Review Our Ni 43-101 Technical Report Here

Total Page:16

File Type:pdf, Size:1020Kb

Review Our Ni 43-101 Technical Report Here Titan Gold Property Form 43-101F1 Technical Report June 2020 TECHNICAL REPORT On the Titan Gold Property Klotz Lake Area, NTS Map 42F Thunder Bay Mining District Northwestern Ontario, Canada Prepared for: SOLDERA MINING CORP. 6th Floor 905 West Pender Street Vancouver, BC V6C 1L6 Prepared by: Martin Ethier, P.Geo. Consulting Geologist Hinterland Geoscience and Geomatics 620 Brewster Street. Haileybury, Ontario P0J 1K0 June 12, 2020 (Effective Date: June 12, 2020) 1 | P a g e Titan Gold Property Form 43-101F1 Technical Report June 2020 TABLE OF CONTENTS 1.0 SUMMARY ............................................................................................................... 6 2.0 INTRODUCTION ..................................................................................................... 10 2.1 Purpose of Report ............................................................................................. 10 2.2 Sources of Information ..................................................................................... 10 3.0 RELIANCE ON OTHER EXPERTS .............................................................................. 10 4.0 PROPERTY DESCRIPTION AND LOCATION ............................................................. 11 5.0 ACCESS, CLIMATE, PHYSIOGRAPHY, LOCAL RESOURCES, AND INFRASTRUCTURE 17 5.1 Access ................................................................................................................ 17 5.2 Climate .............................................................................................................. 17 5.3 Physiography ..................................................................................................... 19 5.4 Local Resources and Infrastructure .................................................................. 19 6.0 HISTORY ................................................................................................................ 20 6.1 Work by Goldstream and Prodigy 2011-12 ...................................................... 30 6.1.1 Field Exploration ........................................................................................... 30 6.1.2 Diamond Core Drilling ................................................................................... 30 6.1.3 Diamond Core Drilling Results ...................................................................... 31 6.2 2016 Exploration Work ..................................................................................... 33 2.3 2019 – 20 Exploration Work by Pleson Geoscience ......................................... 35 2.3.1 Mapping, Prospecting, Trenching, and Sampling ............................................. 35 2.2.3 Ground Geophysical Survey 2020 ..................................................................... 39 7.0 GEOLOGICAL SETTING AND MINERALIZATION ..................................................... 43 7.1 Regional Geology .............................................................................................. 43 7.2 Property Geology .............................................................................................. 44 7.3 Mineralization ................................................................................................... 45 8.0 DEPOSIT TYPES ...................................................................................................... 50 9.0 EXPLORATION ....................................................................................................... 52 10.0 DRILLING ............................................................................................................... 52 11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY .............................................. 52 11.1 2011-12 Drill Core Samples Goldstream and Prodigy ...................................... 52 11.2 Samples from Other Exploration Work............................................................. 53 11.3 Author Collected Samples ................................................................................. 54 12.0 DATA VERIFICATION .............................................................................................. 54 13.0 MINERAL PROCESSING AND METALLURGICAL TESTING ...................................... 59 14.0 MINERAL RESOURCE ESTIMATES .......................................................................... 59 23.0 ADJACENT PROPERTIES ......................................................................................... 59 23.1 Prodigy Gold’s Hardrock East Project ............................................................... 59 23.2 Greenstone Gold Mines Group Viper Property ................................................ 60 24.0 OTHER RELEVANT DATA AND INFORMATION ...................................................... 62 24.1 Environmental Concerns ................................................................................... 62 2 | P a g e Titan Gold Property Form 43-101F1 Technical Report June 2020 25.0 INTERPRETATION AND CONCLUSIONS ................................................................. 62 26.0 RECOMMENDATIONS ........................................................................................... 65 26.1 Budget ............................................................................................................... 66 27.0 REFERENCES .......................................................................................................... 67 28.0 SIGNATURE PAGE .................................................................................................. 70 29.0 CERTIFICATE OF AUTHOR ...................................................................................... 71 3 | P a g e Titan Gold Property Form 43-101F1 Technical Report June 2020 LIST OF FIGURES Figure 1: Property Location Map .......................................................................................... 15 Figure 2: Claim map with physiography ............................................................................... 16 Figure 3: Greenstone Average Annual Temperatures (Source: Weatherspark.com) .......... 18 Figure 4: Greenstone Average Annual Precipitation (Source: Weatherspark.com) ............. 18 Figure 5: Location of Mineral Showings and Historical Drill Holes ....................................... 25 Figure 6: Historical drill hole detailed map A ........................................................................ 26 Figure 7: Historical drill hole detailed map B ........................................................................ 27 Figure 8: Historical drill hole detailed map C ........................................................................ 28 Figure 9: Historical drill hole detailed map D ....................................................................... 29 Figure 10: 2019-20 Sampling and Trench Location Map ...................................................... 37 Figure 11: 2019 Updated Map of the Property Geology ...................................................... 38 Figure 12: Ground 2019-20 geophysical survey grid location .............................................. 40 Figure 13: Iron grid geophysical survey interpretation map ................................................ 41 Figure 14: Geophysical survey map of Morrow Grid ............................................................ 42 Figure 15: Regional geology map of Beardmore – Geraldton Greenstone Belt ................... 46 Figure 16: Regional Geology map .......................................................................................... 47 Figure 17: Property Geology Map ......................................................................................... 48 Figure 18: Property geology map with historical Solarus Grid ............................................. 49 Figure 19: Location of samples collected by the Author ...................................................... 58 Figure 20: Map of Cameron Gold and other Projects of First Mining .................................. 60 Figure 21: Adjacent Properties Map ..................................................................................... 61 4 | P a g e Titan Gold Property Form 43-101F1 Technical Report June 2020 LIST OF TABLES Table 1: List of Property Claims ............................................................................................ 13 Table 2: Historical work summary 1958-2004 ...................................................................... 21 Table 3 : Mineral showings summary provided in MDI database ........................................ 22 Table 4:Highlights of historical drill intersections Tomorrow Lake Showing ....................... 24 Table 5: Highlights of 2011 Titan Showing Channel Sampling Program ............................... 30 Table 6: 2012 Diamond Drill Program................................................................................... 31 Table 7: 2012 Titan Showing Drill Results Highlights ............................................................ 32 Table 8: 2016 sampling results ............................................................................................. 34 Table 9: Grab samples details ............................................................................................... 35 Table 10: Sample description from May 23, 2020 Property visit ......................................... 56 Table 11: Phase 1 budget ...................................................................................................... 66 LIST OF PHOTOS Photo 1: Titan showing looking
Recommended publications
  • Lithology and Internal Structure of the San Andreas Fault at Depth Based
    1 1 Lithology and Internal Structure of the San Andreas Fault at depth based on 2 characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at 3 Depth (SAFOD) Borehole 4 By Kelly K. Bradbury1, James P. Evans1, Judith S. Chester2, Frederick M. Chester2, and David L. Kirschner3 5 1Geology Department, Utah State University, Logan, UT 84321-4505 6 2Center for Tectonophysics and Department of Geology and Geophysics, Texas A&M University, College Station, 7 Texas 77843 8 3Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, Missouri 63108 9 10 Abstract 11 We characterize the lithology and structure of the spot core obtained in 2007 during 12 Phase 3 drilling of the San Andreas Fault Observatory at Depth (SAFOD) in order to determine 13 the composition, structure, and deformation processes of the fault zone at 3 km depth where 14 creep and microseismicity occur. A total of approximately 41 m of spot core was taken from 15 three separate sections of the borehole; the core samples consist of fractured arkosic sandstones 16 and shale west of the SAF zone (Pacific Plate) and sheared fine-grained sedimentary rocks, 17 ultrafine black fault-related rocks, and phyllosilicate-rich fault gouge within the fault zone 18 (North American Plate). The fault zone at SAFOD consists of a broad zone of variably damaged 19 rock containing localized zones of highly concentrated shear that often juxtapose distinct 20 protoliths. Two zones of serpentinite-bearing clay gouge, each meters-thick, occur at the two 21 locations of aseismic creep identified in the borehole on the basis of casing deformation.
    [Show full text]
  • Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs
    Pure Appl. Geophys. Ó 2014 Springer Basel DOI 10.1007/s00024-014-0896-6 Pure and Applied Geophysics Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions 1 1 1 1 1 KELLY K. BRADBURY, COLTER R. DAVIS, JOHN W. SHERVAIS, SUSANNE U. JANECKE, and JAMES P. EVANS Abstract—We examine the fine-scale variations in mineralogi- 1. Introduction cal composition, geochemical alteration, and texture of the fault- related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Well-constrained geological, geochemical, and Observatory at Depth (SAFOD) borehole near Parkfield, California. geophysical models of active fault zones are needed if This work provides insight into the physical and chemical properties, we are to understand fault zone behavior and earth- structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. quake deformation, constraining the factors that affect Exhumed outcrops within the SAF system comprised of serpentinite- the distribution of earthquakes, and the nature of slip bearing protolith are examined for comparison at San Simeon, Goat in the shallow crust by developing realistic models of Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple subsurface fault zone structure and ground motion juxtaposed lenses of sheared, foliated siltstone and shale with block- predictions. Earthquakes nucleate in rocks at depth in-matrix fabric, black cataclasite to ultracataclasite, and sheared (e.g., FAGERENG and TOY 2011;SIBSON 1977; 2003), serpentinite-bearing, finely foliated fault gouge.
    [Show full text]
  • Metamorphic Rocks.Pdf
    Metamorphism & Metamorphic Rocks (((adapted from Brunkel, 2012) Metamorphic Rocks . Changed rocks- with heat and pressure . But not melted . Change in the solid state . Textural changes (always) . Mineralogy changes (usually) Metamorphism . The mineral changes that transform a parent rock to into a new metamorphic rock by exposure to heat, stress, and fluids unlike those in which the parent rock formed. granite gneiss Geothermal gradient Types of Metamorphism . Contact metamorphism – – Happens in wall rock next to intrusions – HEAT is main metamorphic agent . Contact metamorphism Contact Metamorphism . Local- Usually a zone only a few meters wide . Heat from plutons intruded into “cooler” country rock . Usually forms nonfoliated rocks Types of Metamorphism . Hydrothermal metamorphism – – Happens along fracture conduits – HOT FLUIDS are main metamorphic agent Types of Metamorphism . Regional metamorphism – – Happens during mountain building – Most significant type – STRESS associated with plate convergence & – HEAT associated with burial (geothermal gradient) are main metamorphic agents . Contact metamorphism . Hydrothermal metamorphism . Regional metamorphism . Wide range of pressure and temperature conditions across a large area regional hot springs hydrothermal contact . Regional metamorphism Other types of Metamorphism . Burial . Fault zones . Impact metamorphism Tektites Metamorphism and Plate Tectonics . Fault zone metamorphism . Mélange- chaotic mixture of materials that have been crumpled together Stress (pressure) . From burial
    [Show full text]
  • The Initiation and Development of Metamorphic Foliation in the Otago Schist, Part 2: Evidence from Quartz Grain-Shape Data
    The initiation and development of metamorphic foliation in the Otago Schist, Part 2: Evidence from quartz grain-shape data AARON STALLARD,1 DAVID SHELLEY1 AND STEVE REDDY2 1Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ([email protected]) 2Tectonics Special Research Centre, Dept. of Applied Geology, Curtin University of Technology, Perth, WA 6845, Australia ABSTRACT Shape, size and orientation measurements of quartz grains sampled along two transects that cross zones of increasing metamorphic grade in the Otago Schist, New Zealand, reveal the role of quartz in the progressive development of metamorphic foliation. Sedimentary compaction and diagenesis contributed little to forming a shape preferred orientation (SPO) within the analysed samples. Metamorphic foliation was initiated at sub-greenschist facies conditions as part of a composite S1- bedding structure parallel to the axial planes of tight to isoclinal F1 folds. An important component of this foliation is a pronounced quartz SPO that formed dominantly by the effect of dissolution- precipitation creep on detrital grains in association with F1 strain. With increasing grade, the following trends are evident from the SPO data: (i) a progressive increase in the aspect ratio of grains in sections parallel to lineation, and the development of blade-shaped grains; (ii) the early development of a strong shape preferred orientation so that blade lengths define the linear aspect of the foliation (lineation) and the intermediate axes of the blades define a partial girdle about the lineation; (iii) a slight thinning and reduction in volume of grains in the one transect; (iv) an actual increase in thickness and volume in the survivor grains of the second transect.
    [Show full text]
  • Characterization of Olivine Fabrics and Mylonite in the Presence of Fluid
    Jung et al. Earth, Planets and Space 2014, 66:46 http://www.earth-planets-space.com/content/66/1/46 FULL PAPER Open Access Characterization of olivine fabrics and mylonite in the presence of fluid and implications for seismic anisotropy and shear localization Sejin Jung1, Haemyeong Jung1* and Håkon Austrheim2 Abstract The Lindås Nappe, Bergen Arc, is located in western Norway and displays two high-grade metamorphic structures. A Precambrian granulite facies foliation is transected by Caledonian fluid-induced eclogite-facies shear zones and pseudotachylytes. To understand how a superimposed tectonic event may influence olivine fabric and change seismic anisotropy, two lenses of spinel lherzolite were studied by scanning electron microscope (SEM) and electron back-scattered diffraction (EBSD) techniques. The granulite foliation of the surrounding anorthosite complex is displayed in ultramafic lenses as a modal variation in olivine, pyroxenes, and spinel, and the Caledonian eclogite-facies structure in the surrounding anorthosite gabbro is represented by thin (<1 cm) garnet-bearing ultramylonite zones. The olivine fabrics in the spinel bearing assemblage were E-type and B-type and a combination of A- and B-type lattice preferred orientations (LPOs). There was a change in olivine fabric from a combination of A- and B-type LPOs in the spinel bearing assemblage to B- and E-type LPOs in the garnet lherzolite mylonite zones. Fourier transform infrared (FTIR) spectroscopy analyses reveal that the water content of olivine in mylonite is much higher (approximately 600 ppm H/Si) than that in spinel lherzolite (approximately 350 ppm H/Si), indicating that water caused the difference in olivine fabric.
    [Show full text]
  • "Influence of Geologic Structure on Flow Patterns of Groundwater in The
    INFLUENCE OF GEOLOGIC STRUCTURE ON FLOW PATTERNS OF GROUNDWATER IN THE VICINITY OF YUCA MOUNTAIN - PROGRESS ON REVIEW OF SELECTED LITERATURE Prepared for Nuclear Regulatory Commission Contract NRC-02-88-005 Prepared by Stephen R. Young Center for Nuclear Waste Regulatory Analyses San Antonio, Texas September 1992 INFLUENCE OF GEOLOGIC STRUCTURE ON FLOW PATTERNS OF GROUNDWATER IN THE VICINITY OF YUCCA MOUNTAIN- PROGRESS ON REVIEW OF SELECTED LITERATURE 1.1 INTRODUCTION The purpose of this report is to document progress on a review of literature being conducted to determine the state of knowledge about and availability of data pertaining to control of groundwater flow by structural geologic features, especially faults, fracture zones, and structural juxtaposition of aquifer units. The objective of the literature review is to provide initial bases for combined modeling of structural and groundwater system evolution. Significant technical uncertainties exist concerning the relationship between a region of relatively high potentiometric gradient at the north end of Yucca Mountain and the role of faults as potential barriers to local-scale flow (Czarnecki, 1989b; Sinton, 1989). Concern also exists as to the potential for continued fault displacement to create fault-controlled conduits of flow from the region of high gradient (Ahola and Sagar, 1992; Sinton, 1989). Existing analyses and scientific/technical investigations considering structural control of groundwater flow at Yucca Mountain occur in four basic classes: (i) models of flow and transport in natural fracture systems, (ii) local-scale field oriented investigations and models of flow around faults and fault zones, (iii) models of sub-regional flow in the immediate Yucca Mountain area, and (iv) regional scale models of interbasin flow.
    [Show full text]
  • Metamorphic Fabrics
    11/30/2015 Geol341 J. Toro Topics • Fabrics • Foliation, cleavage, lineation Metamorphic Rocks and – Cleavage and Folds –Geometry Cleavage Development – Strain significance • Origin of Cleavage – Pressure solution – Passive rotation – Recrystallization • Shear zones Many diagrams are from Earth Structure, van der Pluijm and Marshak, 2004 2013 Geothermal Gradient and Metamorphism Naming of Metamorphic Rocks Slatey cleavage Gneiss Segregation of mafic and felsic components Where does it come from? 1 11/30/2015 Looks like bedding, but is it? Metamorphic layering Brooks Range, AK Quartz-mica schist Isoclinal Fold Transposition of Layering Fabric “Arrangement of component features in a rock” van der Pluijm & Marshak •Includes: •Texture •Composition •Microstructure •Preferred Orientation Horizontal fabric => Vertical fabric 2 11/30/2015 Quartz-mica schist Fabric Elements •Bedding (S0) •Compositional layering •Crystallographic orientation •Fold Hinges •Cleavage planes (S1) •Mineral elongation lineation Passchier and Trouw (1996) Metamorphic Fabrics Metamorphic Fabrics • Foliation : Cleavage, Schistosity • Foliation • Lineation: Mineral Lineation, Intersection Lineation – Cleavage – Schistosity • Lineation Random fabric S-tectonite L-tectonite L/S-tectonite Foliation Lineation S-Tectonites L-Tectonites Schists Columbia Pluton, VA Lineated Gneiss USGS photo U. Western Ontario photo 3 11/30/2015 L-S Tectonites 3D Strain - Flinn diagram No strain along 3rd dimension Cigars S =S >S S1/S2 1 2 3 S1>S2=S3 Lineated and foliated gneiss, Himalayas Prolate
    [Show full text]
  • Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s)
    [Show full text]
  • Lab 5: Textures and Identification of Metamorphic Rocks
    LAB 5: TEXTURES AND IDENTIFICATION OF METAMORPHIC ROCKS OBJECTIVES: 1) to become familiar with textures characteristic of metamorphic rocks; 2) to become familiar with properties important in recognizing and classifying metamorphic rocks; 3) to become familiar with the mineralogy of common metamorphic rocks. INTRODUCTION: Metamorphic rocks are formed from pre-existing rocks by recrystallization in the solid state under the effects of heat, pressure, shearing (grinding), or replacement by materials (ions) dissolved in water. They are classified on the basis of texture (foliated vs. non-foliated), grain-size, and mineral composition. Texture: Metamorphic rocks may have either foliated (layered) or non-foliated texture. Foliated texture is a pervasive layering caused by compositional layering or by the parallel orientation of platy (e.g, mica) or elongate (e.g., amphibole) mineral grains. Foliation is caused by recrystallization under directed (compressional) stress. However, if the rock lacks platy or elongate minerals, it will not develop foliation even though it recrystallized under very great pressure (examples are marble and quartzite). Grain size: Grain size reflects pressure and temperature conditions of metamorphism. Generally, higher temperatures and pressures (higher grades of metamorphism) favor larger grains, and lower temperatures and pressures favor smaller grains. Mineral composition: Mineral composition reflects the composition of the parent rock and the pressure and temperature conditions under which the metamorphism occurred. See Marshak p. 241-244 for discussion of metamorphic grades and for the index minerals used to identify them. Classification: Foliated metamorphic rocks: Grain size is the main basis for classification of foliated metamorphic rocks. Slates are very fine-grained, well-foliated (very well-layered) rocks.
    [Show full text]
  • Permeability and Rock Fabric from Wireline Logs, Arab-D Reservoir, Ghawar Field, Saudi Arabia
    GeoArabia, Vol. 6, No. 4, 2001 Gulf PetroLink, Bahrain Permeability and Rock Fabric from Wireline Logs, Arab-D Reservoir, Ghawar Field, Saudi Arabia F. Jerry Lucia, James W. Jennings, Jr., and Michael Rahnis, The University of Texas at Austin, and Franz O. Meyer, Saudi Aramco ABSTRACT The goal of reservoir characterization is to distribute petrophysical properties in 3-D. Porosity, permeability, and saturation values have no intrinsic spatial information and must be linked to a 3-D geologic model to be distributed in space. This link is provided by relating petrophysical properties to rock fabrics. The vertical succession of rock fabrics was shown to be useful in constructing a geologic framework for distributing porosity, permeability, and saturation in 3-D. Permeability is perhaps the most difficult petrophysical property to obtain and image because its calculation from wireline logs requires the estimation of pore-size distribution. In this study of the Arab-D reservoir, rock fabric and interparticle porosity were used to estimate pore-size distribution. Cross- plots of water saturation and porosity, calibrated with rock-fabric descriptions, formed the basis for determining the distribution of rock fabric and pore size from resistivity and porosity logs. Interparticle porosity was obtained from travel-time/porosity, cross-plot relationships. A global porosity-permeability transform that related rock fabric, interparticle porosity, and permeability was the basis for calculating permeability from wireline logs. Calculated permeability values compared well with core permeability. In uncored wells, permeability was summed vertically and the horizontal permeability profile compared with flow-meter data. The results showed good correlation in most wells.
    [Show full text]
  • The Giant Okavango and Related Ma¢C Dyke Swarms, Karoo Igneous Province, Northern Botswana
    Earth and Planetary Science Letters 202 (2002) 595^606 www.elsevier.com/locate/epsl 40Ar/39Ar geochronology and structural data from the giant Okavango and related ma¢c dyke swarms, Karoo igneous province, northern Botswana B. Le Gall a;Ã, G. Tshoso a, F. Jourdan b,G.Fe¤raud b, H. Bertrand c, J.J. Tiercelin a, A.B. Kampunzu d, M.P. Modisi d, J. Dyment a, M. Maia a a UMR-CNRS 6538, Institut Universitaire Europe¤en de la Mer, 29280 Plouzane¤, France b UMR-CNRS 6526 Ge¤osciences Azur, Universite¤ de Nice-Sophia Antipolis, O6108 Nice, France c UMR-CNRS 5570, ENS et UCBL, 69364 Lyon, France d Department of Geology, University of Botswana, Gaborone, Botswana Received 25 February 2002; received in revised form 11 June 2002; accepted 13 June 2002 Abstract In NE Botswana, the Karoo dykes include a major N110‡ dyke swarm known as the Okavango giant dyke swarm (ODS/N110‡) and a second smaller set of N70‡ dykes belonging to the Sabi-Limpopo dyke swarm (SLDS/N70‡). New 40Ar/39Ar plagioclase dating of Karoo dolerites of the giant ODS/N110‡ and the SLDS/N70‡ in NE Botswana yield plateau ages between 179.6 þ 1.2 and 178.4 þ 1.1 Ma. Our data are concordant with previous 40Ar/39Ar ages for Northern Karoo dykes and lava flows exposed in western Zimbabwe. The data are tightly clustered, indicating a short-lived (179^181 Ma) flood basalt magmatism in this region. The new radiometric dates allow the definition of a diachronous Jurassic flood basalt activity in southern Africa.
    [Show full text]
  • Squeezing Blood from a Stone: Inferences Into the Life and Depositional Environments of the Early Archaean
    Squeezing Blood From A Stone: Inferences Into The Life and Depositional Environments Of The Early Archaean Jelte Harnmeijer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington MMX Programs Authorized to Offer Degree: Center for Astrobiology & Early Earth Evolution and Department of Earth & Space Sciences Abstract A limited, fragmentary and altered sedimentary rock record has allowed few constraints to be placed on a possible Early Archaean biosphere, likewise on attendant environmental conditions. This study reports discoveries from three Early Archaean terrains that, taken together, suggest that a diverse biosphere was already well- established by at least ~3.5 Ga, with autotrophic carbon fixation posing the most likely explanation for slightly older 3.7 - 3.8 Ga graphite. Chapter 2 aims to give a brief overview of Early Archaean geology, with special reference to the Pilbara’s Pilgangoora Belt, and biogeochemical cycling, with special reference to banded-iron formation. Chapter 3 reports on the modelled behaviour of abiotic carbon in geological systems, where it is concluded that fractionations incurred through autotrophic biosynthesis are generally out of the reach of equilibrium processes in the crust. In Chapter 4, geological and geochemical arguments are used to identify a mixed provenance for a recently discovered 3.7 - 3.8 Ga graphite-bearing meta-turbidite succession from the Isua Supracrustal Belt in southwest Greenland. In Chapter 5 and 6, similar tools are used to examine a newly discovered 3.52 Ga kerogenous and variably dolomitized magnetite-calcite meta- sediment from the Coonterunah Subgroup at the base of the Pilbara Supergroup in northwest Australia.
    [Show full text]