Joint PINRO/IMR Report on the State of the Barents Sea Ecosystem 2006, with Expected Situation and Considerations for Management

Total Page:16

File Type:pdf, Size:1020Kb

Joint PINRO/IMR Report on the State of the Barents Sea Ecosystem 2006, with Expected Situation and Considerations for Management IMR/PINRO J O S I E N I 2 R T 2007 E R E S P O R T JOINT PINRO/IMR REPORT ON THE STATE OFTHE BARENTS SEA ECOSYSTEM IN 2006 WITH EXPECTED SITUATION AND CONSIDERATIONS FOR MANAGEMENT Institute of Marine Research - IMR Polar Research Institute of Marine Fisheries and Oceanography - PINRO This report should be cited as: Stiansen, J.E and A.A. Filin (editors) Joint PINRO/IMR report on the state of the Barents Sea ecosystem 2006, with expected situation and considerations for management. IMR/PINRO Joint Report Series No. 2/2007. ISSN 1502-8828. 209 pp. Contributing authors in alphabetical order: A. Aglen, N.A. Anisimova, B. Bogstad, S. Boitsov, P. Budgell, P. Dalpadado, A.V. Dolgov, K.V. Drevetnyak, K. Drinkwater, A.A. Filin, H. Gjøsæter, A.A. Grekov, D. Howell, Å. Høines, R. Ingvaldsen, V.A. Ivshin, E. Johannesen, L.L. Jørgensen, A.L. Karsakov, J. Klungsøyr, T. Knutsen, P.A. Liubin, L.J. Naustvoll, K. Nedreaas, I.E. Manushin, M. Mauritzen, S. Mehl, N.V. Muchina, M.A. Novikov, E. Olsen, E.L. Orlova, G. Ottersen, V.K. Ozhigin, A.P. Pedchenko, N.F. Plotitsina, M. Skogen, O.V. Smirnov, K.M. Sokolov, E.K. Stenevik, J.E. Stiansen, J. Sundet, O.V. Titov, S. Tjelmeland, V.B. Zabavnikov, S.V. Ziryanov, N. Øien, B. Ådlandsvik, S. Aanes, A. Yu. Zhilin Joint PINRO/IMR report on the state of the Barents Sea ecosystem in 2006, with expected situation and considerations for management ISSUE NO.2 Figure 1.1. Illustration of the rich marine life and interactions in the Barents Sea. Editors: J.E. Stiansen1 and A.A. Filin2 Co-authors (in alphabetic order): A. Aglen1, N.A. Anisimova2, B. Bogstad1, S. Boitsov1, P. Budgell1, P. Dalpadado1, A.V. Dolgov2, K.V. Drevetnyak2, K. Drinkwater1, H. Gjøsæter1, A. A. Grekov2, D. Howell1, Å. Høines1, R. Ingvaldsen1, V.A. Ivshin2, E. Johannesen1, L.L. Jørgensen1, A.L. Karsakov2, J. Klungsøyr1, T. Knutsen1, P.A. Liubin2, L.J. Naustvoll1, K. Nedreaas1, I.E. Manushin2, M. Mauritzen1, S. Mehl1, N.V. Muchina2, M.A. Novikov2, E. Olsen1, E.L. Orlova2, G. Ottersen1, V.K. Ozhigin2, A.P. Pedchenko2, N.F. Plotitsina2, M. Skogen1, O.V. Smirnov2, K.M. Sokolov2, E.K. Stenevik1, J. Sundet1, O.V. Titov2, S. Tjelmeland1, V.B. Zabavnikov2, S.V. Ziryanov2, N. Øien1, B. Ådlandsvik1, S. Aanes1, A. Yu. Zhilin2 1 Institute of Marine Research (IMR), Norway 2 Polar Research Institute of Marine Fisheries and Oceanography (PINRO), Russia 1 Contents 1 Introduction ..................................................................................................... 5 2 General description of the ecosystem ..................................................... 7 2.1 Overview of the ecosystem ............................................................................ 7 2.2 Geographical description .............................................................................. 10 2.3 Climate ............................................................................................................. 11 2.3.1 Atmospheric conditions .................................................................................... 11 2.3.2 Hydrographical conditions ............................................................................... 15 2.3.3 Currents and transports ..................................................................................... 18 2.3.4 Ice conditions ................................................................................................... 20 2.4 Species communities .................................................................................... 20 2.4.1 Phytoplankton ................................................................................................... 20 2.4.2 Zooplankton ..................................................................................................... 21 2.4.3 Benthos ............................................................................................................. 23 2.4.4 Fish ................................................................................................................... 25 2.4.5 Marine Mammals ............................................................................................. 41 2.4.6 Seabirds ............................................................................................................ 45 2.5 Ecological relations ........................................................................................ 46 2.5.1 Marine Ecosystem Responses to Climate Variability ...................................... 46 2.5.2 Plankton and fish .............................................................................................. 47 2.5.3 Benthos and fish ............................................................................................... 49 2.5.4 Predation by fish ............................................................................................... 50 2.5.5 Predation by mammals ..................................................................................... 53 3 Impacts of the fisheries on the ecosystem ........................................... 58 3.1 General description of the fisheries and mixed fisheries ......................... 58 3.2 Mixed fisheries ................................................................................................ 60 3.3 Impact and by-catches of non-target species ............................................ 67 4 Monitoring of the ecosystem .................................................................... 69 4.1 Standard sections .......................................................................................... 69 4.1.1 Fugløya-Bear Island section ............................................................................. 70 4.1.2 North cape-Bear Island section ........................................................................ 70 4.1.3 Bear Island – East section ................................................................................ 70 4.1.4 Vardø-North section ......................................................................................... 71 4.1.5 Kola section ...................................................................................................... 71 4.1.6 Kanin section .................................................................................................... 71 4.1.7 Sem Island ........................................................................................................ 71 4.2 Fixed stations .................................................................................................. 71 4.3 Area coverage ................................................................................................ 71 4.3.1 Norwegian/Russian winter survey ................................................................... 73 4.3.2 Lofoten survey .................................................................................................. 73 4.3.3 Norwegian coastal survey ................................................................................ 73 4.3.4 Joint ecosystem autumn survey ........................................................................ 74 4.3.5 Russian Autumn-winter trawl-acoustic survey ................................................ 74 4.3.6 Survey on estimation of abundance of young herring in the Barents Sea ........ 74 4.3.7 Norwegian Greenland halibut survey ............................................................... 74 4.4 Numerical models .......................................................................................... 74 4.5 Other information sources ............................................................................ 75 4.6 Monitoring divided by ecosystem components ......................................... 75 2 5 Current and expected situation of the ecosystem .............................. 78 5.1 Overview .......................................................................................................... 78 5.1.1 Climate ............................................................................................................. 78 5.1.2 Phytoplankton and Zooplankton ...................................................................... 78 5.1.3 Benthos ............................................................................................................. 78 5.1.4 Fish ................................................................................................................... 79 5.1.5 Mammals and seabirds ..................................................................................... 79 5.2 Climate ............................................................................................................. 80 5.2.1 Atmospheric conditions .................................................................................... 80 5.2.2 Hydrographic conditions .................................................................................. 84 5.2.3 Currents and transports ..................................................................................... 91 5.2.4 Ice conditions ................................................................................................... 92 5.2.5 Expected situation ............................................................................................ 93 5.3 Phytoplankton ................................................................................................. 94 5.3.1 Current situation ............................................................................................... 94 5.3.2 Expected situation ...........................................................................................
Recommended publications
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Murmansk, Russia Yu.A.Shustov
    the Exploration,of SALMON RIVERS OF THE KOLA PENINSULA. REPRODUCTIVE POTENTIAL AND STOCK STATUS OF THE ATLANTIC SALMON , FROM THE KOLA RIVER by A.V.Zubchenko The Knipovich'Polar Research Institute ofMarine Fisheries and • Oceanography (PINRO), Murmansk, Russia Yu.A.Shustov Biological Institute of the Scientific Center of the Russian Academy of Science, Petrozavodsk, Russia A.E.Bakulina Murmansk Regional Directorate of Fish Conservation and Enhancement, Murmansk, Russia INTRODUCTION The paper presented keeps the series of papers on reproductive • potential and stock status of salmon from the rivers of the Kola 'Peninsula (Zubchenko, Kuzmin, 1993; Zubchenko, 1994). Salmon rivers of this area have been affected by significant fishing pressure for a long time, and, undoubtedly, these data are of great importance for assessment of optimum abundance of spawners, necessary for spawning grounds, for estimating the exploitation rate of the stock, the optimum abundance of released farmed juveniles and for other calculations. At the same time, despite the numerous papers, the problem of the stock status of salmon from the Kola River was discussed'long aga (Azbelev, 1960), but there are no data on the reproductive potential of this river in literature. ' The Kola River is one of the most important fishing rivers of Russia. It flows out of the Kolozero Lake, situated almost in the central part of the Kola Peninsula,and falls into the Kola Bay of the Barents Sea. Locating in the hollow of the transversal break, along the line of the Imandra Lake-the Kola Bay, its basin borders on the water removing of the Imandra Lake in the south, ..
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson .............................................................................................................. 23 Chapter 3 Alaska Arctic Marine Fish Species By Milton S. Love, Mancy Elder, Catherine W. Mecklenburg Lyman K. Thorsteinson, and T. Anthony Mecklenburg .................................................................. 41 Pacific and Arctic Lamprey ............................................................................................................. 49 Pacific Lamprey………………………………………………………………………………….…………………………49 Arctic Lamprey…………………………………………………………………………………….……………………….55 Spotted Spiny Dogfish to Bering Cisco ……………………………………..…………………….…………………………60 Spotted Spiney Dogfish………………………………………………………………………………………………..60 Arctic Skate………………………………….……………………………………………………………………………….66 Pacific Herring……………………………….……………………………………………………………………………..70 Pond Smelt……………………………………….………………………………………………………………………….78 Pacific Capelin…………………………….………………………………………………………………………………..83 Arctic Smelt………………………………………………………………………………………………………………….91 Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson1 Abstract Introduction Several other marine fishery investigations, including A large number of Arctic fisheries studies were efforts for Arctic data recovery and regional analyses of range started following the publication of the Fishes of Alaska extensions, were ongoing concurrent to this study. These (Mecklenburg and others, 2002). Although the results of included
    [Show full text]
  • Marine Fishes of the Arctic C
    Marine Fishes of the Arctic C. W. Mecklenburg1,2, E. Johannesen3, C. Behe4, I. Byrkjedal5, J. S. Christiansen6, A. Dolgov7, K. J. Hedges8, O. V. Karamushko9, A. Lynghammar6, T. A. Mecklenburg2, P. R. Møller10, R. Wienerroither3, B.A. Holladay11 1 California Academy of Sciences, USA; 2 Point Stephens Research, USA; 3 Institute of Marine Research, Norway; 4 Inuit Circumpolar Council, USA; 5 University Museum of Bergen, Norway; 6 University of Tromsø, Norway; 7 Polar Research Institute of Marine Fisheries and Oceanography, Russia; 8 Fisheries and Oceans Canada, Canada; 9 Russian Academy of Sciences, Murmansk Marine Biological Institute, Russia; 10 University of Copenhagen, Zoological Museum, Denmark, 11University of Alaska Fairbanks, Alaska, USA Recognition of global climate change and the concomitant increased research in Arctic seas have revealed significant knowledge gaps, reviewed recently in the Council of Arctic Flora and Fauna (CAFF) ARCTIC REGION Arctic Biodiversity Assessment. The chapter on marine fishes demonstrated the need for a comprehensive review and assessment Arctic Region, defined as it pertains for marine fishes. of distribution, taxonomy, and biology. The atlas and guide Truly Arctic marine fish species are rarely found under current development will provide a baseline reference for outside of this region. Many warmer-water, Boreal identifying marine fish species of the Arctic region and evaluating species have penetrated into this region. changes in diversity and distribution. Marine Fishes of the Arctic builds on a guide to the Pacific Arctic marine fishes which is nearing completion and has been developed under the Russian–American Long-Term Census of the Arctic sponsored by the U.S.
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 3f Alaska Arctic Marine Fish Species Structure of Species Account……………………………………………………….2 Bigeye sculpin…………………………………………………………………..…10 Ribbed Sculpin……………………………………………………………………..14 Crested Sculpin……………………………………………………………………..20 Eyeshade Sculpin…………………………………………………………………...25 Polar Sculpin………………………………………………………………………..29 Smoothcheek Sculpin……………………………………………………………….33 Alligatorfish…………………………………………………………………………37 Arctic Alligatorfish………………………………………………………………….43 Chapter 3. Alaska Arctic Marine Fish Species Accounts By Milton S. Love1, Nancy Elder2, Catherine W. Mecklenburg3, Lyman K. Thorsteinson2, and T. Anthony Mecklenburg4 Abstract Although tailored to address the specific needs of BOEM Alaska OCS Region NEPA analysts, the information presented Species accounts provide brief, but thorough descriptions in each species account also is meant to be useful to other about what is known, and not known, about the natural life users including state and Federal fisheries managers and histories and functional roles of marine fishes in the Arctic scientists, commercial and subsistence resource communities, marine ecosystem. Information about human influences on and Arctic residents. Readers interested in obtaining additional traditional names and resource use and availability is limited, information about the taxonomy and identification of marine but what information is available provides important insights Arctic fishes are encouraged to consult theFishes of Alaska about marine ecosystem status and condition, seasonal patterns
    [Show full text]
  • Biodiversity of Arctic Marine Fishes: Taxonomy and Zoogeography
    Mar Biodiv DOI 10.1007/s12526-010-0070-z ARCTIC OCEAN DIVERSITY SYNTHESIS Biodiversity of arctic marine fishes: taxonomy and zoogeography Catherine W. Mecklenburg & Peter Rask Møller & Dirk Steinke Received: 3 June 2010 /Revised: 23 September 2010 /Accepted: 1 November 2010 # Senckenberg, Gesellschaft für Naturforschung and Springer 2010 Abstract Taxonomic and distributional information on each Six families in Cottoidei with 72 species and five in fish species found in arctic marine waters is reviewed, and a Zoarcoidei with 55 species account for more than half list of families and species with commentary on distributional (52.5%) the species. This study produced CO1 sequences for records is presented. The list incorporates results from 106 of the 242 species. Sequence variability in the barcode examination of museum collections of arctic marine fishes region permits discrimination of all species. The average dating back to the 1830s. It also incorporates results from sequence variation within species was 0.3% (range 0–3.5%), DNA barcoding, used to complement morphological charac- while the average genetic distance between congeners was ters in evaluating problematic taxa and to assist in identifica- 4.7% (range 3.7–13.3%). The CO1 sequences support tion of specimens collected in recent expeditions. Barcoding taxonomic separation of some species, such as Osmerus results are depicted in a neighbor-joining tree of 880 CO1 dentex and O. mordax and Liparis bathyarcticus and L. (cytochrome c oxidase 1 gene) sequences distributed among gibbus; and synonymy of others, like Myoxocephalus 165 species from the arctic region and adjacent waters, and verrucosus in M. scorpius and Gymnelus knipowitschi in discussed in the family reviews.
    [Show full text]
  • Alaska Arctic Marine Fish Ecology Catalog
    Prepared in cooperation with Bureau of Ocean Energy Management, Environmental Studies Program (OCS Study, BOEM 2016-048) Alaska Arctic Marine Fish Ecology Catalog Scientific Investigations Report 2016–5038 U.S. Department of the Interior U.S. Geological Survey Cover: Photographs of various fish studied for this report. Background photograph shows Arctic icebergs and ice floes. Photograph from iStock™, dated March 23, 2011. Alaska Arctic Marine Fish Ecology Catalog By Lyman K. Thorsteinson and Milton S. Love, editors Prepared in cooperation with Bureau of Ocean Energy Management, Environmental Studies Program (OCS Study, BOEM 2016-048) Scientific Investigations Report 2016–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov. Disclaimer: This Scientific Investigations Report has been technically reviewed and approved for publication by the Bureau of Ocean Energy Management. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S.
    [Show full text]
  • Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope
    Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope by Jessica Nephin B.Sc., University of British Columbia, 2009 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the School of Earth and Ocean Sciences c Jessica Nephin, 2014 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope by Jessica Nephin B.Sc., University of British Columbia, 2009 Supervisory Committee Dr. S. Kim Juniper School of Earth and Ocean Sciences, Department of Biology Supervisor Dr. Verena Tunnicliffe School of Earth and Ocean Sciences, Department of Biology Departmental Member Dr. Julia Baum Department of Biology Outside Member Dr. Philippe Archambault Université du Québec à Rimouski Additional Member iii Supervisory Committee Dr. S. Kim Juniper (School of Earth and Ocean Sciences, Department of Biology) Supervisor Dr. Verena Tunnicliffe (School of Earth and Ocean Sciences, Department of Biology) Departmental Member Dr. Julia Baum (Department of Biology) Outside Member Dr. Philippe Archambault (Université du Québec à Rimouski) Additional Member ABSTRACT The Arctic region has experienced the largest degree of anthropogenic warming, causing rapid, yet variable sea-ice loss. The effects of this warming on the Canadian Beaufort Shelf have led to a longer ice-free season which has assisted the expansion of northern development, mainly in the oil and gas sector. Both these direct and indirect effects of climate change will likely impact the marine ecosystem of this region, in which benthic fauna play a key ecological role.
    [Show full text]
  • Wgibar 2018 Report
    WGIBAR 2018 REPORT ICES INTEGRATED ECOSYSTEM ASSESSMENTS STEERING GROUP ICES CM 2018/IEASG:04 REF ACOM AND SCICOM Interim Report of the Working Group on the In- tegrated Assessments of the Barents Sea (WGIBAR) 9-12 March 2018 Tromsø, Norway International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2018. Interim Report of the Working Group on the Integrated Assessments of the Barents Sea (WGIBAR). WGIBAR 2018 REPORT 9-12 March 2018. Tromsø, Norway. ICES CM 2018/IEASG:04. 210 pp. https://doi.org/10.17895/ices.pub.8267 The material in this report may be reused using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has owner- ship. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All ex- tracts must be acknowledged. For other reproduction requests please contact the Gen- eral Secretary. This document is the product of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council. © 2018 International Council for the Exploration of the Sea Contents Executive summary ...............................................................................................................
    [Show full text]
  • Riessler/Wilbur: Documenting the Endangered Kola Saami Languages
    BERLINER BEITRÄGE ZUR SKANDINAVISTIK Titel/ Språk og språkforhold i Sápmi title: Autor(in)/ Michael Riessler/Joshua Wilbur author: Kapitel/ »Documenting the endangered Kola Saami languages« chapter: In: Bull, Tove/Kusmenko, Jurij/Rießler, Michael (Hg.): Språk og språkforhold i Sápmi. Berlin: Nordeuropa-Institut, 2007 ISBN: 973-3-932406-26-3 Reihe/ Berliner Beiträge zur Skandinavistik, Bd. 11 series: ISSN: 0933-4009 Seiten/ 39–82 pages: Diesen Band gibt es weiterhin zu kaufen. This book can still be purchased. © Copyright: Nordeuropa-Institut Berlin und Autoren. © Copyright: Department for Northern European Studies Berlin and authors. M R J W Documenting the endangered Kola Saami languages . Introduction The present paper addresses some practical and a few theoretical issues connected with the linguistic field research being undertaken as part of the Kola Saami Documentation Project (KSDP). The aims of the paper are as follows: a) to provide general informa- tion about the Kola Saami languages und the current state of their doc- umentation; b) to provide general information about KSDP, expected project results and the project work flow; c) to present certain soft- ware tools used in our documentation work (Transcriber, Toolbox, Elan) and to discuss other relevant methodological and technical issues; d) to present a preliminary phoneme analysis of Kildin and other Kola Saami languages which serves as a basis for the transcription convention used for the annotation of recorded texts. .. The Kola Saami languages The Kola Saami Documentation Project aims at documenting the four Saami languages spoken in Russia: Skolt, Akkala, Kildin, and Ter. Ge- nealogically, these four languages belong to two subgroups of the East Saami branch: Akkala and Skolt belong to the Mainland group (together with Inari, which is spoken in Finland), whereas Kildin and Ter form the Peninsula group of East Saami.
    [Show full text]
  • Petroleum Activity in the Russian Barents Sea
    FNI Report 7/2008 Petroleum Activity in the Russian Barents Sea Constraints and Options for Norwegian Offshore and Shipping Companies Arild Moe and Lars Rowe Petroleum Activity in the Russian Barents Sea Constraints and Options for Norwegian Offshore and Shipping Companies Arild Moe and Lars Rowe [email protected][email protected] Report commissioned by the Norwegian Shipowners’ Association September 2008 Copyright © Fridtjof Nansen Institute 2008 Title Petroleum Activity in the Russian Barents Sea: Constraints and Options for Norwegian Offshore and Shipping Companies Publication Type and Number Pages FNI-Report 7/2008 26 Authors ISBN Arild Moe and Lars Rowe 978-82-7613-530-5-print version 978-82-7613-531-2-electronic version Project ISSN 0879 1504-9744 Abstract Presently most attention in the Barents Sea is given to the Shtokman project. Experience from development of this field, where there are still many uncertainties, will have large consequences for the further development program and relations with foreign companies. The exploration activity going on is fairly limited, but over the last few years there has been a struggle over licenses and control over exploration capacity. In the medium term the goal of rapid development of the Arctic continental shelf has become intertwined with a comprehensive government effort to modernise the domestic shipbuilding industry to make it able to cover most of the needs offshore. With the shipbuilding industry in a deep crisis these goals are not fully reconcilable. Russia will either have to accept more foreign involvement, or scale down its offshore ambitions. We believe a combination of the two alternatives is likely.
    [Show full text]
  • A Feasibility Study to Develop Local and Regional Use of Wind Energy on the Kola Peninsula, Murmansk Region, Russia
    1 [19] A Feasibility Study to Develop Local and Regional Use of Wind Energy on the Kola Peninsula, Murmansk Region, Russia (KOLA WIND) E. Peltola, J. Wolff VTT Energy O. Rathmann Risø National Laboratory P. Lundsager Darup Associates A/S G.Gerdes DEWI P. Zorlos, P. Ladakakos CRES P. Ahm PA Energy A/S B. Tammelin FMI A. Tiilikainen University of Lapland V. Minin, G. Dmitriev Institute for Physical and Technological Problems of Energy in the North Kola Science Centre Contract JOR3–CT95–0036 Final Publishable Report Research funded in part by THE EUROPEAN COMMISSION in the framework of the NON-NUCLEAR RESEARCH PROGRAMME 2 [19] 1. ABSTRACT The possibilities for wind energy production on the Kola peninsula in north-western Russia were studied in an extensive feasibility study. The Kola peninsula constitutes the Murmansk oblast, i.e. a region with some autonomous features, within the Russian federation. The wind resources in the region are very good, with annual means speeds up to 10 m/s on the cost of the Barents Sea. A wind atlas is produced according to the methodology developed at Risø National Laboratories in Denmark and makes it possible to do reliable wind resource assessments and produc- tion estimates at prospective sites. There are more than 30 civil and military settlements located off the common electrical network. In these settlements electricity needs are currently supplied mostly by autonomous diesel power stations. Due to long distances and difficult access transport of fuel is costly and thus power prices are high. In these communities wind turbines could provide both additional energy supply and fuels savings at competitive costs.
    [Show full text]