Vanadium Dioxide Phase Transition Modeling and Bias Control for Photodetection
Total Page:16
File Type:pdf, Size:1020Kb
VANADIUM DIOXIDE PHASE TRANSITION MODELING AND BIAS CONTROL FOR PHOTODETECTION by Zhongnan Qu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science The Edward S. Rogers Sr. Department of Electrical & Computer Engineering University of Toronto © Copyright by Zhongnan Qu 2020 Abstract Vanadium Dioxide Phase Transition Modeling and Bias Control for Photodetection Zhongnan Qu Master of Applied Science The Edward S. Rogers Sr. Department of Electrical & Computer Engineering University of Toronto 2020 Vanadium dioxide (VO2) is a transition material that demonstrates phase transitions between the insulator and metallic states when under thermal, electrical or optical stimuli. It is a promising material for novel devices, for instance, switches, volatile memory, oscillatory neural network units, and photodetectors. Despite being a long-standing interest in the field of condensed matter physics, the numerous observed properties of VO2 remain insufficiently explained, which impedes the progress of its utilization for electronic devices. This thesis develops theoretical explanations and corresponding analytical and numerical models that fit our fabricated VO2 devices. This thesis also investigates the feasibility of utilizing VO2 as photodetectors and develops a bias control circuit with low-cost off-the-shelf circuit components, enabling repeated operations despite the hysteresis effect, demonstrated the potential of VO2 to be integrated with existing electronics. ii Acknowledgments I thank my supervisor, Prof. Joyce Poon for granting me this opportunity as well as providing me the support and environment to conduct this research. Her guidance and encouragement throughout my master’s study have allowed it to be an enriching and fruitful experience. I thank Junho Jeong and Dr. Youngho Jung for their device design and fabrication, on top of which this thesis is built entirely. I also thank their experimental setup design and construction, academic support, and guidance. I thank our collaborators at Max Planck Institute of Microstructure Physics, Dr. Bin Cui and Prof. Stuart Parkin, for providing deposited material and analytical insights from the perspective of material science and physics. I thank Chaoxin Ding for his help on device measurements and theoretical discussions, and I thank Ankita Khanda for her inception of the circuit design. I thank Prof. Edward Sargent, Prof. J. Stewart Aitchison and Prof. David Lie for being on my thesis defense committee. I also thank Prof. Edward Sargent and Prof. Nazir Kherani for being on my thesis proposal presentation committee. Lastly, I thank my colleagues in Prof. Joyce Poon’s research group for research and administrative guidance, support, and companionship. iii Table of Contents Abstract ii Acknowledgements iii Table of Contents iv List of Tables vi List of Figures vii List of Abbreviations ix 1 Introduction .................................................................................................................................... 1 1.1 Motivation: A New Type of Transition-edge Photodetector ...................................................... 1 1.2 Background .............................................................................................................................. 4 1.2.1 Observed VO2 Phase Transition and Oscillation ............................................................... 4 1.2.2 Phase Transition Mechanism ............................................................................................ 5 1.2.3 VO2 Photodetector Operation and Limitation .................................................................... 9 1.3 Thesis Objectives and Organizations ...................................................................................... 11 2 VO2 Device, Experiment Setup and Properties .............................................................................. 12 2.1 VO2 Microwire Device ....................................................................................................... 12 2.2 Experimental Setup ............................................................................................................ 14 2.3 VO2 Electrical and Optical Properties ................................................................................. 15 3 VO2 Modeling .............................................................................................................................. 24 3.1 Analytical Model ................................................................................................................... 24 3.1.1 Modeling Method ........................................................................................................... 24 3.1.2 Uncertain Parameters ...................................................................................................... 27 3.1.3 Parameter Optimization .................................................................................................. 31 3.1.4 Results ........................................................................................................................... 32 3.2 Circuit Equivalent Model ....................................................................................................... 37 3.2.1 Modeling Method ........................................................................................................... 38 3.2.2 Fitting Parameters........................................................................................................... 40 3.2.3 Results ........................................................................................................................... 42 3.3 Grain Network Model ............................................................................................................ 45 3.3.1 Modeling Method ........................................................................................................... 45 iv 3.3.2 Results ........................................................................................................................... 49 3.4 Further Discussions ................................................................................................................ 53 4 Bias Control Circuit ...................................................................................................................... 56 4.1 Design Metrics ....................................................................................................................... 56 4.2 Circuit Design ........................................................................................................................ 58 4.3 Characterization ..................................................................................................................... 63 5 Conclusion and Future Work......................................................................................................... 65 5.1 Conclusion ............................................................................................................................. 65 5.2 Future Work ........................................................................................................................... 66 Appendix A 68 Appendix B 69 Appendix C 71 Bibliography 78 v List of Tables Table 2.1: Dimensions of the central VO2 wires vs column number. Greyed out columns do not have functioning wires after etching. .............................................................................................................. 14 Table 2.2: Ic1 mean and standard deviation, devices with different dimensions ..................................... 18 vi List of Figures Figure 1.1: MSM photodetector, extracted from [1]. ............................................................................... 2 Figure 1.2: PIN photodiode ..................................................................................................................... 2 Figure 1.3: Supercurrent-assisted hotspot formation in a superconducting strip, extracted from [3]. Arrows are the direction of the supercurrent. Sub-figures a,b,c,d illustrate the sequence of incident photon creating a hotspot of non-superconducting state and blocks supercurrent. ................................................. 3 Figure 1.4: (a) Typical VO2 thermally triggered phase transition, extracted from [13], with different phases of the material indicated. (b) Voltage triggered phase transitions. “ramp up” curve shows the insulator-to-metal transition triggered by ramping up the voltage from low to high, and “ramp down” curve shows the metal-to-insulator transition triggered by ramping down the voltage from high to low. From measurements of our devices. (c) Current triggered phase transitions (d) Optically triggered phase transition with current bias, laser on/off time = 20s .................................................................................. 5 Figure 1.5: Energy – momentum curve of materials when (a) atoms are equally spaced (b) atoms are displaced (dimerized). Extracted from [16] .............................................................................................. 6 Figure 1.6: VO2 lattice structures under (a) Tetragonal rutile metal R phase (b) monoclinic insulating M1 phase. Extracted from [18] ....................................................................................................................... 7 Figure 1.7: Repeated photodetection limited by hysteresis, current biased ............................................