Climate Change and Invasive Species – a Review of Interactions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sub-Antarctic Islands – Sentinels of Change
SCAR OPEN SCIENCE CONFERENCE 2020 SESSION 29 SUB-ANTARCTIC ISLANDS – SENTINELS OF CHANGE Christel Hansen Craig Cary, Justine Shaw, Mia Wege ABSTRACTS SUBMITTED TO THE (CANCELLED) SCAR 2020 OSC IN HOBART 1726 Ecological consequences of a single introduced species to the Antarctic: the invasive midge Eretmoptera murphyi on Signy Island Jesamine C Bartlett1, Pete Convey1, Kevin K Newsham1, Kevin A Hughes1, Scott AL Hayward1 1Norwegian Institute For Nature Research, Trondheim, Norway The nutrient-poor soils of Antarctica are sensitive to change. Ongoing increase in anthropogenically assisted non-native species introductions means that understanding the impact of such species on these soil systems is urgent, and essential for developing future risk assessments and management actions. Through comparative baseline characterisation of vegetation, microbes, soil biochemistry, substrate composition and micro-arthropod abundance, this study explores the impacts that have resulted from the 1960s introduction of the invasive chironomid midge Eretmoptera murphyi to Signy Island in maritime Antarctica. The key finding is that where E. murphyi occurs there has been an increase in inorganic nitrogen availability within the nutrient-poor soils. Concentration of available nitrate is increased three- to five-fold relative to uncolonised soils, and that the soil ecosystem may be impacted through changes in the C:N ratio which can influence decomposition rates and the mircoarthropod community. We also measured the levels of inorganic nitrogen in soils influenced by native marine vertebrate aggregations and found the increase in nitrate availability associated with E. murphyi to be similar to that from seals. We suggest that these changes will only have greater impacts over time, potentially benefitting currently limited vascular plant populations and altering plant and invertebrate communities. -
Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 by Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane
ARCHIVE: Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 By Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane The date of the cyclone refers to the day of landfall or the day of the major impact if it is not a cyclone making landfall from the Coral Sea. The first number after the date is the Southern Oscillation Index (SOI) for that month followed by the three month running mean of the SOI centred on that month. This is followed by information on the equatorial eastern Pacific sea surface temperatures where: W means a warm episode i.e. sea surface temperature (SST) was above normal; C means a cool episode and Av means average SST Date Impact January 1858 From the Sydney Morning Herald 26/2/1866: an article featuring a cruise inside the Barrier Reef describes an expedition’s stay at Green Island near Cairns. “The wind throughout our stay was principally from the south-east, but in January we had two or three hard blows from the N to NW with rain; one gale uprooted some of the trees and wrung the heads off others. The sea also rose one night very high, nearly covering the island, leaving but a small spot of about twenty feet square free of water.” Middle to late Feb A tropical cyclone (TC) brought damaging winds and seas to region between Rockhampton and 1863 Hervey Bay. Houses unroofed in several centres with many trees blown down. Ketch driven onto rocks near Rockhampton. Severe erosion along shores of Hervey Bay with 10 metres lost to sea along a 32 km stretch of the coast. -
6. Annual Review and Significant Events
6. Annual Review and Significant Events January-April: wet in the tropics and WA, very hot in central to eastern Australia For northern Australia, the tropical wet season (October 2005 – April 2006) was the fifth wettest on record, with an average of 674 mm falling over the period. The monsoon trough was somewhat late in arriving over the Top End (mid-January as opposed to the average of late December), but once it had become established, widespread heavy rain featured for the next four months, except over the NT and Queensland in February. One particularly noteworthy event occurred towards the end of January when an intense low (central pressure near 990 hPa) on the monsoon trough, drifted slowly westward across the central NT generating large quantities of rain. A two-day deluge of 482 mm fell at Supplejack in the Tanami Desert (NT), resulting in major flooding over the Victoria River catchment. A large part of the central NT had its wettest January on record. Widespread areas of above average rain in WA were mainly due to the passages of several decaying tropical cyclones, and to a lesser extent southward incursions of tropical moisture interacting with mid-latitude systems. Severe tropical cyclone Clare crossed the Pilbara coast on 9t h January and then moved on a southerly track across the western fringes of WA as a rain depression. Significant flooding occurred around Lake Grace where 226 mm of rain fell in a 24-hour period from 12 t h to 13 t h January. Tropical cyclone Emma crossed the Pilbara coast on 28 th February and moved on a southerly track; very heavy rain fell in the headwaters of the Murchison River on 1s t March causing this river’s highest flood on record. -
Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts
Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts Issued: 15th May 2006 by Professor Mark Saunders and Dr Adam Lea Benfield Hazard Research Centre, UCL (University College London), UK. Summary ¢¡¤£¦¥¨§¨§¨© £¨¨ £¨£¨ ¨£"!$#%¨&('(¨)¨'*+%,¨-'(.¨&/%¨01¨.%'23'(%546¨7+£¨ ¤£¨ ¨£8!$#%¨&('(¨9&*¨¤7:¨&(&*'( ;¨.%'23'*%54=<3 ¢¡¤'*>.¨¤%¨%?@'(%¡9%¡£A:B¨#A-,£C3'(¨#/!$#%¨&('(¨ %,¨-¤'*.¨&%¨0D£¨¨E@¡'(.¡F¨&(&3¡¤¨7F)£&(,@£¨ ¨£"¨.%'23'(%54¨<G ¢¡£" ¢HIJ%£,.'(&(£K-,¨)¤¨)'(&*'(%54 :B¨,£.¨%¦:L¨M%¡¤£¥¨§¨§¨© N £¨¨O¡,@£7P£Q¨.£&*&(£%$R¤'*&(&(ST-,£7'(.%'( :,¨0VUW 4X¥¨§¨§¨©+%¡¨% !K#%¨&('*¨ )¨'( ¨7 &(¨7¤:¨&*&('( Y¨.%'Z3'(%54Y[¨#&(7 )£\.&*¨£\%Y£¨ ¨£<X ¢¡¤£] ¢H¤I 7¤£%£0^'*¤'*%'*.¦:B¨,£.¨%A¡,@£76 ¨¨¨76R¤'*&(&_:B¨;)¤¨'(`¨.%'23'(%54a¨76:B¨¦&*¨¤7:¨&(&*'( M%,¨-'(.¨& %¨0b¤#0^)£_:,¨0bUc 4d¥¨§¨§¨©¨< egf3hejilk m3n(opqsr=t k iu1vKn(wyxOze{r|vK}$ok ~3wk it nZ¨u1m¨ilhwh~¨tNw@pFwy¨u[upiOk¨st(f3h¨¨¨ ^"3wyt(ilpq(n*p~3 ilh,¨n(k ~;t*ilk m3n(opqwtNk iyuwhpwk ~9p~3¦p8gpq(n(¨pt n(k ~k¨t(f3hniwhpwk ~3pqm¨ilk 3p3n(q*n(wyt n(oAp~3¦¨ht hiunZ~3n(wyt n*o k ilhopwyt w>k i?t(f3n(w>potNn 3nZt*¨¤egf3hwh$k ilhopwyt w{@hilh$n*wwy3hKuk ~¨t(f3qZ95ilk ut*f3h$ t(f¦Wp9¨¨¨ "tNk"t*f3h t(f@hohu[3hi8¨¨¨ p~3nZ~3oqZ3¨hKwhm3pilptNhTm¨ilh¨n(otNn(k ~3wsk i{~¨¨u3hilwsk¨¤t*ilk m3n(opqwyt k iuw~¨¨u[3hilw k¨¢wh¤hilh t(ilk m3n(opq¡oC3oq(k ~3hw"p~3¢t(f3h A£E¤¥z5@oo¨u3q(ptNh^£E3oq*k ~3h¦¤¡~3hi 3}snZ~3¨h§3egf3h[q*pt(tNhiKn(w ¨n ¤h~dk i¨t*f3h/"f3k¨q(h/"3wyt(ilpq*n(p~35ilh ¨n(k ~3 Features of the 2005/6 Australian-Region Season • The 2005/6 Australian-region tropical storm season featured 11 storms of which 7 made severe tropical cyclone strength (U.S. -
In the Aftermath of Cyclone Yasi: AIR Damage Survey Observations
AIRCURRENTS By IN THE AFTERMATH OF CYCLONE YaSI: AIR DAMAGE SURVEY OBSERVATIONS EDITOR’S NOTE: In the days following Yasi’s landfall, AIR’s post-disaster survey team visited areas in Queensland affected by the storm. This article 03.2011 presents their findings. By Dr. Kyle Butler and Dr. Vineet Jain Edited by Virginia Foley INTRODUCTION Severe Cyclone Yasi began as a westward-moving depression In addition to the intense winds, Yasi brought 200-300 off Fiji that rapidly developed into a tropical storm before millimeters of precipitation in a 24 hour period and a storm dawn on January 30, 2011. Hours later, Yasi blew across the surge as high as five meters near Mission Beach. northern islands of Vanuatu, continuing to grow in intensity and size and prompting the evacuation of more than 30,000 residents in Queensland, Australia. By February 2 (local time), the storm had achieved Category 5 status on the Australian cyclone scale (a strong Category 4 on the Saffir-Simpson scale). At its greatest extent, the storm spanned 650 kilometers. By the next day, it became clear that Yasi would spare central Queensland, which had been devastated by heavy flooding in December. But there was little else in the way of good news. Yasi made landfall on the northeast coast of Queensland on February 3 between Innisfail and Cardwell with recorded gusts of 185 km/h. Satellite-derived sustained Figure 1. Satellite-derived 10-minute sustained wind speeds in knots just after wind speeds of 200 km/h were estimated near the center Cyclone Yasi made landfall. -
Tanami Desert 1
Tanami Desert 1 Tanami Desert 1 (TAN1 – Tanami 1 subregion) GORDON GRAHAM SEPTEMBER 2001 Subregional description and The Continental Stress Class for TAN1 is 5. biodiversity values Known special values in relation to landscape, ecosystem, species and genetic values Description and area There are no known special values within TAN1. Mainly red Quaternary sandplains overlying Permian and Proterozoic strata that are exposed locally as hills and Existing subregional or bioregional plans and/or ranges. The sandplains support mixed shrub steppes of systematic reviews of biodiversity and threats Hakea spp., desert bloodwoods, Acacia spp. and Grevillea spp. over soft spinifex (Triodia pungens) hummock The CTRC report in 1974 (System 7) formed the basis grasslands. Wattle scrub over soft spinifex (T. pungens) of the Department’s publication “Nature Conservation hummock grass communities occur on the ranges. Reserves in the Kimberley” (Burbidge et al. 1991) which Alluvial and lacustrine calcareous deposits occur has itself been incorporated in a Departmental Draft throughout. In the north they are associated with Sturt Regional Management Plan (Portlock et al. 2001). These Creek drainage, and support ribbon grass (Chrysopogon reports were focused on non-production lands and those spp.) and Flinders grass (Iseilema spp.) short-grasslands areas not likely to be prospective for minerals. Action often as savannas with river red gum. The climate is arid statements and strategies in the draft regional tropical with summer rain. Subregional area is 3, 214, management plan do not go to the scale of subregion or 599ha. even bioregion. Dominant land use Apart from specific survey work there has been no systematic review of biodiversity but it is apparent that The dominant land use is (xi) UCL and Crown reserves there are on-going changes to the status of fauna (see Appendix B, key b). -
PRINCESS PARROT Polytelis Alexandrae
Threatened Species of the Northern Territory PRINCESS PARROT Polytelis alexandrae Conservation status Australia: Vulnerable Northern Territory: Vulnerable Princess parrot. ( Kay Kes Description Conservation reserves where reported: The princess parrot is a very distinctive bird The princess parrot is not resident in any which is slim in build, beautifully plumaged conservation reserve in the Northern and has a very long, tapering tail. It is a Territory but it has been observed regularly in medium-sized parrot with total length of 40- and adjacent to Uluru Kata Tjuta National 45 cm and body mass of 90-120 g. The basic Park, and there is at least one record from colour is dull olive-green; paler on the West MacDonnell National Park. underparts. It has a red bill, blue-grey crown, pink chin, throat and foreneck, prominent yellow-green shoulder patches, bluish rump and back, and blue-green uppertail. Distribution This species has a patchy and irregular distribution in arid Australia. In the Northern Territory, it occurs in the southern section of the Tanami Desert south to Angas Downs and Yulara and east to Alice Springs. The exact distribution within this range is not well understood and it is unclear whether the species is resident in the Northern Territory. Few locations exist in the Northern Territory where the species is regularly seen, and even Known locations of the princess parrot. then there may be long intervals (up to 20 years) between records. Most records from = pre 1970; • = post 1970. the MacDonnell Ranges bioregion are during dry periods. For more information visit www.denr.nt.gov.au Ecology • extreme fluctuations in number of mature individuals. -
Lessons Learned from Cyclones in Northern Australia
Lessons Learned from Cyclones in Northern Australia SEPTEMBER 2013 RIRDC Publication No. 13/071 Lessons Learned from Cyclones in Northern Australia By Rhonda Sorensen September 2013 RIRDC Publication No. 13/071 RIRDC Project No. PRJ-008498 © 2013 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-564-6 ISSN 1440-6845 Lessons Learned from Cyclones in Northern Australia Publication No. 13/071 Project No. PRJ-008498 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. -
Circulation and Suspended Sediment Transport in a Coral
Marine Pollution Bulletin Archimer 2010, Volume 61, Issues 7-12, Pages 269-296 http://archimer.ifremer.fr http://dx.doi.org/10.1016/j.marpolbul.2010.06.023 © 2010 Elsevier Ltd All rights reserved. ailable on the publisher Web site Circulation and suspended sediment transport in a coral reef lagoon: The south-west lagoon of New Caledonia S. Ouillona,b,*, P. Douilletc, J.P. Lefebvrec, R. Le Gendred, A. Jouone, P. Bonnetone, J.M. Fernandezd, C. Chevillond, O. Magandf, J. Lefèvred, P. Le Hirg, R. Laganierh, F. Dumasg, P. Marchesielloa,d, A. Bel Madanii, S. Andréfouëtd, J.Y. Panchéd, R. Fichezc a Université de Toulouse, UPS (OMP-PCA), LEGOS, 14 av. Edouard Belin, Toulouse F-31400, France b IRD, LEGOS, 14 av. Edouard Belin, Toulouse F-31400, France c IRD, UAM, Dpt Hidrobio – DIV de Ciencas Bio y Salud, AV. San Rafael Atlixco 186 – Col. Vicentina 09340, Mexico DF, Mexico blisher-authenticated version is av d IRD Nouméa, BP A5, 98848 Nouméa cedex, New Caledonia e Université de Bordeaux, CNRS, UMR 5805, Bordeaux F-33000, France f LGGE, CNRS, Université Joseph Fourier, 54 rue Molière, Saint Martin d’Hères cedex F-38402, France g DYNECO/PHYSED, Ifremer, BP 70, Plouzané F-29280, France h Université Paris Diderot – Paris 7, Case 7001, 75205 Paris cedex 13, France i IRD, IMARPE/CIMOBP, Instituto del Mar del Perù, Esquina de Gamarra y General Valle S/N Chucuito, Callao, Peru *: Corresponding author : S. Ouillon, Tel.: +33 5 61 33 29 02, email address : [email protected] Abstract: The south-west lagoon of New Caledonia is a wide semi-open coral reef lagoon bounded by an intertidal barrier reef and bisected by numerous deep inlets. -
Aborigines and the Administration of Social Welfate in Central Australia
j8 BURNJNG MT. KETLY: ABORIGTNËS AND']]IIII AD}IINISTRATÏON OF SOCTAL b]ETù-ARE TN CET'ITRAI, AUST'R.ALTA JEFFREY REf D COLLMANN, B '4. M"A. (ECON" ) Department of AnthropologY The UniversitY of Adelaide 23rd I'lay, L979 J- TABLB OF CONTENTS Tit1e page Tabl-e of Contents t Brief Summary l-t Disclaimer ].V Acknov¡Led.gements V Introduction I Chapter I The Policy of "Self-d.etermination" ancl the Fraqmentation of Aboriginal A<lministratjon i,n Cent-ral Austral-ia L4 Chapter 2 Racial Tensic¡n ancl the Politics of Detriba lization 46 Chapter 3 Frirrge-camps and the Development of Abori.ginaI Adrnj-njstr:ation in Central Aust-ralia oa Chapter 4 lr]c¡men, Childrett, and the Siqni.ficance of the Domestic Group to Ur:l¡arr Aborigines in Central Australi a 127 Chap-Ler 5 Men, Vüork, and the Significance of the Cattle Industry to Urban Fr-inge-Cwel-lers in Central Australia l5:6 Chapter 6 Food, Liquor, and Domestic Credit: A Theory of Drinking among Fringe-dwellers i.n Central Austra l.ia I86 Chapter 7 Violenc,e, Debt and the Negotiat-íon cf Exchatrge 21.r Chapter 8 Conclusirln 256 Appendix J. The Strr¡et-,ure alrd Development of the Centl:a1 Ar:stral-ian Cattle Industry 286 Apper-iCix IT l'lork Careers of Mt" Kelly Aclul.ts 307 Bibliography 308 t1 BRIEF SUMMARY This thesis i.s a general analysis of the structure of social relatícnships between Aborigines and whites in Central Australia. Of particular importance .t. tfr. -
The Impacts of Non- Native Species on the Invertebrates of Southern Ocean Islands
Houghton, M., Terauds, A., Merritt, D., Driessen, M., Shaw, J. (2019). The impacts of non- native species on the invertebrates of Southern Ocean Islands. Journal of Insect Conservation Vol. 23, 435–452. The final publication is available at Springer via https://doi.org/10.1007/s10841-019-00147- 9 THE IMPACTS OF NON-NATIVE SPECIES ON THE INVERTEBRATES OF SOUTHERN OCEAN ISLANDS Melissa Houghton, Aleks Terauds, David Merritt, Michael Driessen & Justine Shaw. ABSTRACT Isolation and climate have protected Southern Ocean Islands from non-native species. Relatively recent introductions have had wide-ranging, sometimes devastating, impacts across a range of species and ecosystems, including invertebrates, which are the main terrestrial fauna. In our comprehensive review, we found that despite the high abundance of non-native plants across the region, their impacts on native invertebrates are not well-studied and remain largely unknown. We highlight that non-native invertebrates are numerous and continue to arrive. Their impacts are multi-directional, including changing nutrient cycling regimes, establishing new functional guilds, out-competing native species, and mutually assisting spread of other non-native species. Non-native herbivorous and omnivorous vertebrates have caused declines in invertebrate habitat, but data that quantifies implications for invertebrates are rare. Predatory mammals not only indirectly effect invertebrates through predation of ecosystem engineers such as seabirds, but also directly shape community assemblages through invertebrate diet preferences and size-selective feeding. We found that research bias is not only skewed towards investigating impacts of mice, but is also focused more intensely on some islands, such as Marion Island, and towards some taxa, such as beetles and moths. -
Topics Geo Natural Catastrophes 2008 Analyses, Assessments, Positions
Knowledge series Topics Geo Natural catastrophes 2008 Analyses, assessments, positions Australasia/Oceania version Contents 2 In focus 5 Hurricane Ike – The most expensive hurricane of the 2008 season 13 North Atlantic hurricane activity in 2008 14 Catastrophe portraits 17 January: Winter damage in China 20 May: Cyclone Nargis, Myanmar 22 May: Earthquake in Sichuan, China 24 May/June: Storm series Hilal, Germany 28 Climate and climate change >>> Topics Geo Australasia/Oceania version 31 Data, facts, background 34 NatCatSERVICE 35 The year in figures 36 Pictures of the year Cover: 38 Great natural catastrophes 1950–2008 The picture on the cover shows the city of Galveston on the coast of Texas on 40 Geo news 9 September 2008 before Hurricane Ike made landfall. 40 Current corporate partnerships Inside front cover: 41 Globe of Natural Hazards This photo was taken on 15 September 2008 after Hurricane Ike had passed through. Apart from a few exceptions, the entire section of coast was razed to the ground. Geo Risks Research think tank Environment and market conditions are changing at breathtak- ing speed. Demand for new coverage concepts for complex risks is constantly increasing. This calls for experience and steady further development of our specialist knowledge. In addition, we are continually networking with external partners in economics and research and entering into business-related cooperative relationships with leading experts. In this issue of Topics Geo we introduce you to some of our cur- rent scientific partnerships. Our intent is to pursue research into new and emerging areas of risk, to make them manageable and thus expand the frontiers of insurability.