Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation ITU-R 2016 Internati onal Telecommunicati on Handbook on Digital Terrestrial Union Place des Nati ons 1211 Geneva 20 Television Broadcasti ng Networks and Switzerland Systems Implementati on ISBN: 978-92-61-23481-2 Editi on of 2016 9 7 8 9 2 6 1 2 3 4 8 1 2 Printed in Switzerland REGU IO LA D T A I R O Geneva, 2016 N U S T Photo credits: Shutt erstock I A 1 9 0 1 6 N 6 - 2 0 Y N R I V E R S A Handbook on Digital Terrestrial Television Broadcasti ng Networks and Systems Implementati on Implementati Systems and Networks ng Broadcasti Television Terrestrial Handbook on Digital Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation Edition of 2016 ITU-R Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation iii Editors’ Foreword In 2002, ITU published its first Handbook on digital terrestrial television under the title Digital terrestrial television broadcasting in the VHF/UHF bands1 as guidance to engineers responsible for the implementation of digital terrestrial television broadcasting (DTTB). In this Handbook, new digital broadcasting technologies were explained in detail, for example a splendid description of the Discrete Cosine Transform (DCT) coding that is the basis of all past and present TV compression systems, as well as a very instructive chapter on signal power summation. Most of that content are not repeated in this new Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation. Therefore, the version 1.01, which was published by ITU in the year 2002, has not lost value and should still be consulted. Since 2002, DTTB has tremendously evolved, not only in technical but also in regulatory aspects. For example, at the turn of the century, MPEG had just started to develop the compression scheme MPEG-4, and HEVC was not known at all. In two sessions, in 2004 and 2006, the important ITU Regional Radiocommunication Conference RRC-06 was held in Geneva and agreed a new frequency plan for digital broadcasting in Region 1 (except Mongolia) and in Iran. For all UHF stations, the Conference decided that the transition period from analogue to digital broadcasting would take place by 15 June 2015. Today, majority of developed countries have already introduced digital TV broadcasting and have closed their analogue TV services. However, many developing countries have just started Successive WRCs have identified new spectrum for the mobile service in the traditional UHF broadcasting bands. Consequently, spectrum for terrestrial TV broadcasting as well as for services ancillary to programme making or broadcasting (SAP/SAB) became scarcer within the existing UHF broadcasting bands. More spectrum efficient transmission and compression schemes can only partly compensate for that loss as new requirements for improved resolution, such as HDTV and UHDTV, demand significantly higher data rates. Also, new formats for multi-channel sound can need substantial amounts of transmitted data. So do the ever- increasing amount of metadata and access services. Today, with the advent of broadband IP networks (wired and wireless), interactivity has become commonplace. Most modern TV sets are equipped with an interface for DSL or Wi-Fi in addition to the traditional antenna input for digital terrestrial, satellite and/or cable TV. This new ITU Handbook, entitled Digital Terrestrial Television Broadcasting Networks and Systems Implementation, concentrates on these new developments during the last 15 years. In this context, it complements ITU-D Guidelines for the transition from analogue to digital broadcasting2 which made use of technical, operational and procedural information from the ITU Radiocommunication Sector and directed itself primarily to the analogue-to-digital switchover in developing countries. Numerous experts of ITU-R Working Party 6A (Terrestrial broadcasting delivery) and of the parent ITU-R Study Group 6 (Broadcasting service) have been involved in the development of this new Handbook. The names of these contributors are listed in the Acknowledgements section. ____________________ 1 ITU-R DTTB Handbook – Digital terrestrial television broadcasting in the VHF/UHF bands V 1.01, ref. https://www.itu.int/pub/R-HDB-39 2 ITU-D Guidelines for the transition from analogue to digital broadcasting, ref. https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/Documents/AtoDguidelinesV3.pdf iv Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation However, one person must be mentioned here because of his outstanding dedication: most thanks go to the principal author, Professor Oleg Gofaizen (Ukraine), who led the process of writing this Handbook and who tirelessly acted towards its completion. The Study Group 6 approved this new Handbook at its meeting on 28 October 2016. The Core Editing Team Christoph Dosch, David Hemingway and Walid Sami Geneva, October 2016 Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation v Acknowledgements For the compilation of this Handbook, Working Party 6A established a special Rapporteur Group, which was chaired by Professor Oleg Gofaizen (Ukraine), who diligently worked over the years assembling numerous contributions into a draft Handbook. This draft was considered by WP6A in its meeting in January-February 2016. A Correspondence Group was formed with the task of finalizing the Handbook in time for the WP6A meeting in October 2016. The Correspondence Group was co-chaired by Christoph Dosch (former Chairman of Study Group 6 and currently Vice-Chairman of Study Group 6) and David Hemingway (BBC, Vice-Chairman of Working Party 6A), assisted by Walid Sami (EBU, Vice Chairman of Study Group 6 and Working Party 6A). Additional contributors joined this work. A list of the experts who contributed to this Handbook is given below, to whom special thanks are due. Name Organization / Administration Dr. Abdullah Saleh ALARAIMI Oman Dr. Pablo ANGUEIRA BUCETA Spain Dr. Vladimir BALYAR Ukraine Mr. Vittorio BARONCINI Italy Mr. Istvan BOZSOKI ITU-D Mr. Roger BUNCH Australia Mr. José Ramón CAMBLOR Ministerio de Industria, Energía y Turismo, Spain Mr. Perez DE LEMA Spain Mr. Christoph DOSCH IRT Dr. Charles EINOLF CBS Dr. Joseph FLAHERTY USA Prof. Oleg GOFAIZEN Ukraine Dr. David GUERRA PEREDA University of the Basque Country Mr. Jean-Jacques GUITOT France Mr. Pham HAI ITU-R Mr. David HEMINGWAY BBC Dr. Shuji HIRAKAWA Japan Mr. Klaus HUBER LS Telcom Mr. Mark JORDAN Arqiva Dr. Alina KARWOWSKA-LAMPARSKA Poland Dr. Alexandre KHOLOD Switzerland Ms. Kyung-Mee KIM Korea Ms. Lucia Luisa LA FRANCESCHINA Rai Way SpA Mr. Stephane MEBALEY EKOME France Dr. Alberto MORELLO RAI Mr. Amir Hassan NAFEZ Iran Mr. Akira NEGISHI NHK Mr. Yukihiro NISHIDA Japan Mr. Kyoungseok OH Korea (TTA) Mr. Larry OLSON USA Prof. PAN Changyong Tsinghua University, China Mr. Rolly PURNOMO Indonesia vi Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation Name Organization / Administration Mr. Ari REFIK TDF Dr. Walid SAMI EBU Mr. Eli SOFER Israel Mr. Supatrasit SUANSOOK NBTC, Thailand Ms. Sato TELEMI IRT Ms. Anne-Lise THIEBLEMONT Qualcomm Mr. Kengo TSUDA NHK Mr. Aljo VAN DIJKEN Netherlands Dr. Manuel María VELEZ ELORD Spain Mr. Tobias VIERACKER IRT Dr. David WOOD EBU Ms. Norafidah YOSUF Malaysia Mr. Juan ZAPATA Colombia Additionally, great thanks are due to all the other members of Study Group 6, past and present, who have contributed – directly and indirectly – to this Handbook. Special thanks must go to Prof. Marc Krivocheev (Russian Federation), Honorary Chairman of SG6, for his continued guidance throughout the drafting process. Disclaimer The opinions expressed in this publication are those of the editors and authors and do not necessarily represent the views of the ITU. This publication is only intended for informational purposes only. Whilst every effort had been undertaken to provide clear and correct information, neither ITU nor the contributors to this Handbook can be made responsible for any decision taken or any investment made based on this Handbook. Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation vii PREFACE – WHAT THE HANDBOOK IS ALL ABOUT The aim of the Handbook is to provide assistance in technical and service issues such as networks and systems, audiovisual quality and quality of transmission as well as on other issues of interest for the introduction of digital terrestrial TV broadcasting (from multimedia systems to UHDTV) in different countries. The Handbook takes into account progress and convergence of technologies, different environments for production, primary and secondary distribution of broadcast programs as well as experiences in providing quality of service for DTTB. In more detail, the Handbook considers: 1) Technical aspects on the introduction of digital terrestrial and multimedia broadcasting. 2) Information on standardized broadcasting systems in digital terrestrial and multimedia broadcasting networks, and some guidance on their implementation. 3) References to normative documents (standards, technical specifications, reports, recommendations and other documents) that are important with respect to baseband (audio, video data) and transmission quality, as well as to DTTB services including interactive TV and access services. 4) The use of DTTB systems in electronic news gathering and contribution of audio-visual content. The content of the Handbook is structured as follows:
Recommended publications
  • ETR 132 TECHNICAL August 1994 REPORT
    ETSI ETR 132 TECHNICAL August 1994 REPORT Source: EBU/ETSI JTC Reference: DTR/JTC-00011 ICS: 33.060 Key words: Broadcasting, FM, radio, transmitter, VHF European Broadcasting Union Union Européenne de Radio-Télévision EBU UER Radio broadcasting systems; Code of practice for site engineering Very High Frequency (VHF), frequency modulated, sound broadcasting transmitters ETSI European Telecommunications Standards Institute ETSI Secretariat Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: [email protected] Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16 Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1994. All rights reserved. New presentation - see History box © European Broadcasting Union 1994. All rights reserved. Page 2 ETR 132: August 1994 Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page. Page 3 ETR 132: August 1994 Contents Foreword .......................................................................................................................................................7 1 Scope
    [Show full text]
  • Design, Construction and Testing of a Low Energy Digital Frequency Modulation (FM) Transmitter
    International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020 534 ISSN 2229-5518 Design, Construction and Testing of a Low Energy Digital Frequency Modulation (FM) Transmitter JP. C. Mbagwu, F.M.Ezike, J.O.Ozuomba Abstract---- A rapidly growing demand for the use of Frequency Modulation (FM) transmitter exists within institutions and individuals. The FM transmitters are however a complex equipment demanding high power supply, high voltage system design, critical maintenance and exorbitant price. These problems of the transmitter constitute major impediments to institutions and individuals that may wish to adopt radio broadcast as means of electronic media. This study was therefore carried out to design and construct an FM transmitter that is of low cost, and simple in maintenance, efficient in use and yet operating on low power supply. The FM transmitter is designed to be received at a range of about 100metres in free air. The transmitter has a capacitor microphone which picks up very weak sound signals, a transistor, resistors, inductor, and capacitors. The design procedure involves the modification of an output of the transmitter. Based on the procedures adopted and the tests carried out, the specific findings include a range of 102.2MHz of transmission from a 9V DC battery. The work indicated that the practical frequency modulated (FM) transmitter requiring a low power can be designed and constructed. Index Terms----Frequency Modulation, FM Transmitter, Radio Broadcast, Antenna. 1.0 INTRODUCTION combined in one unit are called a transceiver. The In electronics and telecommunication, a transmitter term transmitter is often abbreviated ‘‘XMTR’’ or or radio transmitter is an electronic device which ‘‘TX’’ in technical documents.
    [Show full text]
  • Loudspeaker FM and AM Distortion an 10
    Loudspeaker FM and AM Distortion AN 10 Application Note to the KLIPPEL R&D SYSTEM The amplitude modulation of a high frequency tone f1 (voice tone) and a low frequency tone f2 (bass tone) is measured by using the 3D Distortion Measurement module (DIS) of the KLIPPEL R&D SYSTEM. The maximal variation of the envelope of the voice tone f1 is represented by the top and bottom value referred to the averaged envelope. The amplitude modulation distortion (AMD) is the ratio between the rms value of the variation referred to the averaged value and is comparable to the modulation distortion Ld2 and Ld3 of the IEC standard 60268 provided that the loudspeaker generates pure amplitude modulation of second- or third-order. The measurement of amplitude modulation distortion (AMD) allows assessment of the effects of Bl(x) and Le(x) nonlinearity and radiation distortion due to pure amplitude modulation without Doppler effect. CONTENTS: 1 Method of Measurement ............................................................................................................................... 2 2 Checklist for dominant modulation distortion ............................................................................................... 3 3 Using the 3D distortion measurement (DIS) .................................................................................................. 4 4 Setup parameters for DIS Module .................................................................................................................. 4 5 Example .........................................................................................................................................................
    [Show full text]
  • DTMB, ATSC, ISDB-T, DVB T/T2) and Radio & Emergency Warning Broadcasting System
    Session 3 Broadcasting Standards for digital television (DTMB, ATSC, ISDB-T, DVB T/T2) and radio & Emergency Warning Broadcasting System 2015 Kuala Lumpur, Malaysia Dr AMAL Punchihewa Director ABU Technology Asia-Pacific Broadcasting Union A Vice Chair of World Broadcasting Union Technical Committee (WBU-TC) Dr Amal Punchihewa © Director of Technology ABU & A Vice Chair of World Broadcasting Union Technical Committee (WBU-TC) DTMB, ATSC, DVB and ABU working on EWS 2.0 , looking at Asia-Pacific requirements and building a reference model Dr Amal Punchihewa PhD, MEEng, BSC(Eng)Hons, CEng, FIET, FIPENZ, SMIEEE, MSLAAS, MCS Postgraduate Studies in Business Administration Director ABU Technology Asia-Pacific Broadcasting Union Kuala Lumpur, Malaysia A Vice-Chair World Broadcasting Unions Technical Committee (WBU-TC) Dr Amal Punchihewa © Director of Technology ABU & A Vice Chair of World Broadcasting Union Technical Committee (WBU-TC) 2 Outline • Digital Broadcasting • Television Services – Free TV or Pay TV – OTA or Cable • DTV Standards • What are EWS – Content delivered from distance, Live, VOD, …. Dr Amal Punchihewa © Director of Technology ABU & A Vice Chair of World Broadcasting Union Technical Committee (WBU-TC) 3 Traditional TV Traditional Broadcasting • Linear TV – At scheduled times, missed it then catch the delayed version, … • Public or commercial – Funding or business model, FTA, adverting, License fee, subscription, … • Terrestrial, Satellite, Cable – Now cloud, IP etc. … • Return channel – One-to-many service, no return channel
    [Show full text]
  • Mediaflo Technology- Making Mobile Mass Multimedia “A Reality”
    MediaFLO Technology- Making Mobile Mass Multimedia “A Reality” Parag Kar Director Govt Affairs (India & SAARC) [email protected] Executive Brief Agenda • The Enablers – 3G Devices & Lifestyle Changes • Conventional Methods – Wireless MM Challenges • MediaFLO Technology – Overcoming Business Challenges – New Air Interface – Quality Viewing Experience • MediaFLO Distribution System • FLO Operator’s Model • Conclusion Executive Brief IntegrationIntegration ofof DevicesDevices LeadingLeading toto ConvergenceConvergence Convergence of Multimedia Consumer Electronics and Personal Mobile Devices is being enabled by Qualcomm… now! The Portable Wireless Media Center Executive Brief 3G3G ChipsChips NowNow -- MoreMore PowerfulPowerful ThanThan EverEver BeforeBefore The Engine to Drive Mobile Multimedia Applications Micro- RF PM CDMA Processor Application MSM GSM/GPRS APIs GPS 1 2 3 DSP 4 5 6 3D Graphics 7 8 9 DSP 0 Video * * Memory Audio • Smaller Form Factor Power Mgt Imaging • Highly Integrated Applications • Lower Overall Costs • Faster Time to Market Executive Brief Redefining Entertainment The 4th Screen is Here, There, Everywhere and Always With You Movie TV PC Phone Screen Screen Screen Screen The best multimedia device to own… … is the one that’s always with you Executive Brief ConsumersConsumers NeedNeed MoreMore ThanThan JustJust “Voice”“Voice” Thus, pressure on manufacturers & service providers to deliver services at lower cost in order to enable mass adoption Position News Location Ring Tones Push to Talk Entertainment Photo Sharing 9lbs
    [Show full text]
  • Replacing Digital Terrestrial Television with Internet Protocol?
    This is a repository copy of The short future of public broadcasting: Replacing digital terrestrial television with internet protocol?. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/94851/ Version: Accepted Version Article: Ala-Fossi, M and Lax, S orcid.org/0000-0003-3469-1594 (2016) The short future of public broadcasting: Replacing digital terrestrial television with internet protocol? International Communication Gazette, 78 (4). pp. 365-382. ISSN 1748-0485 https://doi.org/10.1177/1748048516632171 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The Short Future of Public Broadcasting: Replacing DTT with IP? Marko Ala-Fossi & Stephen Lax School of Communication, School of Media and Communication Media and Theatre (CMT) University of Leeds 33014 University of Tampere Leeds LS2 9JT Finland UK [email protected] [email protected] Keywords: Public broadcasting, terrestrial television, switch-off, internet protocol, convergence, universal service, data traffic, spectrum scarcity, capacity crunch.
    [Show full text]
  • Digital Television and the Allure of Auctions: the Birth and Stillbirth of DTV Legislation
    Federal Communications Law Journal Volume 49 Issue 3 Article 2 4-1997 Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation Ellen P. Goodman Covington & Burling Follow this and additional works at: https://www.repository.law.indiana.edu/fclj Part of the Communications Law Commons, and the Legislation Commons Recommended Citation Goodman, Ellen P. (1997) "Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation," Federal Communications Law Journal: Vol. 49 : Iss. 3 , Article 2. Available at: https://www.repository.law.indiana.edu/fclj/vol49/iss3/2 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Federal Communications Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation Ellen P. Goodman* I. INTRODUCTION ................................... 517 II. ORIGINS OF THE DTV PRovIsIoNs OF THE 1996 ACT .... 519 A. The Regulatory Process ..................... 519 B. The FirstBills ............................ 525 1. The Commerce Committee Bills ............. 526 2. Budget Actions ......................... 533 C. The Passage of the 1996Act .................. 537 Ill. THE AFTERMATH OF THE 1996 ACT ................ 538 A. Setting the Stage .......................... 538 B. The CongressionalHearings .................. 542 IV. CONCLUSION ................................ 546 I. INTRODUCTION President Clinton signed into law the Telecommunications Act of 1996 (1996 Act or the Act) on February 8, 1996.1 The pen he used to sign the Act was also used by President Eisenhower to create the federal highway system in 1957 and was later given to Senator Albert Gore, Sr., the father of the highway legislation.
    [Show full text]
  • Electrical Engineering (ELEC ENG) 1
    Electrical Engineering (ELEC_ENG) 1 Prerequisite: ELEC_ENG 302-0 or equivalent. ELECTRICAL ENGINEERING ELEC_ENG 334-0 Fundamentals of Blockchains and Decentralization (1 Unit) (ELEC_ENG) This course is partly an introduction to the fundamentals of blockchains and decentralized applications and partly a springboard toward ELEC_ENG 302-0 Probabilistic Systems (1 Unit) deeper understanding and further exploration. The course explains Introduction to probability theory and its applications. Axioms of how blockchains work; teaches the underlying fundamentals of probability, distributions, discrete and continuous random variables, distributed consensus; provides hands-on experience through computer conditional and joint distributions, correlation, limit laws, connection assignments; and also touches upon economic and policy issues. to statistics, and applications in engineering systems. May not receive Prerequisites: COMP_SCI 212-0 or ELEC_ENG 302-0 or equivalent or credit for both ELEC_ENG 302-0 and any of the following: IEMS 202-0; graduate standing and basic programming skills. MATH 310-1; STAT 320-1; ELEC_ENG 383-0, ELEC_ENG 385-0. Corequisite: MATH 228-2 or equivalent. ELEC_ENG 353-0 Digital Microelectronics (1 Unit) Logic families, comparators, A/D and D/A converters, combinational ELEC_ENG 307-0 Communications Systems (1 Unit) systems, sequential systems, solid-state memory, largescale integrated Analysis of analog and digital communications systems, including circuits, and design of electronic systems. modulation, transmission, and demodulation of AM, FM, and TV systems. Prerequisites: COMP_ENG 203-0, ELEC_ENG 225-0. Design issues, channel distortion and loss, bandwidth limitations, additive noise. ELEC_ENG 359-0 Digital Signal Processing (1 Unit) Prerequisites: ELEC_ENG 222-0, ELEC_ENG 302-0 or equivalent. Discrete-time signals and systems.
    [Show full text]
  • Essentials of Radio Wave Propagation
    This page intentionally left blank Essentials of Radio Wave Propagation If you need to maximise efficiency in wireless network planning an understanding of radio propagation issues is vital, and this quick reference guide is for you. Using real-world case studies, practical problems and minimum mathematics, the author explains simply and clearly how to predict signal strengths in a variety of situations. Fundamentals are explained in the context of their practical significance. Applications, including point-to-point radio links, broadcasting and earth–space communications, are thoroughly treated, and more sophisticated methods, which form the basis of software tools both for network planning and for spectrum management, are also described. For a rapid understanding of and insight into radio propagation, sufficient to enable you to undertake real-world engineering tasks, this concise book is an invaluable resource for network planners, hardware designers, spectrum managers, senior technical managers and policy makers who are either new to radio propagation or need a quick reference guide. christopher haslett is the Principal Propagation Adviser at Ofcom, the UK Communication Industries Regulator. As well as experience conducting and directing research projects, he has many years’ industrial radio-planning experience with Cable and Wireless plc., and as Director of Planning and Optimisation at Aircom International Ltd., where he directed the optimisa- tion of UMTS networks. He was also a Senior Lecturer at the University of Glamorgan. The Cambridge
    [Show full text]
  • AM / FM / DAB / XM Tuner
    ENGLISH FRANÇAIS Owner’s Manual Owner’s ESPAÑOL ® ITALIANO AM / FM / DAB / XM Tuner /XM /DAB /FM AM M4 DEUTSCH NEDERLANDS SVENSKA РУССКИЙ IMPORTANT SAFETY INSTRUCTIONS ENGLISH 1. Read instructions - All the safety and operating instructions should be NOTE TO CATV SYSTEM INSTALLER read before the product is operated. This reminder is provided to call the CATV system installer’s attention to Section 820-40 of 2. Retain instructions - The safety and operating instructions should be the NEC which provides guidelines for proper grounding and, in particular, specifies that retained for future reference. the cable ground shall be connected to the grounding system of the building, as close 3. Heed Warnings - All warnings on the product and in the operating to the point of cable entry as practical. instructions should be adhered to. 4. Follow Instructions - All operating and use instructions should be FRANÇAIS followed. 5. Cleaning - Unplug this product from the wall outlet before cleaning. Do not use liquid cleaners or aerosol cleaners. Use a damp cloth for cleaning. 6. Attachments - Do not use attachments not recommended by the product manufacturer as they may cause hazards. 7. Water and Moisture - Do not use this product near water-for example, near a bath tub, wash bowl, kitchen sink, or laundry tub; in a wet basement; or near a swimming pool; and the like. ESPAÑOL 8. Accessories - Do not place this product on an unstable cart, stand, tripod, bracket, or table. The product may fall, causing serious injury to a child or adult and serious damage to the product. Use only with a cart, stand, tripod, bracket, or table recommended by the manufacturer, or sold with the product.
    [Show full text]
  • TX1 FM Broadcast Transmitter
    TX1 FM Broadcast Transmitter Technical manual No part of this manual may be re-produced in any form without prior written permission from Broadcast Warehouse. The information and specifications contained in this document is subject to change at any time without notice. Copyright 2008 Broadcast Warehouse www.bwbroadcast.com WARNING This transmitter should never be operated without a suitable antenna or test dum- my load! Failure to observe this requirement may result in damage to the transmit- ter that is not covered by the warranty. IMPORTANT This transmitter has been shipped with the internal stereo generator enabled. The internal jumper J1 (MPX loop-through) is set to ON. If you intend to connect a MPX signal to the MPX input BNC connector you will need to move J1 (MPX loop-through) to the OFF position. Examples of configurations requiring setting J1 to OFF include: ● Routing the internal MPX signal through an external RDS encoder. ● Connecting an external audio processor or stereo generator to the transmitter. ● Connecting a re-broadcast or STL receiver to the transmitter. Consult the manual for further information on the transmitter’s jumpers and con- nections. CONTENTS 1. Introduction 1.1 TX FM Transmitter 1.2 Safety 1. Quick setups 1.4 Front And Rear Panels 1.5 Control And Monitor LCD 2. Installation And Setup 2.1 Frequency Setup 2.2 R.F. Power Setup 2. Alarms 2.4 RS22 Control & Monitoring 2.41 Windows remote control application 2.42 Terminal control of the transmitter 2.5 Modes Of Operation 2.51 A guide to the jumpers 2.52 Multiplex / Broadband Input 2.5 Stereo With Limiters 2.54 Stereo With Limiters Disabled 2.55 Mono From Two Channels 2.56 Mono From One Channel 2.6 Other Setup Considerations 3.
    [Show full text]
  • HTS3450/77 Philips DVD Home Theater System with Video
    Philips DVD home theater system with Video Upscaling up to 1080i DivX Ultra HTS3450 Turn up your experience with HDMI and video upscaling This stylish High Definition digital home entertainment system plays practically any disc in high quality Dolby and DTS multi-channel surround sound. So just relax and fully immerse yourself in movies and music at home. Great audio and video performance • HDMI digital output for easy connection with only one cable • Video Upscaling for improved resolution of up to 1080i • High definition JPEG playback for images in true resolution • DTS, Dolby Digital and Pro Logic II surround sound • Progressive Scan component video for optimized image quality Play it all • Movies: DVD, DVD+R/RW, DVD-R/RW, (S)VCD, DivX • Music: CD, MP3-CD, CD-R/RW & Windows Media™ Audio • DivX Ultra Certified for enhanced playback of DivX videos • Picture CD (JPEG) with music (MP3) playback Quick and easy set-up • Easy-fit™ connectors with color-coding for a simple set-up DVD home theater system with Video Upscaling up to 1080i HTS3450/77 DivX Ultra Highlights HDMI for simple AV connection High definition JPEG playback Progressive Scan HDMI stands for High Definition Multimedia High definition JPEG playback lets you view Progressive Scan doubles the vertical Interface. It is a direct digital connection that your pictures on your television in resolutions resolution of the image resulting in a noticeably can carry digital HD video as well as digital as high as two megapixels. Now you can view sharper picture. Instead of sending a field multichannel audio. By eliminating the your digital pictures in absolute clarity, without comprising the odd lines to the screen first, conversion to analog signals it delivers perfect loss of quality or detail - and share them with followed by the field with the even lines, both picture and sound quality, completely free friends and family in the comfort of your living fields are written at one time.
    [Show full text]