayette, Indiana, USA 47907 Abstract Tropical hardwood tree species are important economically and ecologically, and play a significant role in the biodiversity of plant and animal species within an ecosystem. There are over 600 species of tropical timbers in the world, many of which are commercially valuable in the international trade of plywood, roundwood, sawnwood, and veneer. Many of these tree species are being threatened and are endangered because of logging practices, conversion to agricultural lands, non-optimal management strategies, and overall deforestation rates that cannot keep up with natural regeneration of native forests. Tropical tree species provide timber for com- mercial uses because of the beauty of the wood-grain, -color, or -pattern, strength, durability, and versatility of finishing applications for a vast array of markets. Because of the high value of tropical tree species,in vitro (adventitious shoot regeneration, cryopreservation, genetic transformation, micrografting, protoplast culture, shoot tip and nodal culture, and somatic embryogenesis) propagation technologies are an integral component in tree improvement and conservation programs, in order to complement seed banking and ex situ measures for long-term conservation and clonal propagation of germplasm.
    [Show full text]
  • Larvicidal Activities of Some Bark and Wood Extracts Against Wood-Damaging Insects
    ISSN impresa 0717-3644 Maderas. Ciencia y tecnología 19(3): 273 - 284, 2017 ISSN online 0718-221X DOI: 10.4067/S0718-221X2017005000023 LARVICIDAL ACTIVITIES OF SOME BARK AND WOOD EXTRACTS AGAINST WOOD-DAMAGING INSECTS Selim Şen1,♠, Mesut Yalçın2, Cihat Taşçıoğlu2, Ali Kemal Özbayram3 ABSTRACT This study investigates the larvicidal activities of plant extracts and tannins against wood-damaging insects. Scots pine (Pinus sylvestris), beech (Fagus orientalis), and poplar wood (Populus tremula) were subjected to larvae of Spondylis buprestoides (Coleoptera: Cerambycidae) by impregnating them with mimosa (Acacia mollissima), quebracho (Schinopsis lorentzii) and redpine bark (Pinus brutia) extracts. At the end of the 6-month experiment, the numbers of dead and live larvae as well as the mean mass losses of woods were determined. In terms of wood species, the lowest larva resistance was observed in Scots pine wood, while the highest larva resistance was achieved by beech wood. The lowest mass losses and the highest dead termite rates in all tree species were observed when the concentration of mimosa and quebracho extracts was 12%. On the other hand, the pine bark extract showed a lower larvicide effect than the other two extracts. Keywords: Mimosa, pine bark extract, plant extract, quebracho, Spondylis buprestoides, tannin, wood treatment. INTRODUCTION Wood being a biological material is readily degraded by fungi and termites (Syofuna et al. 2012) but, one of the most important causes of damage to wood materials is insects. Wood materials damaged by insects result in both technical and economic losses (Ssemaganda et al. 2011). Over the past 60 years, numerous synthetic insecticides have been developed and used.
    [Show full text]