Placebo Response in Antipsychotic Clinical Trials a Meta-Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HIGHLIGHTS of PRESCRIBING INFORMATION These Highlights Do
HIGHLIGHTS OF PRESCRIBING INFORMATION • Metabolic Changes: Atypical antipsychotic drugs have been associated with These highlights do not include all the information needed to use metabolic changes that may increase cardiovascular/cerebrovascular risk. CLOZARIL safely and effectively. See full prescribing information for These metabolic changes include: CLOZARIL. o Hyperglycemia and Diabetes Mellitus: Monitor for symptoms of CLOZARIL® (clozapine) tablets, for oral use hyperglycemia including polydipsia, polyuria, polyphagia, and Initial U.S. Approval: 1989 weakness. Monitor glucose regularly in patients with diabetes or at risk for diabetes. (5.9) WARNING: SEVERE NEUTROPENIA; ORTHOSTATIC o Dyslipidemia: Undesirable alterations in lipids have occurred in HYPOTENSION, BRADYCARDIA, AND SYNCOPE; SEIZURE; patients treated with atypical antipsychotics. (5.9) MYOCARDITIS AND CARDIOMYOPATHY; INCREASED o Weight Gain: Significant weight gain has occurred. Monitor weight MORTALITY IN ELDERLY PATIENTS WITH DEMENTIA- gain. (5.9) RELATED PSYCHOSIS • Neuroleptic Malignant Syndrome (NMS): Immediately discontinue and See full prescribing information for complete boxed warning. monitor closely. Assess for co-morbid conditions. (5.10) • Fever: Evaluate for infection and for neutropenia, NMS. (5.11) • Pulmonary Embolism (PE): Consider PE if respiratory distress, chest pain, • Severe Neutropenia: CLOZARIL can cause severe neutropenia, which or deep-vein thrombosis occur. (5.12) can lead to serious and fatal infections. Patients initiating and • Anticholinergic Toxicity: Use cautiously in presence of specific conditions continuing treatment with CLOZARIL must have a baseline blood (e.g., narrow angle glaucoma, use of anticholinergic drugs). (5.13) absolute neutrophil count (ANC) measured before treatment initiation • Interference with Cognitive and Motor Performance: Advise caution when and regular ANC monitoring during treatment (2.1, 5.1). -
2D6 Substrates 2D6 Inhibitors 2D6 Inducers
Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride -
Current Biological Treatments of Schizophrenia
Schizophrenia Block Adapted from the American Society for Clinical Psychopharmacology Model Curriculum * Learning Objectives • Identify major target symptoms of schizophrenia treatment • Become familiar with conventional & atypical antipsychotic medications • Recognize major side effects of antipsychotic medications • Recognize unique features of clozapine & depot antipsychotics Outline • Background about Schizophrenia • Dopamine Hypothesis • Dopamine Pathways • Efficacy of Anti-psychotics • Treats agitation • Prevents relapse • Compliance, Medication dose & relapse • Overview of an Antipsychotic Medication Trial • Different Anti-psychotic medications • Side effects of the Anti-psychotics • Common-EPS, TD, anti-cholinergic, metabolic syndrome, • Rare but serious-NMS • Antipsychotic selection and treatment strategies algorithm Dopamine Hypothesis of Schizophrenia Dopamine Hypothesis • Psychotic symptoms can be induced by dopamine agonists* • cocaine, amphetamines cause psychosis • All anti-psychotics are dopamine antagonists • Normal subjects-10% dopamine receptors occupied at baseline** • Schizophrenic subjects-20% dopamine receptors occupied at baseline** **Laruelle M, Quart J Nuc Med 1998;42:211 * Major Dopamine Pathways 1. Nigrostriatal tract- (extrapyramidal pathway) substantia nigra to caudate nucleus & putamen of the basal ganglia 2. Mesolimbic tract - midbrain tegmentum to nucleus accumbens & adjacent limbic structures 3. Mesocortical tract - midbrain tegmentum to anterior cortical areas 4. Tuberoinfundibular tract - arcuate & -
Appendix 13C: Clinical Evidence Study Characteristics Tables
APPENDIX 13C: CLINICAL EVIDENCE STUDY CHARACTERISTICS TABLES: PHARMACOLOGICAL INTERVENTIONS Abbreviations ............................................................................................................ 3 APPENDIX 13C (I): INCLUDED STUDIES FOR INITIAL TREATMENT WITH ANTIPSYCHOTIC MEDICATION .................................. 4 ARANGO2009 .................................................................................................................................. 4 BERGER2008 .................................................................................................................................... 6 LIEBERMAN2003 ............................................................................................................................ 8 MCEVOY2007 ................................................................................................................................ 10 ROBINSON2006 ............................................................................................................................. 12 SCHOOLER2005 ............................................................................................................................ 14 SIKICH2008 .................................................................................................................................... 16 SWADI2010..................................................................................................................................... 19 VANBRUGGEN2003 .................................................................................................................... -
The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone -
Antipsychotics (Part-4) FLUOROBUTYROPHENONES
Antipsychotics (Part-4) FLUOROBUTYROPHENONES The fluorobutyrophenones belong to a much-studied class of compounds, with many compounds possessing high antipsychotic activity. They were obtained by structure variation of the analgesic drug meperidine by substitution of the N-methyl by butyrophenone moiety to produce the butyrophenone analogue which has similar activity as chlorpromazine. COOC2H5 N H3C Meperidine COOC2H5 N O Butyrophenone analog The structural requirements for antipsychotic activity in the group are well worked out. General features are expressed in the following structure. F AR Y O N • Optimal activity is seen when with an aromatic with p-fluoro substituent • When CO is attached with p-fluoroaryl gives optimal activity is seen, although other groups, C(H)OH and aryl, also give good activity. • When 3 carbons distance separates the CO from cyclic N gives optimal activity. • The aliphatic amino nitrogen is required, and highest activity is seen when it is incorporated into a cyclic form. • AR is an aromatic ring and is needed. It should be attached directly to the 4-position or occasionally separated from it by one intervening atom. • The Y group can vary and assist activity. An example is the hydroxyl group of haloperidol. The empirical SARs suggest that the 4-aryl piperidino moiety is superimposable on the 2-- phenylethylamino moiety of dopamine and, accordingly, could promote affinity for D2 receptors. The long N-alkyl substituent could help promote affinity and produce antagonistic activity. Some members of the class are extremely potent antipsychotic agents and D2 receptor antagonists. The EPS are extremely marked in some members of this class, which may, in part, be due to a potent DA block in the striatum and almost no compensatory striatal anticholinergic block. -
Drug Repurposing for the Management of Depression: Where Do We Stand Currently?
life Review Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Hosna Mohammad Sadeghi 1,†, Ida Adeli 1,† , Taraneh Mousavi 1,2, Marzieh Daniali 1,2, Shekoufeh Nikfar 3,4,5 and Mohammad Abdollahi 1,2,* 1 Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] (H.M.S.); [email protected] (I.A.); [email protected] (T.M.); [email protected] (M.D.) 2 Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran 3 Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] 4 Pharmaceutical Sciences Research Center (PSRC) and the Pharmaceutical Management and Economics Research Center (PMERC), Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran 5 Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran * Correspondence: [email protected] † Equally contributed as first authors. Citation: Mohammad Sadeghi, H.; Abstract: A slow rate of new drug discovery and higher costs of new drug development attracted Adeli, I.; Mousavi, T.; Daniali, M.; the attention of scientists and physicians for the repurposing and repositioning of old medications. Nikfar, S.; Abdollahi, M. Drug Experimental studies and off-label use of drugs have helped drive data for further studies of ap- Repurposing for the Management of proving these medications. -
Psychotropic Medications Judicial Reference Guide
PSYCHOTROPIC MEDICATIONS JUDICIAL REFERENCE GUIDE (Revised Edition 7/15/10) PSYCHOTROPIC MEDICATIONS JUDICIAL REFERENCE GUIDE FIRST EDITION THE STEERING COMMITTEE ON FAMILIES AND CHILDREN IN THE COURT Distributed by Florida Supreme Court 500 South Duval Street Tallahassee, FL 32399-1900 (850) 488-0125 INTRODUCTION One of the toughest challenges facing our dependency courts is the mental health of our children. “In July 2003, the Florida Statewide Advocacy Council published a Red Item Report finding 55% of foster children…in the state of Florida had been put on powerful mind altering psychotropic drugs.”1 In order to assist in this regard, the Psychotherapeutic Medication Subcommittee of the Steering Committee on Families and Children in the Court of the Supreme Court of Florida compiled this resource guide to help judges have a better understanding of psychotropic medications and their interaction with other drugs and with mental health disorders. Recently, the tragic case of Gabriel Myers in 2009 highlighted the fact that a number of child deaths were linked to the off label use of anti-psychotic medications. This is of special concern to Dependency Judges who are ultimately responsible for children in Florida’s Foster Care system. The researchers used publically available data from the internet, FDA manufactures’ published guidelines, publically available non-copyrighted articles and Dr. Brenda Thompson graciously prepared the Psychotropic Medication Chart. Special thanks to Dr. Brenda Thompson, the Honorable Herbert J. Baumann, the Honorable Ralph C. Stoddard, General Magistrate Tracy Ellis, Avron Bernstein, Selena Schoonover, Daniel Ringhoff, Jovasha Lang and to the Members of the Psychotherapeutic Medication Subcommittee. -
Heat Related Illness in Psychotropic Medication Users
Common psychotropic medications which Prevention of Heat can impair your response to heat Related Illness Trade Name Generic Name Abilify aripiprazole During periods of high temperature (85º Asendin amoxapine and above) and humidity, there are things Artane trihexyphenidyl everyone, particularly people at high risk, Aventil, Pamelor nortriptyline should do to lessen the chances of heat Clozaril clozapine illness. Cogentin benztropine Compazine prochlorperazine ¾ Try to stay cool. Desyrel trazodone • Stay in air conditioned areas if Elavil, Limbitrol, possible. If you do not have air Triavil amitriptyline conditioning at home, go to a Eskalith, Lithobid, shopping mall or public library. Lithonate lithium • Keep windows shut and draperies, Geodon ziprasidone shades, or blinds drawn during the Haldol haloperidol heat of the day. Loxitane loxapine • Open windows in the evening or Ludiomil maprotiline night hours when the air outside is Mellaril thioridazine Heat Related Illness cooler. Moban molindone • Move to cooler rooms during the Navane thiothixene in heat of the day. Norpramin desipramine Psychotropic ¾ Avoid overexertion and outdoor Phenergan promethazine activity, particularly during warmer Prolixin fluphenazine Medication Users periods of the day. Risperdal risperidone ¾ Apply sunscreen and lotion as needed. Serentil mesoridazine Seroquel quetiapine ¾ Drink plenty of fluids (avoid coffee, tea, and alcohol). Sinequan doxepin ¾ Dress in loose fitting, light colored Stelazine trifluoperazine clothing. Wear a hat, sunglasses, and Thorazine chlorpromazine other protective clothing. Tofranil imipramine ¾ Take a cool shower or bath. Trilafon perphenazine ¾ Lose weight if you are overweight. Wellbutrin buproprion ¾ Eat regular meals to ensure that you Zyprexa olanzapine Ohio Department of Mental Health have adequate salt and fluids. *Note: This is not an all inclusive list. -
A Brief Overview of Psychotropic Medication Use for Persons with Intellectual Disabilities
A BRIEF OVERVIEW OF PSYCHOTROPIC MEDICATION USE FOR PERSONS WITH INTELLECTUAL DISABILITIES INTRODUCTION Individuals with intellectual disabilities are not uncommonly prescribed psychotropic medications. Too often, historically, such agents have been used to try to improve behavioral control without adequate understanding of the antecedents, purpose, and reinforcement of the problematic behavior. While an individual with an intellectual disability may experience a depressive, anxiety, or psychotic disorder in the more typical sense some individuals experience a pattern of anxiety/alarm/arousal leading to affective dysregulation and impulsive behavior. The anxiety can be stimulated by environmental change, physical discomfort, cues related to past trauma, overstimulation, boredom, confusion, or other unpleasant states. Addressing what is causing the distress or reinforcing the behavioral response is the most important thing (though not always easy). Psychotropic medications may be useful for treating more typically presenting psychiatric illnesses as well as being part of more comprehensive plans to attenuate risk behaviors. An individual with intellectual disabilities who seems sad, is withdrawn, shows low energy and lack of interest, is eating or sleeping more or less, or may be more irritable could be suffering from a depression that needs medication treatment. On the other hand an individual with intellectual disabilities who demonstrates aggression, property destruction, self-injury, or other forms of “dyscontrol” may be helped by medication aimed at blunting the anxiety/alarm and/or blocking its escalation into aggression or other dangerous behaviors. In such instances the medications are just part of an overall strategy or plan to help the individual avoid the “need” to engage in such behavior. -
(12) United States Patent (10) Patent No.: US 6,197,764 B1 Bradley Et Al
USOO6197764B1 (12) United States Patent (10) Patent No.: US 6,197,764 B1 Bradley et al. (45) Date of Patent: *Mar. 6, 2001 (54) CLOZAPINE COMPOSITIONS AND USES FOREIGN PATENT DOCUMENTS THEREOF 0599 576A1 1/1994 (EP). (75) Inventors: Matthews O. Bradley, Laytonsville, 693498 1/1996 (EP). MD (US); Victor E. Shashoua, 61204136 11/1984 (JP). Belmont, MA (US); Charles S. 06-072868 3/1994 (JP). Swindell, Merion; Nigel L. Webb, 6072868 3/1994 (JP). Bryn Mawr, both of PA (US) 7082146 3/1996 (JP). 8151334 6/1996 (JP). (73) Assignee: Protarga, Inc., Conshohocken, PA (US) 9030963 2/1997 (JP). (*) Notice: Subject to any disclaimer, the term of this WO 89/07938 9/1989 (WO). patent is extended or adjusted under 35 WO 96/04001 2/1996 (WO). U.S.C. 154(b) by 0 days. WO 96/22303 7/1996 (WO). WO 96/27380 9/1996 (WO). This patent is Subject to a terminal dis WO98/17325 4/1998 (WO). claimer. OTHER PUBLICATIONS (21) Appl. No.: 08/978,541 (22) Filed: Nov. 26, 1997 Bourat, et al., "Long Chain Esters of Pipotiazine as Lon g-Acting Psychotropic Pro-Drug, Med. Chem. Proc. Int. (51) Int. Cl. .............................................. A61K 31/00 Symp. 5th (1976) pp. 105-114. (52) U.S. Cl. ........................... 514/218; 514/219; 514/220 Lohr, et al., “Neuroleptic-Induced Movement Disorders . (58) Field of Search ..................................... 514/218, 219, ..", Psychiatry, vol. 3, (1989). 514/220 Makino, et al., Chemical Abstracts, vol. 106, No. 12, (56) References Cited (90.177x) issued Mar. 23, 1987, “Pharmaceuticals Permeable to Blood-Brain Barrier'. -
(12) Patent Application Publication (10) Pub. No.: US 2006/00398.69 A1 Wermeling Et Al
US 200600398.69A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/00398.69 A1 Wermeling et al. (43) Pub. Date: Feb. 23, 2006 (54) INTRANASAL DELIVERY OF Publication Classification ANTIPSYCHOTC DRUGS (51) Int. Cl. A6IK 9/14 (2006.01) A61 K 3/445 (2006.01) A6IL 9/04 (2006.01) (76) Inventors: Daniel Wermeling, Lexington, KY (52) U.S. Cl. .............................................. 424/46; 514/317 (US); Jodi Miller, Acworth, GA (US) (57) ABSTRACT An intranasal drug product is provided including an antip Correspondence Address: Sychotic drug, Such as haloperidol, in Sprayable Solution in MAYER, BROWN, ROWE & MAW LLP an intranasal metered dose Sprayer. Also provided is a P.O. BOX2828 method of administering an antipsychotic drug, Such as CHICAGO, IL 60690-2828 (US) haloperidol, to a patient, including the Step of delivering an effective amount of the antipsychotic drug to a patient intranasally using an intranasal metered dose Sprayer. A (21) Appl. No.: 10/920,153 method of treating a psychotic episode also is provided, the method including the Step of delivering an antipsychotic drug, Such as haloperidol, intranasally in an amount effective (22) Filed: Aug. 17, 2004 to control the psychotic episode. Patent Application Publication Feb. 23, 2006 US 2006/00398.69 A1 30 525 2 20 -- Treatment A (M) S 15 - Treatment B (IM) 10 -- Treatment C (IN) i 2 O 1 2 3 4 5 6 Time Post-dose (hours) F.G. 1 US 2006/0039869 A1 Feb. 23, 2006 INTRANASAL DELIVERY OF ANTIPSYCHOTC therefore the dosage form of choice in acute situations. In DRUGS addition, the oral Solution cannot be "cheeked' by patients.