2011 APS-IPPC Joint Meeting Abstracts of Presentations

Total Page:16

File Type:pdf, Size:1020Kb

2011 APS-IPPC Joint Meeting Abstracts of Presentations 2011 APS-IPPC Joint Meeting Abstracts of Presentations Abstracts submitted for presentation at the APS-IPPC 2011 Joint Meeting in Honolulu, Hawaii, August 6–10, 2011 (including abstracts submitted for presentation at the 2011 APS Pacific Division Meeting). The abstracts are arranged alphabetically by the first author’s name. Prioritizing cover crops for improving root health and yield of vegetables ability of non-aflatoxigenic strains to prevent aflatoxin production by in the Northeast subsequent challenge with toxigenic A. flavus strains was assessed in 4 G. S. ABAWI (1), C. H. Petzoldt (1), B. K. Gugino (2), J. A. LaMondia (3) experiments. Non-aflatoxigenic strain K49 effectively prevented toxin (1) Cornell University, Geneva, NY, U.S.A.; (2) The Pennsylvania State production at various inoculation levels in 3 experiments. K49 also was University, University Park, PA, U.S.A.; (3) CT Agric. Exp. Station, Windsor, evaluated alongside the widely used biocontrol strains NRRL 21882 (Afla- CT, U.S.A. Guard®) and AF36 for prevention of aflatoxin and CPA production by strains Phytopathology 101:S1 K54 and F3W4. K49 and NRRL 21882 were superior to AF36 in reducing aflatoxins. K49 and NRRL 21882 produced no CPA, and reduced CPA and Cover crops are used increasingly by growers to improve soil quality, prevent aflatoxin production in a subsequent challenge with F3W4 and K54 by 84– erosion, increase organic matter, and suppress root pathogens and pests. 97% and 83–98%, respectively. In contrast, AF36 inoculation and subsequent However, limited information is available on their use for suppressing challenge with F3W4 reduced aflatoxins by 20% and 93% with K54, but pathogens (Rhizoctonia, Pythium, Fusarium, Thieloviopsis, Pratylenchus, and showed no CPA reduction with F3W4 and only 62% CPA reduction with Meloidogyne) of vegetables grown in the Northeast. Thus, a collaborative K54. Because AF36 produces CPA, high CPA accumulated in corn with project was initiated in 2009 to assess the efficacy of selected cover crops in AF36 alone. Pin-bar wounding and pin-bar inoculation with F. verticillioides suppressing root pathogens of vegetables and improving soil health in NS-2 resulted in FBs levels of 253 and 1087 ppm, respectively. Inoculation research and on-farm field trials in New York, Pennsylvania and Connecticut. with K49 alone or a mixture of K49 and NS-2 reduced FBs level to 0.1 and 27 In NY, strips (4.5 X 60 M) of 9 cover crops (rye grain + hairy vetch, oat, ppm, respectively. AF36 and NRRL 21882 showed similar FBs reduction sudex, forage radish, red clover, rapeseed, buchwheat, wheat, and a fallow trends to K49. NRRL 21882 and K49 are effective in reducing aflatoxins, check) were randomized in 4 fields with 3 replications (3.2 ha total). The CPA and FBs in corn. fields had different management histories resulting in varied levels of pathogen pressure and soil quality. In 2010, cover crop biomass was measured and collected soil samples were assessed for root health (greenhouse bean Managing potato scab and enhancing tuber yield with low rates of fish bioassay), nematode diversity and density, and selected soil health parameters emulsion applied as a pre-plant soil amendment (Cornell Soil Health Test). In general, root rot severity was lowest and yield P. A. ABBASI (1) of snap bean was highest in the field with the highest soil quality. After one (1) Agriculture & Agri-Food Canada, London, Ontario, CANADA year, the cover crops greatly affected root health and bean yield in this trial as Phytopathology 101:S1 well as the microplots and/or on-farm trials conducted in CT and PA. Another Fish emulsion (FE) is an excellent organic soil amendment to enrich soil cycle of evaluations is in progress. microbes and generate disease suppressive conditions against soil-borne diseases such as seedling damping-off, potato scab, and verticillium wilt. Reduction of aflatoxins, cyclopiazonic acid and fumonisins in corn by However, the rates (20,000 L/ha) of FE that provided effective control of biocontrol strains of non-aflatoxigenic Aspergillus flavus potato scab can be too costly for commercial use. The aim of this 3-year field H. ABBAS (1), B. Horn (2), M. Weaver (3), X. Jin (3), C. Abel (4), W. T. Shier (5) study was to see if much lower rates of FE could suppress potato scab and (1) USDA ARS CG & PRU, Stoneville, MS, U.S.A.; (2) National Peanut increase tuber yield. Diluted FE (1000 and 2000 L/ha or 0.05 and 0.1%) was Research Laboratory, USDA, ARS, Dawson, GA, U.S.A.; (3) USDA ARS, applied to the field plots twice a year before planting and after harvesting Biological Control of Pests Research Unit, Stoneville, MS, U.S.A.; (4) potatoes starting in fall of 2007. The high rate of FE (2000 L/ha) consistently USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, reduced scab severity by 42% in 2008, 57% in 2009, and 44% in 2010; U.S.A.; (5) Department of Medicinal Chemistry, University of Minnesota, reduced the percentage of tubers with deep-pitted scab by 30% in 2008, 51% Minneapolis, MN, U.S.A. in 2009, and 66% in 2010; and increased the percentage of marketable tubers Phytopathology 101:S1 by 21% in 2008, 55% in 2009, and 12% in 2010. Both rates of FE increased Non-aflatoxigenic biocontrol strains of Aspergillus flavus were examined for total tuber yield by 16–19% in 2008, 14–20% in 2009, and 7–11% in 2010. ability to reduce, production in corn of aflatoxins and cyclopiazonic acid FE soil amendment enhanced the numbers of soil bacteria including those of (CPA) by A. flavus and fumonisins (FBs) by Fusarium verticillioides. The potential bio-control agents belonging to the genera Pseudomonas and Bacillus. These results suggest that economically feasible rates of FE applied more frequently can provide disease suppression and enhance tuber yield. Next step is to monitor the lasting impact of these disease suppressive The abstracts are published as submitted. They were formatted but not edited conditions on continuous potatoes without any further FE application. at the APS headquarters office. Vol. 101, No. 6 (Supplement), 2011 S1 Effect of arbuscular mycorrhizae on aphid infestation of wheat Comparison of endophytic Undifilum DNA and swainsonine content on M. ABDELKARIM (1), B. H. Ownley (1), W. E. Klingeman (1), K. D. locoweeds Gwinn (1) J. ACHATA BOTTGER (1), R. Creamer (1), D. Gardner (2) (1) University of Tennessee, Knoxville, TN, U.S.A. (1) NMSU, Las Cruces, NM, U.S.A.; (2) USDA-ARS, Logan, UT, U.S.A. Phytopathology 101:S2 Phytopathology 101:S2 In greenhouse-grown pots of wheat serendipitously infested with bird cherry Locoweeds are toxic species of Astragalus and Oxytropis, associated with the oat aphid, Rhopalosiphum padi, the aphids preferred non-mycorrhizal endophytic fungus Undifilum oxytropis. The fungus produces swainsonine, an treatments over treatments with arbuscular mycorrhizal (AM) fungi. α-mannosidase-inhibiting alkaloid which causes cell damage to mammals Therefore, studies were developed to determine if mycorrhizal infection when ingested. We used real-time PCR to quantify Undifilum DNA (UD) reduced ability of wheat to support a population of R. padi. Two AM fungi from field samples and in vitro grown plants. Amplification of the ribosomal [Glomus intraradices (Gi), Gigaspora margarita (Gm)] were propagated on ITS allowed reliable quantification of UD in plant tissues. UD in in vitro O. sorghum, and non-mycorrhizal sorghum served as a control. After three sericea increased between the first and third week of growth, whereas months, vegetative growth of sorghum was removed, and cultures, both with swainsonine concentration started increasing between the second and fourth and without AM, were mixed 1:1 with growing medium. Wheat (Triticum week. A strong correlation existed between the amount of UD and the aestivum Pioneer ‘26R22’) seed (10/pot) were planted and allowed to grow in swainsonine concentration in plants grown on culture medium during the first the greenhouse for three weeks. Twenty apterous aphids were transferred to four weeks. Addition of polyethylene glycol to the medium significantly each plant. Three pots/treatment were used in Trial 1; six pots/treatment were impaired the plant development, accelerated endophyte colonization (40 pg used in Trial 2. After 5 days, aphids were counted on each plant. Mycorrhizal UD/ng total DNA at Week 2), and increased the swainsonine concentration. treatment had no impact on germination and survival of wheat plants. Number Acidification of the medium resulted in increased plant growth and minimal of aphids/plant was approximately 2.5 times greater on nonmycorrhizal plants swainsonine content. UD ranges were estimated in locoweed populations in than on Gm-colonized plants [Trial 1 (P = 0.0912); Trial 2 (P = 0.0955)]; New Mexico and Colorado and annual cycles were described for swainsonine numbers of R. padi on Gi-colonized plants were intermediate and not different content. Both UD and swainsonine content coincided at their lowest, while from the other treatments. swainsonine concentration was variable when medium or high amounts of endophyte DNA were found. Our findings highlight the reliability of qPCR Multiplex PCR for four Sclerotinia species for studying endophyte colonization and show environmental cues affecting A. W. Abd-Elmagid (1), P. GARRIDO (1), R. M. Hunger (1), H. A. Melouk the swainsonine synthesis in planta. (2), M. Arif (1), C. D. Garzon (1) (1) Dept. of Entomology and Plant Pathology, Oklahoma State University, Kasugamycin in combination with copper or mancozeb for management Stillwater, OK, U.S.A.; (2) USDA-ARS, Dept. Entomology and Plant of walnut blight in California Pathology, Oklahoma State University, Stillwater, OK, U.S.A. J. ADASKAVEG (1), H. Forster (2), L. Wade (3) Phytopathology 101:S2 (1) University of California, Riverside, CA, U.S.A.; (2) University of California, Davis, CA, U.S.A.; (3) Arysta Life Science, Roseville, CA, U.S.A.
Recommended publications
  • (US) 38E.85. a 38E SEE", A
    USOO957398OB2 (12) United States Patent (10) Patent No.: US 9,573,980 B2 Thompson et al. (45) Date of Patent: Feb. 21, 2017 (54) FUSION PROTEINS AND METHODS FOR 7.919,678 B2 4/2011 Mironov STIMULATING PLANT GROWTH, 88: R: g: Ei. al. 1 PROTECTING PLANTS FROM PATHOGENS, 3:42: ... g3 is et al. A61K 39.00 AND MMOBILIZING BACILLUS SPORES 2003/0228679 A1 12.2003 Smith et al." ON PLANT ROOTS 2004/OO77090 A1 4/2004 Short 2010/0205690 A1 8/2010 Blä sing et al. (71) Applicant: Spogen Biotech Inc., Columbia, MO 2010/0233.124 Al 9, 2010 Stewart et al. (US) 38E.85. A 38E SEE",teWart et aal. (72) Inventors: Brian Thompson, Columbia, MO (US); 5,3542011/0321197 AllA. '55.12/2011 SE",Schön et al.i. Katie Thompson, Columbia, MO (US) 2012fO259101 A1 10, 2012 Tan et al. 2012fO266327 A1 10, 2012 Sanz Molinero et al. (73) Assignee: Spogen Biotech Inc., Columbia, MO 2014/0259225 A1 9, 2014 Frank et al. US (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CA 2146822 A1 10, 1995 patent is extended or adjusted under 35 EP O 792 363 B1 12/2003 U.S.C. 154(b) by 0 days. EP 1590466 B1 9, 2010 EP 2069504 B1 6, 2015 (21) Appl. No.: 14/213,525 WO O2/OO232 A2 1/2002 WO O306684.6 A1 8, 2003 1-1. WO 2005/028654 A1 3/2005 (22) Filed: Mar. 14, 2014 WO 2006/O12366 A2 2/2006 O O WO 2007/078127 A1 7/2007 (65) Prior Publication Data WO 2007/086898 A2 8, 2007 WO 2009037329 A2 3, 2009 US 2014/0274707 A1 Sep.
    [Show full text]
  • RENATA RODRIGUES GOMES.Pdf
    UNIVERSIDADE FEDERAL DO PARANÁ RENATA RODRIGUES GOMES FILOGENIA E TAXONOMIA DO GÊNERO Diaporthe E A SUA APLICAÇÃO NO CONTROLE BIOLÓGICO DA MANCHA PRETA DOS CITROS CURITIBA 2012 RENATA RODRIGUES GOMES FILOGENIA E TAXONOMIA DO GÊNERO Diaporthe E A SUA APLICAÇÃO NO CONTROLE BIOLÓGICO DA MANCHA PRETA DOS CITROS Tese apresentada ao Programa de Pós- graduação em Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, como requisito parcial a obtenção do título de Doutor em Ciências Biológicas, Área de Concentração: Genética. Orientadores: Prof. a Dr. a ChirleiGlienke Phd Pedro Crous Co-Orientador: Prof. a Dr. a Vanessa Kava Cordeiro CURITIBA 2012 Dedico A minha família, pelo carinho, apoio, paciência e compreensão em todos esses anos de distância dedicados a realização desse trabalho. “O Sertanejo é antes de tudo um forte” Euclides da Cunha no livro Os Sertões Agradecimentos À minha orientadora, Profª Drª Chirlei Glienke, pela oportunidade, ensinamentos, inestimáveis sugestões e contribuições oferecidas, as quais, sem dúvida, muito enriqueceram o trabalho. Sobretudo pelo exemplo de dedicação à vida acadêmica. À minha co-orientadora Profª Drª Vanessa Kava-Cordeiron e a minha banca de acompanhamento, Lygia Vitória Galli-Terasawa pelas sugestões e contribuições oferecidas, cooperando para o desenvolvimento desse trabalho e pela convivência e auxílio no LabGeM. To all people at CBS-KNAW Fungal Biodiversity Centre in Holland who cooperated with this study and for all the great moments together, in special: I am heartily thankful to PhD Pedro Crous, whose big expertise and understanding were essential to this study. I thank you for giving me the great opportunity to work in your "Evolutionary Phytopathology” research group and for the enormous dedication, excellent supervision, ideas and guidance throughout all stages of the preparation of this thesis.
    [Show full text]
  • Discovering the Environmental Factors Affecting the Distribution of Terfezia Claveryi Chatin in the Northwest of the Region of Murcia
    Discovering the environmental factors affecting the distribution of Terfezia claveryi Chatin in the Northwest of the Region of Murcia Motaz Abdelaziz st 21 September 2018 Supervised by: Prof. Asuncion Morte (The University of Murcia) Prof. Jose-Antonio Bonet (The University of Lleida) Dr. Alfonso Navarro (The University of Murcia) 1 University of Lleida School of Agrifood and Forestry Science and Engineering Master thesis: Discovering the environmental factors affecting the distribution of Terfezia claveryi Chatin in the Northwest of the Region of Murcia Presented by: Motaz Abdelaziz Supervised by: Prof. Asuncio Morte Prof. Jose-Antonio Bonet Dr. Alfonoso Navarro 2 Table of Contents ABSTRACT: ..................................................................................................................................................... 4 1. INTRODUCTION .................................................................................................................................... 5 1.1. Importance of fungi in Europe ................................................................................................... 5 1.2. What is a desert truffle? ............................................................................................................ 5 1.3. Tefezia claveryi distribution. ..................................................................................................... 7 1.4. T. claveryi economical value .....................................................................................................
    [Show full text]
  • The Diversity of Terfezia Desert Truffles: New Species and a Highly Variable Species Complex with Intrasporocarpic Nrdna ITS Heterogeneity
    Mycologia, 103(4), 2011, pp. 841–853. DOI: 10.3852/10-312 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 The diversity of Terfezia desert truffles: new species and a highly variable species complex with intrasporocarpic nrDNA ITS heterogeneity Ga´bor M. Kova´cs1 INTRODUCTION Tı´mea K. Bala´zs Desert truffles are hypogeous ascomycetes living on Department of Plant Anatomy, Institute of Biology, Eo¨tvo¨s Lora´nd University, Pa´zma´ny Pe´ter se´ta´ny 1/C, several continents (Dı´ez et al. 2002, Ferdman et al. H-1117 Budapest, Hungary 2005, Trappe et al. 2010a) where they play important roles as mycorrhizal partners of plants and their fruit Francisco D. Calonge bodies are a potentially important food source Marı´a P. Martı´n (Trappe et al. 2008a, b). A study revealed that fungi Departamento de Micologı´a, Real Jardı´n Bota´nico, adapted to deserts evolved in several lineages of the CSIC, Plaza de Murillo 2, 28014 Madrid, Spain Pezizaceae (Trappe et al. 2010a). Among the genera in these lineages Terfezia represents the best known and probably most frequently collected desert truffles Abstract: Desert truffles belonging to Terfezia are (Dı´ez et al. 2002, Læssøe and Hansen 2007). well known mycorrhizal members of the mycota of the Although several members of the genus were de- Mediterranean region and the Middle East. We aimed scribed from different continents, recent molecular- to test (i) whether the morphological criteria of taxonomic studies revealed that probably only the Terfezia species regularly collected in Spain enable species from the Mediterranean region and the their separation and (ii) whether the previously Middle East belong in Terfezia s.
    [Show full text]
  • Genetic Diversity of the Genus Terfezia (Pezizaceae, Pezizales): New Species and New Record from North Africa
    Phytotaxa 334 (2): 183–194 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.334.2.7 Genetic diversity of the genus Terfezia (Pezizaceae, Pezizales): New species and new record from North Africa FATIMA EL-HOUARIA ZITOUNI-HAOUAR1*, JUAN RAMÓN CARLAVILLA2, GABRIEL MORENO2, JOSÉ LUIS MANJÓN2 & ZOHRA FORTAS1 1 Laboratoire de Biologie des Microorganismes et de Biotechnologie, Département de Biotechnologie, Faculté des Sciences de la nature et de la vie, Université d’Oran 1 Ahmed Ben Bella, Algeria 2 Departamento Ciencias de la Vida, Facultad de Biología, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain * Corresponding author: [email protected] Abstract Morphological and phylogenetic analyses of large ribosomal subunit (28S rDNA) and internal transcribed spacer (ITS rDNA) of Terfezia samples collected from several bioclimatic zones in Algeria and Spain revealed the presence of six dis- tinct Terfezia species: T. arenaria, T. boudieri, T. claveryi; T. eliocrocae (reported here for the first time from North Africa), T. olbiensis, and a new species, T. crassiverrucosa sp. nov., proposed and described here, characterized by its phylogenetic position and unique combination of morphological characters. A discussion on the unresolved problems in the taxonomy of the spiny-spored Terfezia species is conducted after the present results. Key words: desert truffles, Pezizaceae, phylogeny, taxonomy Introduction The genus Terfezia (Tul. & C.Tul.) Tul. & C. Tul. produce edible hypogeous ascomata growing mostly in arid and semi-arid ecosystems, although they can be found also in a wide range of habitats, such as temperate deciduous forests, conifer forests, prairies, or even heath lands (Moreno et al.
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity
    Journal of Fungi Article Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity Daniel Peterson 1, Tang Li 2, Ana M. Calvo 1,* and Yanbin Yin 2,* 1 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; [email protected] 2 Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA; [email protected] * Correspondence: [email protected] (A.M.C.); [email protected] (Y.Y.); Tel.: +1-(815)-753-0451 (A.M.C.); +1-(402)-472-4303 (Y.Y.) Abstract: Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest Citation: Peterson, D.; Li, T.; Calvo, occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are A.M.; Yin, Y. Categorization of Orthologous Gene Clusters in 92 also identified to have higher significance and occurrence in group-specific orthogroups.
    [Show full text]
  • Proquest Dissertations
    Bedouin ethnobotany: Plant concepts and plant use in a desert pastoral world Item Type text; Dissertation-Reproduction (electronic) Authors Mandaville, James Paul Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 09/10/2021 11:40:39 Link to Item http://hdl.handle.net/10150/290142 BEDOUIN ETHNOBOTANY: PLANT CONCEPTS AND PLANT USE IN A DESERT PASTORAL WORLD by James Paul Mandaville Copyright © James Paul Mandaville 2004 A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN ARID LANDS RESOURCE SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2004 UMI Number: 3158126 Copyright 2004 by Mandaville, James Paul All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3158126 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Louro R, Et Al. Terfezia Solaris-Libera Sp. Nov., a New Mycorrhizal Species Within the Spiny-Spored Copyright© Louro R, Et Al
    Open Access Journal of Mycology & Mycological Sciences ISSN: 2689-7822 MEDWIN PUBLISHERS Committed to Create Value for researchers Terfezia solaris-libera sp. Nov., A New Mycorrhizal Species within the Spiny-Spored Lineages Louro R1*, Nobre T1 and Santos Silva C2 1Mediterranean Institute for Agriculture, Environment and Development, Portugal Research Article 2Department of Biology, Mediterranean Institute for Agriculture Environment and Volume 3 Issue 1 Development, Portugal Received Date: April 01, 2020 Published Date: April 30, 2020 *Corresponding author: Rogério Louro, Mediterranean Institute for Agriculture, DOI: 10.23880/oajmms-16000121 Environment and Development, University of Evora, Apartado, Portugal, Tel: 947002554; Email: [email protected] Abstract A new Terfezia species-Terfezia solaris-libera sp. nov., associated with Tuberaria guttata (Cistaceae) is described from Alentejo, Portugal. T. solaris-libera sp. nov. distinct morphology has been corroborated by its unique ITS-rDNA sequence. Macro and micro morphologic descriptions and phylogenetic analyses of ITS data for this species are pro- vided and discussed in relation to similar spiny-spored species in this genus and its putative host plant Tuberaria guttata. T. solaris-libera sp. nov. differs from other spiny-spored Terfezia species by its poorly delimited and thicker peridium and distinct spore ornamentation, and from all Terfezia spp. in it’s ITS nrDNA sequence. In comparison, T. fanfani usually reach large ascocarp dimensions, often with prismatic peridium cells, with olive green tinges in mature gleba and different spore ornamentation. T. lusitanica has a lighter yellowish and thinner peridium and a blackish gleba upon maturity, T. extremadurensis has a thinner well delimited peridium and Tuber-like gleba and T.
    [Show full text]
  • Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes
    Article Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes Bernd Wemheuer 1,2, Torsten Thomas 2 and Franziska Wemheuer 1,3,†,* 1 Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; [email protected] 2 Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; [email protected] 3 Division of Agricultural Entomology, Department of Crop Sciences, Georg-August University of Göttingen, D-37077 Göttingen, Germany * Correspondence: [email protected] † Present address: Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia. Received: 31 December 2018; Accepted: 23 January 2019; Published: 27 January 2019 Abstract: Despite the importance of endophytic fungi for plant health, it remains unclear how these fungi are influenced by grassland management practices. Here, we investigated the effect of fertilizer application and mowing frequency on fungal endophyte communities and their life strategies in aerial tissues of three agriculturally important grass species (Dactylis glomerata L., Festuca rubra L. and Lolium perenne L.) over two consecutive years. Our results showed that the management practices influenced fungal communities in the plant holobiont, but observed effects differed between grass species and sampling year. Phylogenetic diversity of fungal endophytes in D. glomerata was significantly affected by mowing frequency in 2010, whereas fertilizer application and the interaction of fertilization with mowing frequency had a significant impact on community composition of L.
    [Show full text]
  • Sorghum Bibliography 1982
    SORGHUM BIBLIOGRAPHY 1982 SORGHUM AND MILLETS INFORMATION CENTER Sorghum Bibliography 1982 Compiled by R.G. NAIDU P.K. SINHA ICRISAT Sorghum and Millets Information Center International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India April 1986 The International Crops Research Institute for the Semi-Arid Tropics is a nonprofit scientific educational institute receiving support from donors through the Consultative Group on International Agricultural Research. Donors to ICRISAT include governments and agencies of Australia, Belgium, Canada, Federal Republic of Germany, Finland, France, India, Italy, Japan, Netherlands, Nigeria, Norway, People's Republic of China, Sweden, Switzerland, United Kingdom, United States of America, and the following international and private organizations: Arab Bank for Economic Development in Africa, Asian Develop- ment Bank, International Development Research Centre, International Fertilizer Development Center, International Fund for Agricultural Development, The European Economic Community, The Ford Foundation, The Leverhulme Trust, The Opec Fund for International Development, The Population Council, The Rockefeller Foundation, The World Bank, and the United Nations Development Pro- gramme. Information and conclusions in this publication do not necessarily reflect the position of the aforementioned governments, agencies, and international and private organizations. Correct citation: ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Sorghum
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0107070 A1 Fefer Et Al
    US 20140.107070A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0107070 A1 Fefer et al. (43) Pub. Date: Apr. 17, 2014 (54) PARAFFINCOIL-IN-WATEREMULSIONS Publication Classification FOR CONTROLLING INFECTION OF CROP PLANTS BY FUNGAL PATHOGENS (51) Int. C. AOIN 27/00 (2006.01) (75) Inventors: Michael Fefer, Whitby (CA); Jun Liu, AOIN 43/56 (2006.01) Oakville (CA) AOIN 55/00 (2006.01) AOIN 43/653 (2006.01) (73) Assignee: SUNCOR ENERGY INC., Calgary, AB (52) U.S. C. (CA) CPC .............. A0IN 27/00 (2013.01); A0IN 43/653 (2013.01); A0IN 43/56 (2013.01); A0IN 55/00 (21) Appl. No.: 14/123,716 (2013.01) USPC .............. 514/63; 514/762: 514/383: 514/.407 (22) PCT Fled: Jun. 4, 2012 (57) ABSTRACT (86) PCT NO.: PCT/CA2O12/OSO376 This disclosure features fungicidal combinations that include S371 (c)(1), a paraffinic oil and an emulsifier. The combinations can fur (2), (4) Date: Dec. 3, 2013 ther include one or more of the following: pigments, silicone Surfactants, anti-settling agents, conventional fungicides Related U.S. Application Data such as demethylation inhibitors (DMI) and quinone outside (60) Provisional application No. 61/493,118, filed on Jun. inhibitors (Qol) and water. The fungicidal combinations are 3, 2011, provisional application No. 61/496,500, filed used for controlling infection of a crop plant by a fungal on Jun. 13, 2011. pathogen. Patent Application Publication Apr. 17, 2014 Sheet 1 of 6 US 2014/O107070 A1 FIGURE 1 Patent Application Publication Apr. 17, 2014 Sheet 2 of 6 US 2014/O107070 A1 FIGURE 2 Patent Application Publication Apr.
    [Show full text]