Guide to the Parasites of Fishes of Canada Part II - Crustacea

Total Page:16

File Type:pdf, Size:1020Kb

Guide to the Parasites of Fishes of Canada Part II - Crustacea Canadian Special Publication of Fisheries and Aquatic Sciences 101 DFO - Library MPO - Bibliothèque III 11 1 1111 1 1111111 II 1 2038995 Guide to the Parasites of Fishes of Canada Part II - Crustacea Edited by L. Margolis and Z. Kabata L. C.3 il) Fisheries Pêches and Oceans et Océans Caned. Lee: GUIDE TO THE PARASITES OF FISHES OF CANADA PART II - CRUSTACEA Published by Publié par Fisheries Pêches 1+1 and Oceans et Océans Communications Direction générale Directorate des communications Ottawa K1 A 0E6 © Minister of Supply and Services Canada 1988 Available from authorized bookstore agents, other bookstores or you may send your prepaid order to the Canadian Government Publishing Centre Supply and Services Canada, Ottawa, Ont. K1A 0S9. Make cheques or money orders payable in Canadian funds to the Receiver General for Canada. A deposit copy of this publication is also available for reference in public libraries across Canada. Canada : $11.95 Cat. No. Fs 41-31/101E Other countries: $14.35 ISBN 0-660-12794-6 + shipping & handling ISSN 0706-6481 DFO/4029 Price subject to change without notice All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the Publishing Services, Canadian Government Publishing Centre, Ottawa, Canada K1A 0S9. A/Director: John Camp Editorial and Publishing Services: Gerald J. Neville Printer: The Runge Press Limited Cover Design : Diane Dufour Correct citations for this publication: KABATA, Z. 1988. Copepoda and Branchiura, p. 3-127. In L. Margolis and Z. Kabata [cd.] Guide to the parasites of fishes of Canada. Part II — Crustacea. Can. Spec. Publ. Fish. Aquat. Sci. 101: 184 p. RAFI, F. 1988. Isopoda, p. 129-148. In L. Margolis and Z. Kabata [cd.] Guide to the parasites of fishes of Canada. Part II — Crustacea. Can. Spec. Publ. Fish. Aquat. Sci. 101: 184 p. BOUSFIELD, E.L., AND Z. KABATA. 1988. Amphipoda, p. 149-163. In L. Margolis and Z. Kabata [cd.] Guide to the parasites of fishes of Canada. Part II — Crustacea. Can. Spec. Publ. Fish. Aquat. Sci. 101: 184 p. Canadian Special Publication of Fisheries and Aquatic Sciences 101 Guide to the Parasites of Fishes of Canada Edited by L. Margolis and Z. Kabata Department of Fisheries and Oceans Biological Sciences Branch Pacific Biological Station Nanaimo, British Columbia V9R 5K6 Part II — Crustacea Copepoda and Branchiura Z. Kabata Department of Fisheries and Oceans Biological Sciences Branch Pacific Biological Station Nanaimo, British Columbia V9 1? 5K6 Isopoda Fahmida Rafi Department of Zoology National Museum of Natural History Ottawa, Ontario KlA 0M8 Amphipoda E. L. Bousfield Department of Zoology National Museum of Natural History Ottawa, Ontario KlA 0M8 and Z. Kabata Department of Fisheries and Oceans Biological Sciences Branch Pacific Biological Station Nanaimo, British Columbia V9R 5K6 DEPARTMENT OF FISHERIES AND OCEANS Ottawa 1988 Contents Guide to the Parasites of Fishes of Canada Part II — Crustacea Introduction 1 Copepoda and Branchiura. Z. Kabata 3 Abstract/Résumé 4 Introduction to Copepoda 4 Keys to Copepoda 5 Appendix to Copepoda 111 Introduction to Branchiura 114 Key to Branchiura 114 References 123 Isopoda. Fahmida Rafi 129 Abstract/Résumé 130 Introduction 130 Keys to Isopoda 133 Acknowledgments 145 References 148 Amphipoda. E.L. Bousfield and Z. Kabata 149 Abstract/Résumé 150 Introduction 150 Keys to Amphipoda 152 References 163 Host-Crustacean Parasite List 165 Index to Parasites 175 Index to Hosts 179 V INTRODUCTION In presenting the second part of the "Guide to the the readers' convenience, however, a combined host- Parasites of Fishes of Canada," we would like to make parasite list is appended at the end. The host list is a few brief comments on this contribution to the series. arranged taxonomically, in accordance with the order To begin with, the fact that the part "Crustacea" adopted by Robins et al. (1980). An index to hosts follows "Monogenea and Turbellaria" is purely fortui- (p. 179) helps to locate each species without difficulty. tous, having been determined by the timing of its The capital letters behind names of parasites denote completion. As stated in our introduction to the series their taxonomic affinity : Copepoda (C), Branchiura (Margolis and Kabata 1984), this publication is (B), Isopoda (I), and Amphipoda (A). intended primarily as an aid to identification of para- sites of fishes and its format is generally that of an The descriptions of Copepoda, a group of great expanded key. morphological diversity, could be compressed without detracting from the facility with which they can be iden- This part of the "Guide" is devoted exclusively tified. Morphologically more uniform Amphipoda and to the crustacean parasites of fishes. In all, four major Isopoda required somewhat longer descriptions. In all crustacean taxa are represented (Copepoda, Bran- instances, however, only features salient for the taxa chiura, Amphipoda, and Isopoda). At the time of have been included. writing, 163 species of crustacean parasites (131 Copepoda, 10 Branchiura, 11 Isopoda, and 11 In presenting records of localities and host affilia- Amphipoda) are known to infect Canadian fishes. They tions, the authors used as their baseline the Synopsis of Margolis occur on 232 species of fish. Since the fish fauna of and Arthur (1979). In the copepod section all Canada comprises currently 1,008 species (D. E. records for which no citation is given were taken from McAllister, National Museum of Natural History, this synopsis. Full citations are given only for those Ottawa, Ontario, K1A 0M8, personal communica- records that are either subsequent to the publication of tion), slightly fewer than a quarter of them (23 %) have the synopsis or were not included in it. Since no records been found to be parasitized by Crustacea. Somewhat of Amphipoda and only a few of Isopoda were included fewer than a half of these fishes (43.3 %) are known to in the synopsis, all records are treated in full in the harbour only one species of crustacean. As many as accounts of these groups. 84.5 % carry 1-5 species, 14.6 % carry 6-10 species. The Synopsis was also followed in designating Two (0.9 %) carry more than 10 species. geographical locations of the records shown in the keys. The majority (80.4 %) of the crustacean parasites The following abbreviations were used : For marine recorded from Canadian fishes belong to Copepoda. areas, Arctic (Arc), Atlantic (At1), East Arctic (E Arc), These figures are far from definitive. New discoveries Pacific (Pac), and West Arctic (W Arc). For inland and new locality records continue to raise the number waters, Alberta (Alta), British Columbia (BC), of parasite species. It is to be expected that many more Labrador (Lab), Manitoba (Man), New Brunswick species, particularly of the higher Crustacea (Isopoda (NB), Newfoundland (Nfld), Northwest Territories and Amphipoda) will be discovered. (NWT), Nova Scotia (NS), Ontario (Ont), Prince Edward Island (PET), Quebec (Que), Saskatchewan Three authors were invited to cover the broad (Sask), and Yukon Territory (YT). range of crustacean species parasitizing Canadian fishes : Z. Kabata deals with Copepoda and Branchiura, The first task of any reader trying to identify a Fahmida Rafi with Isopoda, and E. L. Bousfield and Z. specimen of a crustacean parasite will be to determine Kabata with Amphipoda. This multiple authorship to which of the four major taxa his specimen belongs. imposes some slight differences in the manner of treat- He can then move to the appropriate section of this ment of the three sections, although we have tried to volume. keep these differences to a minimum. The authors have To facilitate this first step, a key to the major taxa produced their own separate lists of literature cited. For is given below. Key to major taxa 1 Two prominent circular suckers (modified from first maxillae) present on ventral surface of cephalothorax Branchiura Suckers absent from ventral surface of cephalothorax 2 1 2 Legs, when present, represented by not more than four pairs of fully developed limbs, at least some of them biramous ; no appendages on abdominal segments Copepoda Seven pairs of uniramous, ambulatory legs invariably present ; appendages present also on abdominal segments 3 3 Body usually flattened dorsoventrally, first pair of legs subchelate, six pairs of abdominal appendages present (five modified pleopods, one unmodified uropod) Isopoda Body usually compressed side to side, first two pairs of legs subchelate, abdominal appendages represented by three pairs of pleopods (modified) and three pairs of uropods (unmodified) Amphipoda References MARGOLIS, L., AND J. R. ARTHUR. 1979. Synopsis of the parasites ROBINS, C. R., R. M. BAILEY, C. E. BOND, J. R. BROOKER, E. A. of fishes of Canada. Bull. Fish. Res. Board Can. 199: 269 p. LACHNER, R. N. LEE, AND W. B. SCOTT. 1980. A list Of MARGOLIS, L., AND Z. ICABATA. 1984. General introduction, p. 1-4. common and scientific names of fishes from the United States In: L. Margolis and Z. Kabata [ed.] Guide to the parasites of and Canada. (Fourth Edition.) Am. Fish. Soc. Spec. Publ. fishes of Canada. Part 1. Can. Spec. Publ. Fish. Aquat. Sci. 74: No. 12: 174 p. 209 p. THE EDITORS 2 COPEPODA AND BRANCHIURA Z. KABATA ABSTRACT KABATA, Z. 1988. Copepoda and Branchiura, p. 3-127. In L. Margolis and Z. Kabata [ed.] Guide to the parasites of fishes of Canada. Part II. Crustacea. Can. Spec. Publ. Fish. Aquat. Sci. 101: 184 p. Keys to identification of all 131 species of Copepoda and 10 species of Branchiura known to parasitize Cana- dian fishes are provided, with brief descriptions and illustrations of all salient morphological features of each species. An appendix to the Copepoda describes the most common larval stages of these parasites occurring on Canadian fishes.
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Title CYCLOPOID COPEPODS of the FAMILY
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository CYCLOPOID COPEPODS OF THE FAMILY Title CHONDRACANTHIDAE PARASITIC ON NEW ZEALAND MARINE FISHES Author(s) Ho, Ju-Shey PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1975), 22(5): 303-319 Issue Date 1975-11-29 URL http://hdl.handle.net/2433/175898 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University CYCLOPOID COPEPODS OF THE FAMILY CHONDRACANTHIDAE PARASITIC ON NEW ZEALAND MARINE FISHES Ju-SHEY HO Department of Biology, California State University, Long Beach, California 90840 U.S.A. With Text-figures 1-10 Chondracanthidae is a family of highly transformed cyclopoid copepods that are found exclusively on marine demersal fish. Although a complete life history of this family of copepods is still unknown, it seems, judging from the available infor­ mation of their larval development, that the parasites do not require an intermediate host. Both adult and larva are found in the oral-branchial cavity of the fish, attaching to the host tissue by their powerful, hook-like second antenna. Although a few species are known to live in the nasal cavity, they have not been found on the body surface or fins of the fish. The male is characteristically dwarf and attaches to the genital area of the female throughout its life. In many species, the transformed female has a pair of small processes on the posteroventral surface of the trunk just in front of the genital segment. The pigmy male holds on to one of these two processes by its transformed hook-like second antennae.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • ACTA ICHTHYOLOGICA ET PISCATORIA Jadwiga GRABDA
    ACTA ICHTHYOLOGICA ET PISCATORIA Vol. V, Faac. 1 Szczecin, 197 5 Jadwiga GRABDA,lhrahimAbdel Fattah Mahmoud SOLIMAN Parultolcgy COPEPODS - PARASITES OF THE GENUS MERLUCCIUS FROM THE ATLANTIC OCEAN AND MEDITERRANEAN SEA PASOZYTNICZE WIDl:.ONOGI RYB RODZAJU MERLUCCIUS Z OCEANU ATLANTYCKIEGO I MORZA SRODZIEMNEGO Institute of Ichthyology 3 species of parasitic copepods were found on Atlantic hakes caught off the western coasts of Europe, Africa, the Medi­ terranean Sea (off Alexandria), and North America. The species are: Chondracanthus fnerluccii, Brachiel/a merluccii and Parabrachiella australis. The parasites importance as indicators of the affinities between hakes is discussed. Various hypotheses concerning the origin of the genus Merluccius are presented. INTRODUCTION Studies on parasites as biological indicators of their host's population status, affinities, migrations, origin and zoogeographic distribution are a valuable method to explain many problems of biology of fish. The parasitic species of a narrow specificity are particularly interesting as indicators. The parasitic copepods of the genera Chondracanthus, Brachiella and Parabrachiellaappear to play such a role in hake. During the investigations on species variability within the genus Merluccius from the Atlantic and Mediterranean Sea (Soliman, 1973), the parasitic copepods were collected in order to utilize them as possible indicators of specific affiliations and affinities between the hakes investigated. MATERIALS AND METHOD The parasites were collected in 1971 � 1973 from mouth and gill cavities of the fishes exami1ied. 32 Jadwiga Grabda, Ibrahim Abdel Fattah Mahmoud Soliman Table 1 and the chart enclosed (Fig. 1) summarize number of fishesexamined, fishing grounds and catching time of particular hake stocks. 45' "1' tJt�H m-����;-��������-f-������������-"<t--==,__���11,' o' ,s· 45' Fig.
    [Show full text]
  • Joint PINRO/IMR Report on the State of the Barents Sea Ecosystem 2006, with Expected Situation and Considerations for Management
    IMR/PINRO J O S I E N I 2 R T 2007 E R E S P O R T JOINT PINRO/IMR REPORT ON THE STATE OFTHE BARENTS SEA ECOSYSTEM IN 2006 WITH EXPECTED SITUATION AND CONSIDERATIONS FOR MANAGEMENT Institute of Marine Research - IMR Polar Research Institute of Marine Fisheries and Oceanography - PINRO This report should be cited as: Stiansen, J.E and A.A. Filin (editors) Joint PINRO/IMR report on the state of the Barents Sea ecosystem 2006, with expected situation and considerations for management. IMR/PINRO Joint Report Series No. 2/2007. ISSN 1502-8828. 209 pp. Contributing authors in alphabetical order: A. Aglen, N.A. Anisimova, B. Bogstad, S. Boitsov, P. Budgell, P. Dalpadado, A.V. Dolgov, K.V. Drevetnyak, K. Drinkwater, A.A. Filin, H. Gjøsæter, A.A. Grekov, D. Howell, Å. Høines, R. Ingvaldsen, V.A. Ivshin, E. Johannesen, L.L. Jørgensen, A.L. Karsakov, J. Klungsøyr, T. Knutsen, P.A. Liubin, L.J. Naustvoll, K. Nedreaas, I.E. Manushin, M. Mauritzen, S. Mehl, N.V. Muchina, M.A. Novikov, E. Olsen, E.L. Orlova, G. Ottersen, V.K. Ozhigin, A.P. Pedchenko, N.F. Plotitsina, M. Skogen, O.V. Smirnov, K.M. Sokolov, E.K. Stenevik, J.E. Stiansen, J. Sundet, O.V. Titov, S. Tjelmeland, V.B. Zabavnikov, S.V. Ziryanov, N. Øien, B. Ådlandsvik, S. Aanes, A. Yu. Zhilin Joint PINRO/IMR report on the state of the Barents Sea ecosystem in 2006, with expected situation and considerations for management ISSUE NO.2 Figure 1.1. Illustration of the rich marine life and interactions in the Barents Sea.
    [Show full text]
  • Pilgrim 1985.Pdf (1.219Mb)
    MAURI ORA, 1985, 12: 13-53 13 PARASITIC COPEPODA FROM MARINE COASTAL FISHES IN THE KAIKOURA-BANKS PENINSULA REGION, SOUTH ISLAND, NEW ZEALAND. WITH A KEY FOR THEIR IDENTIFICATION R.L.C. PILGRIM Department of Zoology, University of Canterbury, Christchurch 1, New Zealand. ABSTRACT An introductory account of parasitic Copepoda in New Zealand waters is given, together with suggestions for collecting, examining, preserving and disposal of specimens. A key is presented for identifying all known forms from the fishes which are known to occur in the Kaikoura-Banks Peninsula region. Nine species/ subspecies ( + 2 spp.indet.) have been taken from elasmobranch fishes, 13 ( + 7 spp.indet.) from teleost fishes in the region; a further 6 from elasmobranchs and 27 ( + 1 indet.) from teleosts are known in New Zealand waters but so far not taken from these hosts in the region. A host-parasite list is given of known records'from the region. KEYWORDS: New Zealand, marine, fish, parasitic Copepoda, keys. INTRODUCTION Fishes represent a very significant proportion of the macrofauna of the coastal waters from Kaikoura to Banks Peninsula, and as such are commonly studiecl by staff and students from the Department of Zoology, University of Canterbury. Even a cursory examination of most specimens will reveal the presence of sometimes numerous parasites clinging to the outer surface or, more frequently, to the linings of the several cavities exposed to the outside sea water. The mouth and gill chambers are 14 particularly liable to contain numbers of large or small, but generally macroscopic, animals attached to these surfaces. Many are readily identified as segmented, articulated, chitinised animals and are clearly Arthropoda.
    [Show full text]
  • Have Chondracanthid Copepods Co-Speciated with Their Teleost Hosts?
    Systematic Parasitology 44: 79–85, 1999. 79 © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Have chondracanthid copepods co-speciated with their teleost hosts? Adrian M. Paterson1 & Robert Poulin2 1Ecology and Entomology Group, Lincoln University, PO Box 84, Lincoln, New Zealand 2Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand Accepted for publication 26th October, 1998 Abstract Chondracanthid copepods parasitise many teleost species and have a mobile larval stage. It has been suggested that copepod parasites, with free-living infective stages that infect hosts by attaching to their external surfaces, will have co-evolved with their hosts. We examined copepods from the genus Chondracanthus and their teleost hosts for evidence of a close co-evolutionary association by comparing host and parasite phylogenies using TreeMap analysis. In general, significant co-speciation was observed and instances of host switching were rare. The preva- lence of intra-host speciation events was high relative to other such studies and may relate to the large geographical distances over which hosts are spread. Introduction known from the Pacific, and 17 species from the Atlantic (2 species occur in both oceans; none are About one-third of known copepod species are par- reported from the Indian Ocean). asitic on invertebrates or fish (Humes, 1994). The Parasites with direct life-cycles, as well as para- general biology of copepods parasitic on fish is much sites with free-living infective stages that infect hosts better known than that of copepods parasitic on in- by attaching to their external surfaces, are often said to vertebrates (Kabata, 1981).
    [Show full text]
  • Inventory of Parasitic Copepods and Their Hosts in the Western Wadden Sea in 1968 and 2010
    INVENTORY OF PARASITIC COPEPODS AND THEIR HOSTS IN THE WESTERN WADDEN SEA IN 1968 AND 2010 Wouter Koch NNIOZIOZ KKoninklijkoninklijk NNederlandsederlands IInstituutnstituut vvooroor ZZeeonderzoekeeonderzoek INVENTORY OF PARASITIC COPEPODS AND THEIR HOSTS IN THE WESTERN WADDEN SEA IN 1968 AND 2010 Wouter Koch Texel, April 2012 NIOZ Koninklijk Nederlands Instituut voor Zeeonderzoek Cover illustration The parasitic copepod Lernaeenicus sprattae (Sowerby, 1806) on its fish host, the sprat (Sprattus sprattus) Copyright by Hans Hillewaert, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license; CC-BY-SA-3.0; Wikipedia Contents 1. Summary 6 2. Introduction 7 3. Methods 7 4. Results 8 5. Discussion 9 6. Acknowledgements 10 7. References 10 8. Appendices 12 1. Summary Ectoparasites, attaching mainly to the fins or gills, are a particularly conspicuous part of the parasite fauna of marine fishes. In particular the dominant copepods, have received much interest due to their effects on host populations. However, still little is known on the copepod fauna on fishes for many localities and their temporal stability as long-term observations are largely absent. The aim of this project was two-fold: 1) to deliver a current inventory of ectoparasitic copepods in fishes in the southern Wadden Sea around Texel and 2) to compare the current parasitic copepod fauna with the one from 1968 in the same area, using data published in an internal NIOZ report and additional unpublished original notes. In total, 47 parasite species have been recorded on 52 fish species in the southern Wadden Sea to date. The two copepod species, where quantitative comparisons between 1968 and 2010 were possible for their host, the European flounder (Platichthys flesus), showed different trends: Whereas Acanthochondria cornuta seems not to have altered its infection rate or per host abundance between years, Lepeophtheirus pectoralis has shifted towards infection of smaller hosts, as well as to a stronger increase of per-host abundance with increasing host length.
    [Show full text]
  • Factors Affecting Parasite Assemblages in Fish Hosts Is Presented
    Bio-Research, 7(2): 561 – 570 561 Parasite Assemblages in Fish Hosts 1Iyaji, F. O., 2Etim. L. and 1Eyo, J. E. 1Department of Zoology, University of Nigeria, Nsukka, Enugu State, Nigeria 2Department of Fisheries, University of Uyo, Uyo, Akwa Ibom State, Nigeria Corresponding Author: Iyaji, F. O. Department of Zoology, University of Nigeria, Nsukka. Email: [email protected] Abstract A review of various factors affecting parasite assemblages in fish hosts is presented. These factors are broadly divided into two: Biotic and abiotic factors. Biotic factors such as host age and size, host size and parasites size, host specificity, host diet and host sex and their influence on the abundance and distribution of parasites are considered and highlighted. Equally, seasonality and other environmental factors that may facilitate the establishment and proliferations of parasites in host populations are also highlighted. Keywords: Parasite, Factors, Assemblages, Fish hosts Introduction Results and Discussion There are numerous biotic and abiotic factors that affect parasite assemblages (Bauer, 1959; Esch, Host age and size: Generally, standard length of 1982; Kennedy, 1995). The term assemblages is fish is directly related to age (Shotter, 1973) and used here to refer to all microhabitat, in fish body size. Age has often been found to be (gastrointestinal) or on (external surfaces) the fish positively associated with the prevalence and/or hosts (Poulin, 2004). These factors include the intensity of parasitic infection (Betterton, 1974; following: physiological condition of the fish host, Madhavi and Rukmini, 1991; Chandler et al., 1995) host diet, host size, evolutionary history and (Table 1). Poulin (2000) stated that in fish environmental factors, such as season of the year, population, parasitic infection tends to increase with size and type of water body, altitude, temperature, increasing host age and size.
    [Show full text]
  • Population Ecology and Epidemiology of Sea Lice in Canadian Waters Sonja M
    The University of Maine DigitalCommons@UMaine Maine Sea Grant Publications Maine Sea Grant 2-2015 Population Ecology and Epidemiology of Sea Lice in Canadian Waters Sonja M. Saksida British Columbia Centre for Aquatic Health Sciences Ian Bricknell University of Maine, [email protected] Shawn M. C. Robinson Fisheries and Oceans Canada, St. Andrews Biological Station Simon Jones Fisheries and Oceans Canada, Pacific ioB logical Station Follow this and additional works at: https://digitalcommons.library.umaine.edu/seagrant_pub Part of the Aquaculture and Fisheries Commons, and the Population Biology Commons Repository Citation Saksida, Sonja M.; Bricknell, Ian; Robinson, Shawn M. C.; and Jones, Simon, "Population Ecology and Epidemiology of Sea Lice in Canadian Waters" (2015). Maine Sea Grant Publications. 75. https://digitalcommons.library.umaine.edu/seagrant_pub/75 This Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine Sea Grant Publications by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Canadian Science Advisory Secretariat (CSAS) Research Document 2015/004 National Capital Region Population ecology and epidemiology of sea lice in Canadian waters S. Saksida1, I. Bricknell2, S. Robinson3 and S. Jones4 1 British Columbia Centre for Aquatic Health Sciences 871A Island Highway, Campbell River, BC V9W 2C2 2 School of Marine Sciences, University of Maine Orono, ME 04469 3 Fisheries and Oceans Canada, St. Andrews Biological Station 531 Brandy Cove Road, St. Andrews, NB E5B 2L9 4 Fisheries and Oceans Canada, Pacific Biological Station 3190 Hammond Bay Rd., Nanaimo, BC V9T 6N7 February 2015 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada.
    [Show full text]