Developmental Evolution of Endosperm in Basal Angiosperms: Evidence from Amborella Amborellaceae), Nuphar Nymphaeaceae), and Illicium Illiciaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Evolution of Endosperm in Basal Angiosperms: Evidence from Amborella Amborellaceae), Nuphar Nymphaeaceae), and Illicium Illiciaceae) Plant Syst. Evol. 228: 153±169)2001) Developmental evolution of endosperm in basal angiosperms: evidence from Amborella Amborellaceae), Nuphar Nymphaeaceae), and Illicium Illiciaceae) S. K. Floyd and W. E. Friedman Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado, USA Received January 19, 2001 Accepted March 19, 2001 Abstract. Because of their basal phylogenetic posi- Within the last two years remarkable progress tion, Amborella, Nymphaeales, and Illiciales )and has been made toward the resolution of deep allies) are key to reconstructing ancestral character angiosperm phylogenetic relationships. The states and to tracing character state transitions that results of several independent, molecular se- occurred during the earliest radiation of ¯owering quence-based analyses have converged on plants. Endosperm is the sexually-derived embryo- similar results for rooting the angiosperm tree nourishing tissue that is unique to the life cycle of and have identi®ed the three earliest-diverging angiosperms. We provide detailed descriptions of endosperm development in Amborella, Nuphar lineages of ¯owering plants )Mathews and )Nymphaeales), and Illicium )Illiciales) and com- Donoghue 1999; Parkinson et al. 1999; Qiu pare patterns within an explicit phylogenetic con- et al. 1999, 2000; Soltis et al. 1999, 2000; text for the three basal lineages that they represent. Borsch et al. 2000; Graham and Olmstead Amborella and Illicium share a bipolar, cellular 2000; Savolainen et al. 2000). The consensus of pattern of development, characterized by an these analyses is that Amborella trichopoda is oblique ®rst division, that was resolved as ancestral sistertoallotherextantangiosperms,Nymphae- for ¯owering plants. A series of character state ales )Nymphaeaceae plus Cabombaceae) is the transformations occurred within Nymphaeales sister group to all taxa except Amborella, and a which led ®rst to a modi®ed cellular pattern with clade including Illiciales, Austrobaileyaceae, a transverse ®rst division )present in Nuphar). The and Trimeniaceae )hereafter referred to as the transverse cellular pattern was transformed to a Illiciales clade) is sister to all remaining helobial pattern that is present in Cabombaceae. Endosperm ontogeny involves dissociable elements angiosperms )Fig. 1). With identi®cation of and appears to ®t the model of a modular devel- the three, earliest-diverging lineages of ¯ower- opmental process. ing plants )the ``basal grade''), it is now possible to more reliably reconstruct ancestral Key words: Amborella, angiosperm embryology, character states for the angiosperm clade development, endosperm, evolution, EvoDevo, )Mathews and Donoghue 1999, Soltis et al. helobial, Illicium, modularity, Nuphar. 1999, Friedman and Floyd 2001). 154 S. K. Floyd and W. E. Friedman: Developmental evolution of endosperm Recent comparative investigations of en- dosperm in a broad sample of basal ¯owering plants )Floyd et al. 1999, Floyd and Friedman 2000) revealed new insights into the nature of this unique component of angiosperm repro- ductive biology that go beyond traditional typology. These analyses demonstrate that endosperms of most ancient angiosperm lin- eages exhibit a cellular ontogeny that is resolved as ancestral, based on phylogenetic comparative analysis. This pattern is charac- terized by an unequal division of the ®rst endosperm cell, producing a small chalazal cell and larger micropylar cell. Early development of the micropylar region )transverse cell divi- sions) results in a few large cells in a uniseriate arrangement. Early development of the chala- zal region involves cell divisions in many Fig. 1. Consensus of several recent molecular se- planes. Characterization of a primitive ontog- quence based phylogenies for angiosperms )Mathews eny for endosperm provides the basis for and Donoghue 1999; Qiu et al. 1999, 2000; Soltis tracing the evolution of endosperm within the et al. 1999, 2000; Barkman et al. 2000; Graham and ¯owering plant clade. Olmstead 2000) In addition to proposing an ancestral ontogeny for endosperm, Floyd and Friedman Reproductive characters constitute the ma- )2000) have shown that three features of early jority of the unique features that separate endosperm development de®ne the basic pat- angiosperms from all other seed plants )Sar- tern. These are division of the primary endo- gant 1908, Crane et al. 1995, Friedman 2001). sperm nucleus or cell, development of the Thus, knowledge of the reproductive biology chalazal domain, and development of the of basal lineages of ¯owering plants is critical micropylar domain. Analyzed as characters to the reconstruction of ancestral character with variable character states, these three states and key to understanding the origin and features appear to have evolved independently early history of the angiosperm clade. One of within angiosperms, resulting in variable these unique angiosperm reproductive features endosperm patterns. is endosperm, the embryo-nourishing tissue Although many basal angiosperms have that develops following a fertilization event retained the primitive cellular ontogeny de- involving a second sperm and the two haploid scribed above, endosperm ontogenetic evolu- polar nuclei of the female gametophyte. tion has occurred in some lineages so that all Traditionally, endosperm has been classi- three endosperm types are represented among ®ed into three types based on dierential early-divergent angiosperms. In particular, patterns of development: ``free nuclear,'' in helobial development occurs in Cabomba,a which early mitotic divisions occur without member of Nymphaeales )Floyd and Fried- cytokinesis; ``ab initio cellular'' )cellular), in man 2000), one of the three lineages of the which cell walls are formed following all basal grade. The explicit phylogenetic hypoth- mitotic divisions; and ``helobial,'' involving esis for the branching order of Amborella, an initial transverse cellular division followed Nymphaeales and Illiciales, and recent resolu- by free nuclear development of the micropylar tion of relationships within Nymphaeales )Les cell or chamber. et al. 1999), provide the context in which to S. K. Floyd and W. E. Friedman: Developmental evolution of endosperm 155 reconstruct endosperm character polarity and Materials and methods evolution in general, and more speci®cally to Amborella trichopoda was collected in New Cale- explore the origin of helobial endosperm in donia and chemically ®xed in either FAA or 4% Nymphaeales. glutaraldehyde in Sorensen's buer )pH 6.8; Very few detailed analyses of endosperm Electron Microscopy Sciences). Illicium ¯oridanum development have been published for taxa in and Nuphar lutea ssp. polysepala were collected in the basal grade. Tobe et al. )2000) described Georgia and Colorado, respectively, and brought some basic aspects of endosperm development to the laboratory in Boulder, Colorado, where for Amborella within the context of a broader specimens were chemically ®xed with 4% acrolein embryological study. Floyd and Friedman in 50 mM Pipes buer )also 5 mM EGTA and )2000) also reported that Amborella and 1 mM MgSO4) at pH 6.8. Specimens of Illicium Illicium exhibit bipolar, cellular endosperm mexicanum were shipped overnight from the Uni- development. Limited data were previously versity of California Botanical Garden, Berkeley, and chemically ®xed with acrolein as described available for the Illiciales clade )Hayashi above. Collections are summarized in Table 1. 1963a, b). Nymphaeales have been the subject More than 865 female ¯owers and developing of several embryological studies )Cook 1902, seeds were serially sectioned for this analysis 1906, 1909; Khanna 1965, 1967; Ramji and )Table 1). The presence of proteins, lipids, and Padmanabhan 1965; Padmanabhan 1970; starch in mature endosperm tissue was determined Schneider 1978; Galati 1985; Van Miegroet with histochemical stains and cross polarization and Dujardin 1992; Orban and Bouharmont microscopy. Histological methods followed Floyd 1995), but remarkably, complete descriptions and Friedman )2000). Endosperm characters were of endosperm development are lacking for all parsimoniously optimized onto published clado- taxa except Cabomba )Floyd and Friedman grams using MacClade )Maddison and Maddison 2000) and Nymphaea )Cook 1906). Endo- 1992). sperm development in Nuphar, which has been resolved as sister to all other Nymphae- Results aceae )Les et al. 1999), has never been de- scribed. Amborella. Endosperm development in Ambo- We report here for the ®rst time detailed rella begins with migration of the primary descriptions of endosperm development in endosperm nucleus to the extreme chalazal end Amborella, Nuphar, and Illicium. Endosperm of the large ®rst endosperm cell )central cell) ontogenetic patterns are then compared within where it undergoes mitosis )Fig. 2A, B). Fol- the framework of recent cladistic analyses for lowing the initial mitotic division, an oblique basal angiosperms. Based on comparative cell wall is formed that unequally partitions the analysis, we elaborate on the hypothesis for ®rst endosperm cell into a small chalazal cell the ancestral bipolar, cellular endosperm pat- and a much larger micropylar cell )Fig. 2C). tern outlined by Floyd and Friedman )2000). The larger micropylar cell normally under- A scenario is then presented for endosperm goes one or two highly unequal transverse/ ontogenetic evolution among the three basal oblique cell divisions at its chalazal end angiosperm
Recommended publications
  • Illicium Parviflorum1
    Fact Sheet FPS-278 October, 1999 Illicium parviflorum1 Edward F. Gilman2 Introduction This rapidly growing, large, evergreen, Florida native shrub has medium- to coarse-textured, olive green, leathery leaves and small, greenish-yellow flowers (Fig. 1). The many slender, drooping branches of Anise give a rounded, open canopy in the shade, ideal for natural settings, or can be pruned into dense hedges, screens, or windbreaks in sunny locations. Branches often root when they touch the ground and root sprouts appear several years after planting. This adds to the density of the shrub. The slightly fragrant spring flowers are followed by brown, star-shaped, many-seeded pods which cling to the stems. The leaves of Anise give off a distinctive fragrance of licorice when bruised or crushed. General Information Scientific name: Illicium parviflorum Pronunciation: ill-LISS-see-um par-vif-FLOR-um Common name(s): Anise Family: Illiciaceae Plant type: tree Figure 1. Anise. USDA hardiness zones: 7B through 10A (Fig. 2) Planting month for zone 7: year round Planting month for zone 8: year round Planting month for zone 9: year round Description Planting month for zone 10: year round Height: 15 to 20 feet Origin: native to Florida Spread: 10 to 15 feet Uses: hedge; espalier; screen; foundation; border Plant habit: oval Availablity: generally available in many areas within its Plant density: dense hardiness range Growth rate: moderate Texture: medium 1.This document is Fact Sheet FPS-278, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • Illicium Floridanum1
    Fact Sheet FPS-277 October, 1999 Illicium floridanum1 Edward F. Gilman2 Introduction This rapidly growing, evergreen, Florida native shrub has olive green leaves and reddish-purple, starry, two-inch flowers (Fig. 1). The many slender branches of Florida Anise droop to the ground giving a rounded, open canopy in the shade, ideal for natural settings, or in sunny locations it can be pruned into dense hedges or windbreaks. The small, somewhat showy, maroon flowers appear in spring and are followed in late summer to fall by star-shaped, many-seeded pods which cling to the stems. The leaves of Florida Anise give off a distinctive odor when bruised or crushed. General Information Scientific name: Illicium floridanum Pronunciation: ill-LISS-see-um flor-rid-DAY-num Common name(s): Florida Anise-Tree, Florida Anise Family: Illiciaceae Plant type: shrub USDA hardiness zones: 8 through 10 (Fig. 2) Planting month for zone 7: year round Figure 1. Florida Anise-Tree. Planting month for zone 8: year round Planting month for zone 9: year round Planting month for zone 10: year round Description Origin: native to Florida Height: 10 to 15 feet Uses: container or above-ground planter; hedge; espalier; Spread: 6 to 10 feet screen; foundation; border Plant habit: oval Availablity: somewhat available, may have to go out of the Plant density: dense region to find the plant Growth rate: moderate Texture: medium 1.This document is Fact Sheet FPS-277, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • Evaluation of Anti-Inflammatory Action of Illicium Verum - an in Vitro Study Rachel Paul1, R
    Research Article Evaluation of anti-inflammatory action of Illicium verum - An in vitro study Rachel Paul1, R. V. Geetha2* ABSTRACT Introduction: Illicium verum is a medium-sized evergreen tree native to northeast Vietnam and southwest China. A spice commonly called star anise. Star anise refers to aromatic herbs which are used in cooking for their distinctive flavor and their fragrance. Star anise is the major source of the chemical compound, shikimic acid which is a pharmaceutical synthesis of anti- influenza drug. It also has raw materials needed for fermentation of the food. Star anise has anti-inflammatory, antimicrobial, antifungal, and antioxidant properties. It has many medicinal properties which can also be used to treat cancer as well as gastric problems. It is an easily available herb in the market and is easily affordable by many people; it can be used in the treatment of various diseases. Materials and Methods: The anti-inflammatory activity was studied using protein denaturation assay and the results were read spectrophotometrically. Results: The anti-inflammatory activity of the extract was studied by its ability to inhibit protein denaturation. It was effective in inhibiting heat induced albumin denaturation at different concentrations. Maximum inhibition, 77.87 ± 1.55 was observed at 500 µg/ml. Half-maximal inhibitory concentration value was found to be 105.35 ± 1.99 µg/ml. Conclusion: The result obtained was compared to the commonly available nonsteroidal anti- inflammatory drugs such as aspirin. This research conducted
    [Show full text]
  • Effects of Nitrogen Dioxide on Biochemical Responses in 41 Garden Plants
    plants Article Effects of Nitrogen Dioxide on Biochemical Responses in 41 Garden Plants Qianqian Sheng 1 and Zunling Zhu 1,2,* 1 College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; [email protected] 2 College of Art & Design, Nanjing Forestry University, Nanjing 210037, China * Correspondence: [email protected]; Tel.: +86-25-6822-4603 Received: 11 December 2018; Accepted: 12 February 2019; Published: 16 February 2019 Abstract: Nitrogen dioxide (NO2) at a high concentration is among the most common and harmful air pollutants. The present study aimed to explore the physiological responses of plants exposed to NO2. A total of 41 plants were classified into 13 functional groups according to the Angiosperm Phylogeny Group classification system. The plants were exposed to 6 µL/L NO2 in an open-top glass chamber. The physiological parameters (chlorophyll (Chl) content, peroxidase (POD) activity, and soluble protein and malondialdehyde (MDA) concentrations) and leaf mineral ion contents (nitrogen (N+), phosphorus (P+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), manganese 2+ 2+ (Mn ), and zinc (Zn )) of 41 garden plants were measured. After NO2 exposure, the plants were subsequently transferred to a natural environment for a 30-d recovery to determine whether they could recover naturally and resume normal growth. The results showed that NO2 polluted the plants and that NO2 exposure affected leaf Chl contents in most functional groups. Increases in both POD activity and soluble protein and MDA concentrations as well as changes in mineral ion concentrations could act as signals for inducing defense responses. Furthermore, antioxidant status played an important role in plant protection against NO2-induced oxidative damage.
    [Show full text]
  • The Vascular System of Monocotyledonous Stems Author(S): Martin H
    The Vascular System of Monocotyledonous Stems Author(s): Martin H. Zimmermann and P. B. Tomlinson Source: Botanical Gazette, Vol. 133, No. 2 (Jun., 1972), pp. 141-155 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2473813 . Accessed: 30/08/2011 15:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org 1972] McCONNELL& STRUCKMEYER ALAR AND BORON-DEFICIENTTAGETES 141 tomato, turnip and cotton to variations in boron nutri- Further investigationson the relation of photoperiodto tion. II. Anatomical responses. BOT.GAZ. 118:53-71. the boron requirementsof plants. BOT.GAZ. 109:237-249. REED, D. J., T. C. MOORE, and J. D. ANDERSON. 1965. Plant WATANABE,R., W. CHORNEY,J. SKOK,and S. H. WENDER growth retardant B-995: a possible mode of action. 1964. Effect of boron deficiency on polyphenol produc- Science 148: 1469-1471. tion in the sunflower.Phytochemistry 3:391-393. SKOK, J. 1957. Relationships of boron nutrition to radio- ZEEVAART,J. A. D. 1966. Inhibition of stem growth and sensitivity of sunflower plants.
    [Show full text]
  • HOVERFLY NEWSLETTER Dipterists
    HOVERFLY NUMBER 41 NEWSLETTER SPRING 2006 Dipterists Forum ISSN 1358-5029 As a new season begins, no doubt we are all hoping for a more productive recording year than we have had in the last three or so. Despite the frustration of recent seasons it is clear that national and international study of hoverflies is in good health, as witnessed by the success of the Leiden symposium and the Recording Scheme’s report (though the conundrum of the decline in UK records of difficult species is mystifying). New readers may wonder why the list of literature references from page 15 onwards covers publications for the year 2000 only. The reason for this is that for several issues nobody was available to compile these lists. Roger Morris kindly agreed to take on this task and to catch up for the missing years. Each newsletter for the present will include a list covering one complete year of the backlog, and since there are two newsletters per year the backlog will gradually be eliminated. Once again I thank all contributors and I welcome articles for future newsletters; these may be sent as email attachments, typed hard copy, manuscript or even dictated by phone, if you wish. Please do not forget the “Interesting Recent Records” feature, which is rather sparse in this issue. Copy for Hoverfly Newsletter No. 42 (which is expected to be issued with the Autumn 2006 Dipterists Forum Bulletin) should be sent to me: David Iliff, Green Willows, Station Road, Woodmancote, Cheltenham, Glos, GL52 9HN, (telephone 01242 674398), email: [email protected], to reach me by 20 June 2006.
    [Show full text]
  • Gardenergardener®
    Theh American A n GARDENERGARDENER® The Magazine of the AAmerican Horticultural Societyy January / February 2016 New Plants for 2016 Broadleaved Evergreens for Small Gardens The Dwarf Tomato Project Grow Your Own Gourmet Mushrooms contents Volume 95, Number 1 . January / February 2016 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM THE AHS 2016 Seed Exchange catalog now available, upcoming travel destinations, registration open for America in Bloom beautifi cation contest, 70th annual Colonial Williamsburg Garden Symposium in April. 11 AHS MEMBERS MAKING A DIFFERENCE Dale Sievert. 40 HOMEGROWN HARVEST Love those leeks! page 400 42 GARDEN SOLUTIONS Understanding mycorrhizal fungi. BOOK REVIEWS page 18 44 The Seed Garden and Rescuing Eden. Special focus: Wild 12 NEW PLANTS FOR 2016 BY CHARLOTTE GERMANE gardening. From annuals and perennials to shrubs, vines, and vegetables, see which of this year’s introductions are worth trying in your garden. 46 GARDENER’S NOTEBOOK Link discovered between soil fungi and monarch 18 THE DWARF TOMATO PROJECT BY CRAIG LEHOULLIER butterfl y health, stinky A worldwide collaborative breeds diminutive plants that produce seeds trick dung beetles into dispersal role, regular-size, fl avorful tomatoes. Mt. Cuba tickseed trial results, researchers unravel how plants can survive extreme drought, grant for nascent public garden in 24 BEST SMALL BROADLEAVED EVERGREENS Delaware, Lady Bird Johnson Wildfl ower BY ANDREW BUNTING Center selects new president and CEO. These small to mid-size selections make a big impact in modest landscapes. 50 GREEN GARAGE Seed-starting products. 30 WEESIE SMITH BY ALLEN BUSH 52 TRAVELER’S GUIDE TO GARDENS Alabama gardener Weesie Smith championed pagepage 3030 Quarryhill Botanical Garden, California.
    [Show full text]
  • Beaver Management Technical Paper #3 Beaver Life History and Ecology Best Science Review
    Beaver Management Technical Paper #3 Beaver Life History and Ecology Best Science Review April 2020 Alternate Formats Available Beaver Management Technical Paper #3 Beaver Life History and Ecology Best Science Review Submitted by: Jen Vanderhoof King County Water and Land Resources Division Department of Natural Resources and Parks Beaver Life History and Ecology Best Science Review Acknowledgements Extensive review and comments were provided by Bailey Keeler on the “Diet” and “Territoriality & Scent Mounds” sections, and she wrote a portion of the “Predation” section. Review and comments were provided by Bailey Keeler, Brandon Duncan, Matt MacDonald, and Kate O’Laughlin of King County. Dawn Duddleson, librarian for Water and Land Resources Division, obtained the majority of the papers cited in this report. Tom Ventur provided technical support and formatting for this document. Citation King County. 2020. Beaver management technical paper #3: beaver life history and ecology best science review. Prepared by Jen Vanderhoof, Water and Land Resources Division. Seattle, Washington. King County Science and Technical Support Section i April 2020 Beaver Life History and Ecology Best Science Review Table of Contents 1.0 Introduction .....................................................................................................................1 2.0 Beaver Populations .........................................................................................................3 2.1 History .........................................................................................................................3
    [Show full text]
  • A Review of Paleobotanical Studies of the Early Eocene Okanagan (Okanogan) Highlands Floras of British Columbia, Canada and Washington, USA
    Canadian Journal of Earth Sciences A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) Highlands floras of British Columbia, Canada and Washington, USA. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0177.R1 Manuscript Type: Review Date Submitted by the Author: 02-Feb-2016 Complete List of Authors: Greenwood, David R.; Brandon University, Dept. of Biology Pigg, KathleenDraft B.; School of Life Sciences, Basinger, James F.; Dept of Geological Sciences DeVore, Melanie L.; Dept of Biological and Environmental Science, Keyword: Eocene, paleobotany, Okanagan Highlands, history, palynology https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 70 Canadian Journal of Earth Sciences 1 A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) 2 Highlands floras of British Columbia, Canada and Washington, USA. 3 4 David R. Greenwood, Kathleen B. Pigg, James F. Basinger, and Melanie L. DeVore 5 6 7 8 9 10 11 Draft 12 David R. Greenwood , Department of Biology, Brandon University, J.R. Brodie Science 13 Centre, 270-18th Street, Brandon, MB R7A 6A9, Canada; 14 Kathleen B. Pigg , School of Life Sciences, Arizona State University, PO Box 874501, 15 Tempe, AZ 85287-4501, USA [email protected]; 16 James F. Basinger , Department of Geological Sciences, University of Saskatchewan, 17 Saskatoon, SK S7N 5E2, Canada; 18 Melanie L. DeVore , Department of Biological & Environmental Sciences, Georgia 19 College & State University, 135 Herty Hall, Milledgeville, GA 31061 USA 20 21 22 23 Corresponding author: David R. Greenwood (email: [email protected]) 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 70 24 A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) 25 Highlands floras of British Columbia, Canada and Washington, USA.
    [Show full text]
  • 1. Amborellaceae
    PLANT GATEWAy’s THE GLOBAL FLORA A practical flora to vascular plant species of the world ANGIOSPERMS 1. AMBORELLACEAE by J.W. BYNG & M.J.M. CHRISTENHUSZ January 2018 The Global Flora A practical flora to plant species of the world Angiosperms, Amborellaceae Vol 3: 1-20. Published by Plant Gateway Ltd., 5 Baddeley Gardens, Bradford, BD10 8JL, United Kingdom © Plant Gateway 2018 This work is in copyright. Subject to statutory exception and to the provision of relevant col- lective licensing agreements, no reproduction of any part may take place without the written permission of Plant Gateway Ltd. ISSN 2398-6336 eISSN 2398-6344 ISBN 978-0-9929993-7-7 Plant Gateway has no responsibility for the persistence or accuracy of URLS for external or third-party internet websites referred to in this work, and does not guarantee that any con- tent on such websites is, or will remain, accurate or appropriate. British Library Cataloguing in Publication data A Catalogue record of this book is available from the British Library For information or to purchase other Plant Gateway titles please visit www.plantgateway.com Authors James W. Byng, Plant Gateway, Bradford & Kingston, United Kingdom and Den Haag, the Netherlands; Naturalis Biodiversity Center, Leiden, The Netherlands. Maarten J.M. Christenhusz, Plant Gateway, Bradford & Kingston, United Kingdom and Den Haag, the Netherlands; Royal Botanic Gardens, Kew, United Kingdom. Cover image: © Mike Bayly / CC BY-SA 3.0 THE GLOBAL FLORA © 2018 Plant Gateway Ltd. A practical flora to vascular plant species of the world ISSN 2398-6336 eISSN 2398-6344 www.plantgateway.com/globalflora/ ISBN 978-0-9929993-7-7 Summary Amborellaceae is endemic to New Caledonia and contains one genus.
    [Show full text]
  • Cobb County Stream Buffer Revegetation Guidelines Site Condition Considerations
    Purpose This document has been developed to provide local issuing authorities and citizens a framework for developing an appropriate landscape plan in situations where a stream/state waters buffer is to be restored and/or enhanced. While this document provides general guidelines, specific site requirements must be properly evaluated to ensure the successful re-establishment of disturbed buffer areas. State Waters that Require Stream Buffers The term “state waters” is defined in Section 12-7-3(16) of the Georgia Erosion and Sedimentation Act as follows: “Any and all rivers, stream, creeks, branches, lakes reservoirs, ponds, drainage systems, springs, wells and other bodies of surface, or subsurface water, natural or artificial, lying within or forming a part of the boundaries of the State which are not entirely confined and retained completely upon the property of a single individual, partnership or corporation.” Buffer Revegetation Guidelines Areas within all buffers must have 100-percent coverage with native plants. Refer to attached Appendix A for a list of suitable plants. These plants shall be installed in the following proportions: 40% Large Trees – only 20% of the total quantity of large trees may be pine 25% Small Trees 20% Shrubs 15% Forbs -Grasses/Ground Cover/Perennials Plus – Installation of Native Grasses of Areas Disturbed Plants in each category have the following square-foot value: Large Trees: 200 sq.ft. each, minimum 10’ height and 1 ½” caliber. Small Trees: 100 sq.ft. each, minimum 6-8’ height Shrubs: 25 sq.ft. each, minimum 3 gallon size Forbs: 25 sq.ft. each, minimum 1 gallon size Native Grass Seeding Should Consist of Stabilization of Impacted Area Generally, no more than 25% of the trees and shrubs required may be one species.
    [Show full text]
  • Water Lilies As Emerging Models for Darwin's Abominable Mystery
    OPEN Citation: Horticulture Research (2017) 4, 17051; doi:10.1038/hortres.2017.51 www.nature.com/hortres REVIEW ARTICLE Water lilies as emerging models for Darwin’s abominable mystery Fei Chen1, Xing Liu1, Cuiwei Yu2, Yuchu Chen2, Haibao Tang1 and Liangsheng Zhang1 Water lilies are not only highly favored aquatic ornamental plants with cultural and economic importance but they also occupy a critical evolutionary space that is crucial for understanding the origin and early evolutionary trajectory of flowering plants. The birth and rapid radiation of flowering plants has interested many scientists and was considered ‘an abominable mystery’ by Charles Darwin. In searching for the angiosperm evolutionary origin and its underlying mechanisms, the genome of Amborella has shed some light on the molecular features of one of the basal angiosperm lineages; however, little is known regarding the genetics and genomics of another basal angiosperm lineage, namely, the water lily. In this study, we reviewed current molecular research and note that water lily research has entered the genomic era. We propose that the genome of the water lily is critical for studying the contentious relationship of basal angiosperms and Darwin’s ‘abominable mystery’. Four pantropical water lilies, especially the recently sequenced Nymphaea colorata, have characteristics such as small size, rapid growth rate and numerous seeds and can act as the best model for understanding the origin of angiosperms. The water lily genome is also valuable for revealing the genetics of ornamental traits and will largely accelerate the molecular breeding of water lilies. Horticulture Research (2017) 4, 17051; doi:10.1038/hortres.2017.51; Published online 4 October 2017 INTRODUCTION Ondinea, and Victoria.4,5 Floral organs differ greatly among each Ornamentals, cultural symbols and economic value family in the order Nymphaeales.
    [Show full text]