Essentials of Radio Wave Propagation

Total Page:16

File Type:pdf, Size:1020Kb

Essentials of Radio Wave Propagation This page intentionally left blank Essentials of Radio Wave Propagation If you need to maximise efficiency in wireless network planning an understanding of radio propagation issues is vital, and this quick reference guide is for you. Using real-world case studies, practical problems and minimum mathematics, the author explains simply and clearly how to predict signal strengths in a variety of situations. Fundamentals are explained in the context of their practical significance. Applications, including point-to-point radio links, broadcasting and earth–space communications, are thoroughly treated, and more sophisticated methods, which form the basis of software tools both for network planning and for spectrum management, are also described. For a rapid understanding of and insight into radio propagation, sufficient to enable you to undertake real-world engineering tasks, this concise book is an invaluable resource for network planners, hardware designers, spectrum managers, senior technical managers and policy makers who are either new to radio propagation or need a quick reference guide. christopher haslett is the Principal Propagation Adviser at Ofcom, the UK Communication Industries Regulator. As well as experience conducting and directing research projects, he has many years’ industrial radio-planning experience with Cable and Wireless plc., and as Director of Planning and Optimisation at Aircom International Ltd., where he directed the optimisa- tion of UMTS networks. He was also a Senior Lecturer at the University of Glamorgan. The Cambridge Wireless Essentials Series Series Editors william webb, Ofcom, UK sudhir dixit, Nokia, US A series of concise, practical guides for wireless industry professionals. Martin Cave, Chris Doyle and William Webb, Essentials of Modern Spectrum Management Christopher Haslett, Essentials of Radio Wave Propagation Forthcoming Andy Wilton and Tim Charity Essentials of Wireless Network Deployment Steve Methley Essentials of Wireless Mesh Networking Malcolm Macleod and Ian Proudler Essentials of Smart Antennas and MIMO Stephen Wood and Roberto Aiello Essentials of Ultra-Wideband David Crawford Essentials of Mobile Television Chris Cox Essentials of UMTS For further information on any of these titles, the series itself and ordering information see www.cambridge.org/wirelessessentials. Essentials of Radio Wave Propagation Christopher Haslett Ofcom, UK CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521875653 © Cambridge University Press 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2007 ISBN-13 978-0-511-37112-7 eBook (NetLibrary) ISBN-10 0-511-37112-8 eBook (NetLibrary) ISBN-13 978-0-521-87565-3 hardback ISBN-10 0-521-87565-X hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page ix Acknowledgements xi 1 Propagation in free space and the aperture antenna 1 1.1 Propagation in free space: simplified explanation 1 1.2 The aperture antenna: simplified explanation 2 1.3 Further details and calculations 3 1.4 Point-to-point transmission 10 1.4.1 Transmitting, directing and capturing power 10 1.4.2 Transmission loss between practical antennas 12 1.4.3 Determining the power required 14 1.4.4 Example calculations 16 1.4.5 Equivalent isotropic radiated power (EIRP) 18 1.5 Near-field effects: simplified explanation 18 1.5.1 Further detail on the near-field issue 19 1.6 Polarisation 24 1.7 Summary 25 2 Point-to-area transmission 26 2.1 Overview 26 2.2 Power density and electric field strength 28 2.3 Converting from field strength to received signal power 30 2.4 Predicting the field strength at a distance 31 2.5 The effect of frequency 33 v vi contents 2.6 Prediction methods for digital mobile communication 35 2.6.1 The Okumura–Hata model 35 2.6.2 Comparison between propagation at 900 MHz and propagation at 1800 MHz 37 2.7 Base-station antennas 38 2.7.1 Sectored antennas 43 2.8 Mobile-station antennas 46 2.9 Interference and the noise floor 47 2.10 Summary 48 3 The effect of obstacles 50 3.1 Knife-edge diffraction 50 3.1.1 Huygens’ principle and the Cornu spiral 53 3.2 Clearance requirements 61 3.3 A resume of the assumptions and approximations 62 3.4 Diffraction through an aperture 62 3.5 Reflection from a finite surface 64 3.6 Antenna radiation patterns 67 3.6.1 The radiation pattern of an aperture antenna 67 3.7 Multiple diffracting edges 70 3.7.1 Comparison of methods 71 3.8 Diffraction by practical obstacles 78 3.9 The GTD/UTD 78 3.10 Clearance requirements and Fresnel zones 79 3.11 Summary 81 4 Reflection, scatter and penetration 83 4.1 Introduction 83 4.2 Standing wave patterns 85 4.3 Determining reflection coefficients 90 4.4 Propagation over a flat plane 92 contents vii 4.5 Propagation over water 95 4.6 Rayleigh and Rician multipath environments 98 4.7 Reflections from rough surfaces 101 4.8 Penetration of materials 106 4.9 Summary 108 5 Estimating the received signal strength in complex environments 110 5.1 Aggregating multiple contributions 110 6 Atmospheric effects 116 6.1 Multipath propagation in the atmosphere 116 6.2 Ducting 117 6.3 The k-factor and the standard atmosphere 118 6.4 Anomalous propagation and multipath fading 120 6.5 Diversity techniques 125 6.5.1 Space diversity 126 6.5.2 Frequency diversity 127 6.5.3 Angle diversity 129 6.5.4 Polarisation diversity 129 6.5.5 Summary of diversity on fixed links 129 6.5.6 Diversity in mobile communications 130 6.6 Diffraction fading 130 6.7 Selective fading in long-distance, high-capacity microwave links 132 6.8 Ducting and interference in point-to-area systems 135 6.9 Rain attenuation 138 6.10 Atmospheric absorption 141 6.11 Atmospheric effects and Earth–space links 142 6.12 Noise and temperature effects 145 6.12.1 Noise calculations on Earth–space systems 146 6.13 Summary 148 viii contents 7 System design and interference management 150 7.1 Determining the most appropriate frequencies for specific services 150 7.2 System design 152 7.2.1 Terrestrial point-to-point system design 153 7.2.2 Broadcast systems 163 7.2.3 Earth–space systems 166 7.2.4 In-building systems 170 7.3 Summary 171 8 Software-based tools 172 8.1 Software tools for management of fixed-links networks 172 8.2 Planning tools for public mobile networks 174 8.3 Mitigating against uncertainties 176 8.3.1 Statistical methods 176 8.4 Summary 181 9 Summary 182 Appendix 1 The decibel scale 185 Appendix 2 Phasor arithmetic and phasor diagrams 188 Appendix 3 Formula sheet 191 Appendix 4 Explanation of the link budget 195 Further reading 196 References 197 Recommendations of the Radiocommunication Bureau of the International Telecommunications Union (ITU), Geneva 198 Author’s biography 199 Index 200 Preface The objective of this book is to allow the reader to predict the received signal power produced by a particular radio transmitter. The first two chapters examine propagation in free space for point-to-point and point-to-area transmission, respectively. This is combined with a dis- cussion regarding the characteristics of antennas for various purposes. In chapter 3, the effect of obstacles, whether buildings or mountains, is discussed and analytical methods, whereby the strength of a signal is the shadow of an obstacle can be predicted, are presented. The following chapter investigates the nature of reflections and the effect that reflections have on the nature of a received signal. Chapter 5 shows how the level of a received signal can be predicted considering all propagation mechanisms. The many effects on a radio wave that are caused by precipitation and the structure of the atmosphere are explained in chapter 6. Chapter 7 demonstrates how knowledge gained can be used to design point-to-point radio links, broadcast systems, Earth–space systems and in-building systems. In chapter 8, the value of software tools in the planning of various radio networks is explained. ix Acknowledgements I believe that understanding of a topic such as radio wave propagation seeps in over the years rather than being something that can be accumulated rapidly. This is always facilitated by discussion and debate with others in the field. For such discussion and debate I am particularly indebted to David Bacon, Les Barclay, Ken Craig, Martin Hall, Malcolm Hamer, Tim Hewitt, Mireille Levy, John Pahl, James Richardson, Richard Rudd, Mike Willis and Charles Wrench. xi 1 Propagation in free space and the aperture antenna This chapter introduces the basic concepts of radio signals travelling from one antenna to another. The aperture antenna is used initially to illustrate this, being the easiest concept to understand. The vital equa- tions that underpin the day-to-day lives of propagation engineers are introduced. Although this chapter is introductory in nature, practical examples are covered. The approach adopted is to deliver the material, together with the most significant equations, in a simplified manner in the first two subsections before providing more detail. Following this, the focus is on developing methods of predicting the received signal power on point-to-point links given vital information such as path length, fre- quency, antenna sizes and transmit power.
Recommended publications
  • ETR 132 TECHNICAL August 1994 REPORT
    ETSI ETR 132 TECHNICAL August 1994 REPORT Source: EBU/ETSI JTC Reference: DTR/JTC-00011 ICS: 33.060 Key words: Broadcasting, FM, radio, transmitter, VHF European Broadcasting Union Union Européenne de Radio-Télévision EBU UER Radio broadcasting systems; Code of practice for site engineering Very High Frequency (VHF), frequency modulated, sound broadcasting transmitters ETSI European Telecommunications Standards Institute ETSI Secretariat Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: [email protected] Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16 Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1994. All rights reserved. New presentation - see History box © European Broadcasting Union 1994. All rights reserved. Page 2 ETR 132: August 1994 Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page. Page 3 ETR 132: August 1994 Contents Foreword .......................................................................................................................................................7 1 Scope
    [Show full text]
  • TX1 FM Broadcast Transmitter
    TX1 FM Broadcast Transmitter Technical manual No part of this manual may be re-produced in any form without prior written permission from Broadcast Warehouse. The information and specifications contained in this document is subject to change at any time without notice. Copyright 2008 Broadcast Warehouse www.bwbroadcast.com WARNING This transmitter should never be operated without a suitable antenna or test dum- my load! Failure to observe this requirement may result in damage to the transmit- ter that is not covered by the warranty. IMPORTANT This transmitter has been shipped with the internal stereo generator enabled. The internal jumper J1 (MPX loop-through) is set to ON. If you intend to connect a MPX signal to the MPX input BNC connector you will need to move J1 (MPX loop-through) to the OFF position. Examples of configurations requiring setting J1 to OFF include: ● Routing the internal MPX signal through an external RDS encoder. ● Connecting an external audio processor or stereo generator to the transmitter. ● Connecting a re-broadcast or STL receiver to the transmitter. Consult the manual for further information on the transmitter’s jumpers and con- nections. CONTENTS 1. Introduction 1.1 TX FM Transmitter 1.2 Safety 1. Quick setups 1.4 Front And Rear Panels 1.5 Control And Monitor LCD 2. Installation And Setup 2.1 Frequency Setup 2.2 R.F. Power Setup 2. Alarms 2.4 RS22 Control & Monitoring 2.41 Windows remote control application 2.42 Terminal control of the transmitter 2.5 Modes Of Operation 2.51 A guide to the jumpers 2.52 Multiplex / Broadband Input 2.5 Stereo With Limiters 2.54 Stereo With Limiters Disabled 2.55 Mono From Two Channels 2.56 Mono From One Channel 2.6 Other Setup Considerations 3.
    [Show full text]
  • Free Tv Australia Operational Practice Op–71
    FREE TV AUSTRALIA OPERATIONAL PRACTICE OP–71 Recommended Settings of DVB-T Transmitter/Modulator’s Operating Parameters and Transport Stream SI for Use in Temporary Events or in TV distribution Systems Issue 1 December 2014 Page 1 of 14 1 SCOPE This Operational Practice provides advice and recommendations for the setting-up of commercial grade DVB-T transmitter/modulators for use in MATV distribution systems, or where permitted, a DVB-T terrestrial broadcast transmitter to be temporarily operated at low power at special events. Such units may include multiple program inputs, Standard and/or High Definition video MPEG-2 or MPEG-4 (H.264) encoding. The unit should also include a capacity to generate System Information signalling, multiplex (MUX) the various streams together and have a COFDM DVB-T modulator with an RF output. A simplified overview of the processes is included to give some understanding of the choices for setting modulation parameters and MPEG Transport Stream System Information so that an additional temporary transmission might operate compatibly in the presence of Australian free-to-air television signals and minimise RF interference or Service Information collisions with existing services. The digital formats and DVB-T transmission offers many operating choices. While such setup information is distributed in many standards documents, this Operational Practice aims to provide reasons for and best choice recommendations for use in Australian setups. At the rear of this document the reader will find the following summaries: Annex A – Summary of Recommended Settings. Annex B – Resulting bit-rate capacity for various modulator settings, Annex C – lists Australian RF Channel frequencies.
    [Show full text]
  • Dtv Implementation: a Case Study of Angola, Indiana
    DTV IMPLEMENTATION: A CASE STUDY OF ANGOLA, INDIANA Andrew Curtis Black A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS August 2014 Committee: Sandra Faulkner, Advisor Victoria Ekstrand Jim Foust Thomas Mascaro © 2014 Andrew Curtis Black All Rights Reserved iii ABSTRACT Sandra Faulkner, Advisor On June 12, 2011, the United States changed broadcast standards from analog to digital. This case study looked at Angola, Indiana, a rural community in Steuben County. The community saw a loss of television coverage after the transition. This study examined the literature that surrounded the digital television transition from the different stakeholders. Using as a framework law in action theory, the case study analyzed governmental documents, congressional hearings, and interviews with residents and broadcast professionals. It concluded that there was a lack of coverage, there is an underserved population, and there is a growing trend of consumers dropping cable and satellite service in the Angola area. iv Dedicated to Professor & Associate Dean Emeritus Arthur H. Black Dr. Jeffrey A. Black Coadyuvando El Presente, Formando El Porvenir v ACKNOWLEDGMENTS First and foremost, I would like to thank my family. To my parents whose endless love and support have surrounded my life. They believed, pushed, and provided for my success and loved, cared, and understood in my failures. I would like to thank my wife, Elizabeth, for putting up with me. The crazy hours, the extra jobs, the kitchen-less heat-less apartment, and all the sacrifices made so that I could pursue a dream.
    [Show full text]
  • Licensed Devices General Technical Requirements
    Licensed Devices General Technical Requirements (Detailed Update October 2005) Steven Dayhoff Federal Communications Commission Office of Engineering & Technology October, 2005 ¾TCB Workshop 1 Sessions for licensed devices intended to give an overview of FCC Processes & Rules, not to show limits for every type of device. The information covered is mainly related to equipment authorization of the transmitting equipment and not the licensing of the station. 1 Overview General Information How to find information at the FCC Creating a Grant Organizing a Report Licensed Device Checklist October, 2005 ¾TCB Workshop 2 This session will cover general information related to the FCC rules and technical requirements for licensed devices. Assumption is that everyone is familiar with testing equipment so test setup and equipment settings will not covered. The approval process for these types of equipment was previously called Type Acceptance or Notification. Now all methods of equipment approval are called Certification. This information generally applies to all Radio Service Rules for scopes B1 through B4. 2 General Information Understanding how FCC rules for licensed equipment are written and how FCC operates The FCC rules are Title 47 of the Code of Federal Regulations Part 2 of the FCC Rules covers general regulations & Filing procedures which apply to all other rule parts Technical standards for licensed equipment are found in the various radio service rule parts (e.g. Part 22, Part 24, Part 25, Part 80, and Part 90, etc.) All material covered in this training is either in these rules or based on these rules October, 2005 ¾TCB Workshop 3 There are about 15 different radio service rule Parts which require equipment to be authorized before an operators license can be obtained.
    [Show full text]
  • A Study of Future Spectrum Requirements for Terrestrial
    Technische Universität Braunschweig | Institut für Nachrichtentechnik Technische Universität Schleinitzstraße 22 | 38106 Braunschweig | Germany Braunschweig Institut für Nachrichtentechnik Schleinitzstraße 22 Federal Ministry of Economics and Technology 38106 Braunschweig Division I C 4 Germany Mr Baumeister Prof. Dr.-Ing. Thomas Kürner Prof. Dr.-Ing. Ulrich Reimers 53107 Bonn Tel. +49 (0) 531 391-2480 Fax +49 (0) 531 391-5192 [email protected] www.ifn.ing.tu-bs.de Date: 21 January 2013 A study of future spectrum requirements for terrestrial TV and mobile services and other radio applications in the 470-790 MHz frequency band, including an evaluation of the options for sharing frequency use from a number of socioeconomic and frequency technology perspectives, particularly in the 694-790 MHz frequency sub-band Final report Prof. Dr.-Ing. Thomas Kürner Prof. Dr.-Ing. Ulrich Reimers Dr.-Ing. Kin Lien Chee Dipl.-Ing. Thomas Jansen, M. Sc. Dipl.-Ing. Frieder Juretzek Dipl.-Ing. Peter Schlegel ii i On 27 August 2012, the Federal Ministry of Economics and Technology officially commissioned the Institut für Nachrichtentechnik (Institute for Communications Technology) at the Technische Universität Braunschweig with completing an expert study and analysis (Project code: 85/12) as titled above. This report presents the results of this study. Executive Summary During the World Radiocommunication Conference (WRC) in 2012, it was decided that one of the agenda items for WRC 2015 would focus on the possible future use of the frequency band 694 MHz to 790 MHz for mobile services. This expert report addresses this topic by initially analyzing the outlook for the terrestrial TV broadcasting that has occupied this frequency band to date.
    [Show full text]
  • Flexiva™ Compact Air-Cooled­ FM Analog/Digital Transmitter/ Exciter, Low Power ­- 50 W to 3.5 Kw
    Flexiva™ Compact Air -Cooled FM Analog/Digital Transmitter/ Exciter, Low Power - 50 W to 3.5 kW The Flexiva™ Compact air cooled FM solidstate transmitter family provides today’s broadcaster with a single transmission platform capable of analog and digital operation. Incorporating field proven GatesAir technology, Flexiva transmitters deliver worldclass performance, reliability and quality. Flexiva is designed for low- and high -power requirements, up to 80 kW, while utilizing the most compact design on the mar- ket today. Flexiva continues the legacy of the highly success- ful line of GatesAir FM transmitters and combines innovative, new quad -mode RF amplification and Product Features software-defined exciter technology to take FM transmission to the next Flexiva Compact FM Transmitter Family Fea- level. tures: ® Featuring PowerSmart technology, ■ Power levels up to 3850 W Analog FM, ■ Full remote control capability including: the Flexiva line offers unmatched 3100 W FM+HD ■ Web-based HTML GUI interface efficiency that makes it ideal for all Broadband, fequency agile design 87.5 FM applications. The 50 -volt LDMOS ■ ■ SNMP to 108 MHz requires no tuning or device technology delivers a dramat- Parallel control/monitoring adjustments ■ ic increase in power density, lower ■ Extensive Fault, Warning and operating costs and reduced cost of ■ Best- in- class power efficiency for Operational parameter logging ownership over the life of the trans- lowest operating costs mitter. ■ N+1, dual transmitter and main/ ■ Compact, space saving, 2, 3 or 4RU de- alternate; automatic switching sign As the digital transmission leader, capability GatesAir has developed a solid core ■ State -of-the- art, direct- to- carrier digi- ■ Optional Features competency backed by years of tal modulator ■ GPS receiver for SFN synchronization experience in the complex technical ■ Integrated stereo encoder areas that are essential for maximum ■ Orban Optimod™ 5500H multi-band ■ ITU -R BS412 peak program/multi- transmitter performance.
    [Show full text]
  • SOL7OBTX SOLO7 Outside Broadcast Transmitter
    SOL7OBTX SOLO7 Outside Broadcast Transmitter Overview: A compact and feature-rich COFDM digital video transmitter, specifically designed for high quality wireless link applications. With proven Domo COFDM and H.264 encoder technology at its core enabling High Definition images the small size and ultra low power consumption give maximum operational performance. Designed to offer maximum flexibility, the unit has a variety of video input options including composite, 3G-SDI and HDMI plus true balanced audio. The transmitter has an integrated control panel with sunlight- readable OLED display covering all major functions and has 16 user-defined presets. A wide range of swappable frequency bands are available from 200MHz to 8.9GHz. Integrated UHF band Camera Control is available as an option. Features and Benefits: Ultra-low latency High Profile H.264 SD and HD encoding Video formats up to 1080p60 and optional 4:2:2 Chroma sampling Industry standard DVB-T modulation for interoperability with existing systems Domo Broadcast UMVL modulation for enhanced high frequency / high speed performance Product Information: Controlled via USB or RS-232, and integrated sunlight- Product Includes readable OLED display CA0002 12V DC Power lead Lemo-wire 3m Designed for sports & events coverage, newsgathering CA0343 USB Control Cable and wireless studio camera applications CA0579 XLR Audio Input Cable Integrated camera control option with wide range of SA3688 OBTX Support USB Stick supported manufactures User swappable RF modules and battery plate options CCCAM Expansion Includes AP008822 1/4 Wave Antenna SMA 433MHz Very low power consumption for extended field performance: typically 10.0W CCCAM Expansion Requires Weighs between just 520g and 870g OBTX-CCCAM-ENABLE Enable Camera control RX upgrade OBTX-CCCAM-xUP At least one control Protocol and cable The information contained in this document is the property of Domo Tactical Communications (DTC) Ltd.
    [Show full text]
  • Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation
    ITU-R 2016 Internati onal Telecommunicati on Handbook on Digital Terrestrial Union Place des Nati ons 1211 Geneva 20 Television Broadcasti ng Networks and Switzerland Systems Implementati on ISBN: 978-92-61-23481-2 Editi on of 2016 9 7 8 9 2 6 1 2 3 4 8 1 2 Printed in Switzerland REGU IO LA D T A I R O Geneva, 2016 N U S T Photo credits: Shutt erstock I A 1 9 0 1 6 N 6 - 2 0 Y N R I V E R S A Handbook on Digital Terrestrial Television Broadcasti ng Networks and Systems Implementati on Implementati Systems and Networks ng Broadcasti Television Terrestrial Handbook on Digital Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation Edition of 2016 ITU-R Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation iii Editors’ Foreword In 2002, ITU published its first Handbook on digital terrestrial television under the title Digital terrestrial television broadcasting in the VHF/UHF bands1 as guidance to engineers responsible for the implementation of digital terrestrial television broadcasting (DTTB). In this Handbook, new digital broadcasting technologies were explained in detail, for example a splendid description of the Discrete Cosine Transform (DCT) coding that is the basis of all past and present TV compression systems, as well as a very instructive chapter on signal power summation. Most of that content are not repeated in this new Handbook on Digital Terrestrial Television Broadcasting Networks and Systems Implementation. Therefore, the version 1.01, which was published by ITU in the year 2002, has not lost value and should still be consulted.
    [Show full text]
  • Broadcast Without Boundaries
    Issue 2 – February 2013 Broadcast Catalogue Broadcast without Boundaries www.cobham.com/tcs R0002 Welcome to the Cobham Broadcast catalogue. Cobham draws on the company’s cutting edge technologies to develop mission-critical products for the broadcast market which provide real technical and operational benefits to newsgathering, live production and other high profile applications empowering users to broadcast without boundaries. Backed by more than 50 years’ valuable experience of transmitting and receiving information in difficult electronic environments in the military and surveillance market, Cobham’s Broadcast portfolio benefits from the ultra-high build quality and ruggedness these products require. Introduction Why choose Cobham? Contents Cobham’s technical ability and capacity to develop new products is well ahead of the market. Its total control HD/SD Products Broadcast Camera Control Solutions over encoding and modulation processes and use of PRORXB – Broadcast Receiver Decoder 04 Camera Control Solution 09 FPGAs, rather than fixed ASICs, gives it a unique ability SOLO ENG H.264 COFDM Transmitter 04 to quickly add new features, improve performance and SOLO H.264 SD/HD COFDM Transmitter 04 Accessories and Amplifiers address customers’ specific requirements. Messenger 2 Transmitter Enhanced 04 SOLO – 1W Vehicle Amplifier 09 Messenger 2 Decoder HD/SD AVC/H264 05 FCON – Field Controller 10 Cobham’s HD broadcast systems employ next-generation Messenger 2 Transmitter – Camera Mount 05 SOLAMP 500W Booster 10 low-delay H.264 encoding. The increased encoding Very Efficient Power Amplifier (VEPA 2W) 10 efficiency this gives enables users to transmit at reduced SD Products Very Efficient Power Amplifier (VEPA 10W) 10 bit-rates with no loss in quality.
    [Show full text]
  • RURAL BROADBAND MOBILE COMMUNICATIONS: SPECTRUM OCCUPANCY and PROPAGATION MODELING in WESTERN MONTANA Erin Wiles Montana Tech
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2017 RURAL BROADBAND MOBILE COMMUNICATIONS: SPECTRUM OCCUPANCY AND PROPAGATION MODELING IN WESTERN MONTANA Erin Wiles Montana Tech Follow this and additional works at: http://digitalcommons.mtech.edu/grad_rsch Part of the Electrical and Electronics Commons, Electromagnetics and Photonics Commons, and the Other Electrical and Computer Engineering Commons Recommended Citation Wiles, Erin, "RURAL BROADBAND MOBILE COMMUNICATIONS: SPECTRUM OCCUPANCY AND PROPAGATION MODELING IN WESTERN MONTANA" (2017). Graduate Theses & Non-Theses. 119. http://digitalcommons.mtech.edu/grad_rsch/119 This Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Graduate Theses & Non-Theses by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact [email protected]. RURAL BROADBAND MOBILE COMMUNICATIONS: SPECTRUM OCCUPANCY AND PROPAGATION MODELING IN WESTERN MONTANA by Erin Wiles A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science Electrical Engineering Montana Tech 2017 ii Abstract Fixed and mobile spectrum monitoring stations were implemented to study the spectrum range from 174 to 1000 MHz in rural and remote locations within the mountains of western Montana, USA. The measurements show that the majority of this spectrum range is underused and suitable for spectrum sharing. This work identifies available channels of 5-MHz bandwidth to test a remote mobile broadband network. Both TV broadcast stations and a cellular base station were modelled to test signal propagation and interference scenarios. Keywords: spectrum monitoring, propagation modeling, spectrum management, mobile communication, remote mobile broadband, spectrum occupancy iii Dedication This work is dedicated to those who work hard and never give up.
    [Show full text]
  • Linearity Vs. Efficiency in UHF (Digital) Broadcast Amplifiers
    Technical Article January 2012 | page 1 Linearity vs. Efficiency in UHF (Digital) Broadcast Amplifiers Overview and Brief History of UHF Broadcast Transmitter Systems Initially, only twelve original channels were allocated for television broadcasting. These were channels numbered 2 through 13, and they reside in the “very high frequency” or VHF band. The tremendous growth in television broadcasting quickly meant that 12 channels were not enough. In 1952, 70 additional channels were allocated in the UHF band. These were channels 14 through 83. Later (in the early 1980s), channels 70-83 were reallocated to become the cellular telephone frequencies, as specified for use in new mobile communication services. As of 2009, due to rapid growth of portable communication services, channels 52 through 69 have been permanently reallocated to uses other than TV broadcasting (. The UHF band has not lost 18 TV channels; however, these TV channels have been incorporated into the new high definition television (HDTV) broadcasting standard. HDTV can broadcast up to six digital channels in the same space as one analog channel. This is done using advanced digital broadcast technology. Using advanced digital modulation schemes, TV stations are now able to broadcast a picture quality at least twice as sharp as previous analog broadcasts. Digital broadcasting has also allowed for reduced adjacent channel spacing without creating additional interference between any two channels, making the broadcasting spectrum much more efficient. From a frequency spectrum perspective, today’s RF engineer designing UHF broadcast amplifiers can say that the “global UHF broadcast band” includes those frequencies from 470 - 862 MHz. Linearity vs.
    [Show full text]