Geology and Ore Deposits of the Bayhorse Region Custer County, Idaho

Total Page:16

File Type:pdf, Size:1020Kb

Geology and Ore Deposits of the Bayhorse Region Custer County, Idaho UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY, £ W. C. Mendenhall, Director Bulletin 877 GEOLOGY AND ORE DEPOSITS OF THE BAYHORSE REGION CUSTER COUNTY, IDAHO BY CLYDE P. ROSS Prepared in cooperation with the IDAHO BUREAU OF MINES AND GEOLOGY UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1937 For sale by the Superintendent of Documents, Washington, D. C. ........ Price $1.00 CONTENTS Page Abstract-_____________-___-_____------_--,---_-_-_-___------.--__ I Introduction_______ _________________________________________ 2 Location._________---_-___-___---__--,---_---__ -___-._____ 2 Scope......_________________-_______________ 2 Acknowledgments____-_________-_ __-_-..---_-_-_-_-_---_-_-_-_- 5 Earlier work_____________________._ -_.._____-___-_-_-___-__ 5 History. _____________.-______--______..-___-____-__--_________ 5 Topography______ ____.._ ___, ________________ 6 Stratigraphy and petrology...______....______________ 8 General features_____________________-_____________-_-!___-____ 8 Cambrian (?) rocks__-___-____________---_-_-___-_-_-________ 12 Garden Creek phyllite.....__--_-___---__-__--_--_-______-- 12 Bayhorse dolomite.._____._-___-_-___-_____-___-___-______ 12 Ordovician rocks.______-______._________--.-_-_______-.____.._ 14 Ramshorn slate___________________________________________ . 14 Kiunikinic quartzite.______________________________________ 17 Saturday Mountain formation...___________________________ 18 Silurian rocks_______________________________________________ 22 Trail Creek formation...__________________________________ 22 Laketown dolomite-_-__-___-_______---_-___-___-____-_____ 23 Devonian rocks-__------__-_-_--_----_----_-------_---_--___- 25 Jefferson dolomite_-__-_____-_____----__-_-_-_-_-___--____ 25 Grand View dolomite_-___._._..__---.-_---___-__--____..-. 27 Mississippian rocks----_--________-_-_-_-_____________________ 29 Milligen formation. ______ _________________________________ 29 Brazer limestone___________________.______________________ 33 Pennsylvanian rocks.__________________________________________ 36 Wood River formation..___________________________________ 36 Heavy minerals as aids in stratigraphic correlation._______________ 39 Granitic rocks and related intrusions.___________________________ 43 Distribution and correlation._______________________________ 43 Character. _______________________________________________ 44 Quartz monzonite-_---___-_-___---_-_-__--___________- 44 Granodiorite_ _ ______________________________________ 45 Quartz diorite._______________________________________ 46 Gabbro...--__-_______---_____-.___-________________ 47 Aplitic rocks________________________________________ 47 Lamprophy re_ ________________________________________ .48 Age...____________________________._.__ 48 Chain's volcanics__,_-_.______________________________________ 49 Latite-andesite member_________.___-_.____________________ 50 Germer tuffaceous member..-.____________________________ 53 Basalt and related flows__________________________________ 58 Yankee Fork rhyolite member._____________________________ 59 Travertine----.-..--__---_---..--__..-._._________. 62 in Cr IV CONTENTS Stratigraphy and petrology Continued. Challis volcanics Continued. Page Hot springs______________________^_______________________ 64 Age of Challis volcanics___-_-______.__-_-_-----_----__... 65 Tertiary intrusive rocks_________-_____-________________________ 68 Intrusive basalt and augite andesite.________________________ 68 Biotite andesite dikes._____________________._______________ 68 Augite syenite_________---_________-___________________-__ 68 Age of Tertiary intrusives-___________--_--________-________ 68 Quaternary deposits--__________-_____-__-______________-______ 69 Early Pleistocene glacial deposits________________________ . 70 Older alluvium_________________________________________ 70 Younger alluvium_______________________________________ 72 Flood-plain alluvium_______________________________.______ 72 Structure.---_--_--_-______________________________________ 73 Deformation in Paleozoic rocks_______________________-__--__.__ 73 Anticline in Pahsimeroi Mountains___________________--_____ 73 Anticline near Lone Pine Peak___________________ ______ 75 Anticline near Bayhorse and Clayton________________________ 75 Deformation along the border of the batholith________________ 79 Relation between deformation and intrusion,_________________ 80 Tertiary deformation-_____-__-_______-_____-_-___-___-_-______ 82 Geomorphology____________-_________-_-_____-_________-_-_-______ 87 Pre-Challis surface--_-_---_-__-_--_---_-------_-------------_- 87 Post-Challis surface.__________________________________________ 89 Late Tertiary events-____________._____-_________-_---_-___-__ 91 Nebraskan (?) glaciation_____________________________________._ 93 Pleistocene stream terraces______________________-_-________-___ 95 Wisconsin glaciation____________________ ____ ___________ 96 Recent erosion_________________________________ __________ 97 Economic geology.___________ _____ _____________________ 99 Lodes_-_____.___-____.. _-_-__ - -- 101 Periods of mineralization________ __________________ 101 Irregular replacement deposits in Paleozoic calcareous rocks 102 Lodes on shear zones in the Paleozoic rocks __________________ 105 Lodes in granitic rock___________________________________ 110 Miscellaneous deposits._________-___---_-_---_-----------_- 111 Veins in the Challis volcanics____________-__-__-_-_-_---____ 112 Oxidation____________________... ___ 112 Enrichment-__________________________________________ 113 Outlook._______________________________ 115 The mines_________ 116 Bayhorse district..______.__________--__--__-__-_--_-_.._ 116 Good Hope mine.___________________________________ 116 Deposits near Garden Creek._________-_-_-_____-.-__ 116 Ramshorn mine._____.___-_______-___-.-_-__--_---__ 117 Skylark mine________________ _ __________ 122 Virginia Dare mine______________-______-_-_-_---____._ 125 Deposits along Juliette Creek.________________________ 125 Beardsley mine--___-______--____-____.___-._---__ _ 125 McGregor group_______-_-_____-___---_-_---__--_ .. 129 Kuna mine.____________________.____._---_-_-__.__ 132 Nameless mine._-_.__-_______-__-__-_-_-----_.-- __ 132 Riverview mine._____-___-___-_-_______-_----__---_- 132 CONTENTS Economic geology Continued. The mines Continued. Bayhorse district Continued. Page Turtle mine. __ . __ .. __ --...-._-_-.---__-----__-- 133 Last Chance mine... ------- ._ . 134 Mammoth mine. ___ _____----_-_--_---_-__--___--__- 135 Silver Bell mine _________________________ . 135 Williams, Rohlds, and Ernst mine. _ .. _ ....... 135 Sulphide mine.-. ____-_--___--____---_----_-_--___-._- 136 Mule Shoe mine. _ . __ _--___--___-_-_---_______-__-.. 136 Pedrino mjne____ ____---_-_______--------__----__-_--_ 136 Sadie claim.. _ .._-_..____.___-_..---_._-_-__--___--. 136 Compass mine_______. .___________-_--_-_-_-__-____..- 137 Clayton mine__._-_ __ ______._____------__-_---_-...- 137 Ella mine.---.-. __ _____ __ __ -. _ _-_.- _ _ - 138 Union-Companion mine_--________ _____________.-_.__-. 139 Red Bird niine... __ ...... ___ ... _ ....... _ ..... 139 South Butte mine __ _ ..-__ .. -_.. 143 Saturday Mountain group. ______.__________.__._.._.... 144 Dryden mine.-.. _ ... __ __ . ____ _._._--_..._. 145 Twin Apex mine. _-_-_------_-____----_---.-__---___-- 146 Bruno mine. ----_--..-_-___-___...-____---__---_____- 147 Buckskin mine. _. _ _______..______-._________..___..- 148 Rain-in-the-face mine. __ __-.-__---_-__---____-_.._..- 148 Silver Rule mine____. _.-__-_-._.__--___-___-_-_-___--. 148 Boulder Creek district--..-.---.-. -____---___.._______.___- 14& Badger claim. ._____._______..____.._._________.____.. 14& Quartz veins in the Challis volcanics__ __ _-___-__--____- 14& Livingston mine. ---___----_--___-----___-_.._--_--_-- 14? Little Livingston mine. _ ____-_--____-__--_-_-_-__-_-_ 151 Crater mine-____-_____. _-_-_-__..__.__.___._-_-..___- 152 Hermit mine----_-______-__-__--____-___-_______-_.-- 153 Molybdenite prospects_--___-----_---_-_-_--_______...- 153 Fuller and Baker prospect. __ _--___-___-.--___--_...-_ 154 Strawberry Basin mine--_-__-___--_-___--.-____. ...... 154 East Fork district. _ . ___-..-.......__ _ ...-_ _ .. 155 Aztec mine---__---_-_----___-_---___------_----.-__-- 155 Lucky Strike mine. --______________-_..___.-______.__. 155 Deertrail mine _ _._________.______._.____.___.._-._.__. 156 Mines in Washington Basin__. __._____.___._____._._... 156 Mines in Germania Basin______. _______________________ 157 Lodes near the head of Germania Creek.. __ ___________ 157 Index. ________ __ ______ ______________ ___________ _ _____ 159 ILLUSTRATIONS Page PLATE 1. Geologic map and structure sections of the Bayhorse region, Idaho __.-_---___-_____.____-___..-_____..__..____ In pocket 2. A, Outcrop of Ramshorn slate at the mouth of Wood Creek; B, Brazer limestone with chert bands along Broken Wagon Creek.__._....._______________......__.._............ 32 VI ILLUSTRATIONS Page PLATE 3. A, Disturbed Brazer limestone along the cut-off road between Pecks Canyon and the Mackay Highway; B, Dark quartz diorite intruding light-colored Wood River beds with apophyses along the bedding, about a mile west of Calkins Lake_...__--_-------___.__..-_________-____-______ 33 4. A, Polygonal-jointed andesite in sec. 27, T. 13 N., R. 19 E.; B, Coarse conglomerate at the base of the Germer member in Malm Gulch-...____._____.....--_.___.. 56 5. A, Distinctly bedded
Recommended publications
  • Riggins & Salmon River Canyon
    RRiiggggiinnss && SSaallmmoonn RRiivveerr CCaannyyoonn EEccoonnoommiicc DDeevveellooppmmeenntt SSttrraatteeggyy (FINAL DRAFT) Prepared for the City of Riggins February 2006 by James A. Birdsall & Associates The Hingston Roach Group, Inc. Bootstrap Solutions FINAL DRAFT [Inside cover.] RIGGINS AREA ECONOMIC DEVELOPMENT STRATEGY FEBRUARY 2006 FINAL DRAFT CONTENTS 1. Introduction......................................................................................1 Planning Process and Project Phases ..............................................................1 Riggins History and Assets. ..............................................................................2 2. Socio-Economic Trends....................................................................4 Population. ..........................................................................................................4 Age Composition................................................................................................5 Education & Enrollment...................................................................................5 Industry Trends..................................................................................................6 Employment, Wages & Income.......................................................................7 Business Inventory.............................................................................................9 Retail Trends.......................................................................................................9 Tourism
    [Show full text]
  • Template for Two-Page Abstracts in Word 97 (PC)
    GEOLOGIC MAPPING OF THE LUNAR SOUTH POLE QUADRANGLE (LQ-30). S.C. Mest1,2, D.C. Ber- man1, and N.E. Petro2, 1Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719-2395 ([email protected]); 2Planetary Geodynamics Laboratory, Code 698, NASA GSFC, Greenbelt, MD 20771. Introduction: In this study we use recent image, the surface [7]. Impact craters display morphologies spectral and topographic data to map the geology of the ranging from simple to complex [7-9,24] and most lunar South Pole quadrangle (LQ-30) at 1:2.5M scale contain floor deposits distinct from surrounding mate- [1-7]. The overall objective of this research is to con- rials. Most of these deposits likely consist of impact strain the geologic evolution of LQ-30 (60°-90°S, 0°- melt; however, some deposits, especially on the floors ±180°) with specific emphasis on evaluation of a) the of the larger craters and basins (e.g., Antoniadi), ex- regional effects of impact basin formation, and b) the hibit low albedo and smooth surfaces and may contain spatial distribution of ejecta, in particular resulting mare. Higher albedo deposits tend to contain a higher from formation of the South Pole-Aitken (SPA) basin density of superposed impact craters. and other large basins. Key scientific objectives in- Antoniadi Crater. Antoniadi crater (D=150 km; clude: 1) Determining the geologic history of LQ-30 69.5°S, 172°W) is unique for several reasons. First, and examining the spatial and temporal variability of Antoniadi is the only lunar crater that contains both a geologic processes within the map area.
    [Show full text]
  • Instream Flow Characterization of Upper Salmon River Basin Streams, Central Idaho, 2004
    Prepared in cooperation with the Bureau of Reclamation Instream Flow Characterization of Upper Salmon River Basin Streams, Central Idaho, 2004 Ellis River Challis Fork Salmon Yankee Squaw T h o m Valley p s o n Creek Creek Creek Creek Elk Salmon River Stanley Iron Creek Salmon River Redfish Lake Obsidian July Salmon of Creek Fourth Champion Creek River Alturas Fork Lake Pole Creek Creek East Creek Beaver Smiley Scientific Investigations Report 2005–5212 U.S. Department of the Interior U.S. Geological Survey Instream Flow Characterization of Upper Salmon River Basin Streams, Central Idaho, 2004 By Terry R. Maret, Jon E. Hortness, and Douglas S. Ott Prepared in cooperation with the Bureau of Reclamation Scientific Investigations Report 2005-5212 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Maret, T.R., Hortness, J.E., and Ott, D.S., 2005, Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2004: U.S.
    [Show full text]
  • Idaho Mountain Goat Management Plan (2019-2024)
    Idaho Mountain Goat Management Plan 2019-2024 Prepared by IDAHO DEPARTMENT OF FISH AND GAME June 2019 Recommended Citation: Idaho Mountain Goat Management Plan 2019-2024. Idaho Department of Fish and Game, Boise, USA. Team Members: Paul Atwood – Regional Wildlife Biologist Nathan Borg – Regional Wildlife Biologist Clay Hickey – Regional Wildlife Manager Michelle Kemner – Regional Wildlife Biologist Hollie Miyasaki– Wildlife Staff Biologist Morgan Pfander – Regional Wildlife Biologist Jake Powell – Regional Wildlife Biologist Bret Stansberry – Regional Wildlife Biologist Leona Svancara – GIS Analyst Laura Wolf – Team Leader & Regional Wildlife Biologist Contributors: Frances Cassirer – Wildlife Research Biologist Mark Drew – Wildlife Veterinarian Jon Rachael – Wildlife Game Manager Additional copies: Additional copies can be downloaded from the Idaho Department of Fish and Game website at fishandgame.idaho.gov Front Cover Photo: ©Hollie Miyasaki, IDFG Back Cover Photo: ©Laura Wolf, IDFG Idaho Department of Fish and Game (IDFG) adheres to all applicable state and federal laws and regulations related to discrimination on the basis of race, color, national origin, age, gender, disability or veteran’s status. If you feel you have been discriminated against in any program, activity, or facility of IDFG, or if you desire further information, please write to: Idaho Department of Fish and Game, P.O. Box 25, Boise, ID 83707 or U.S. Fish and Wildlife Service, Division of Federal Assistance, Mailstop: MBSP-4020, 4401 N. Fairfax Drive, Arlington, VA 22203, Telephone: (703) 358-2156. This publication will be made available in alternative formats upon request. Please contact IDFG for assistance. Costs associated with this publication are available from IDFG in accordance with Section 60-202, Idaho Code.
    [Show full text]
  • Custer County,Idaho
    114o1230 44o5200 114o4830 44o4830 Custer County, er iv R n Tcv o Idaho Tgs m l Qa a Kgd Tgs S Tcv k Ys r Ys o Qa F Tgdd le The map on this page has been reduced by 40% from dd Ys Mi Tcv Ys the map on the big page. So it is not to 1:500,000 scale. The scale bar was reduced with it though and should be Tgs Tcv Tcv Tcv close to correct. Kgd Qa Os Qm Kgd Qa Salmon Qa Ds Kgdh R. Mtns. Kgd Kgd Tcv Qs OCZ P A Qm H Kgd Challis Tcv S Pzl Kgdh Kgd OCZ IM E Os Qa Qa Qs RO PPPs Tcv Tgdd Tcv Ds Qs I Kgdh Cs V Pzl Tgs A L Kgd Qm Tcv DSs L OCs DSs E OCs Y Cs Ss Qa Tcv Kgdh Ss Tcv Ds Ybe Kis Sunbeam OCs Tcv o Tgs Qa Cs 44 2130 Kis Kgd OCs Ss Ds 115o1730 Kgdh Kgd PPPs Kgd Qs Kis Ms OCs Os Ts Qm 21 Ybe OCs PPPs Os 75 Os PzZm Kgdh OCs Ds Qs Ybe Qa River Kgd OCs DSs Kis Kis on Ms OCs Tcv Qs m Os OCs Ss Ts Os Qs Qg al Qa Sawtooth Rge. S 25 DSOs Ms Ss Tgs OCs Ss Ms Tcv Qs Stanley o Qg Tcv Ds 44 1400 Kgd Ps PPPs Os Kgdh Tcv Tcv 93 Ms Qs Tcv Ms PzZm Qm Ts Redfish SOs Borah PK. Tcv Kgd Lk. Qa (12,662 ft) Ds Ts DSOs Qs Qm Ds Qm Qm Qa SOs Leatherman Kgd Pk Tgs Chilly Lost River Rge.
    [Show full text]
  • Tectonic Alteration of a Major Neogene River Drainage of the Basin and Range
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2016 TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE Stuart D. Parker Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Tectonics and Structure Commons Let us know how access to this document benefits ou.y Recommended Citation Parker, Stuart D., "TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE" (2016). Graduate Student Theses, Dissertations, & Professional Papers. 10637. https://scholarworks.umt.edu/etd/10637 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE By STUART DOUGLAS PARKER Bachelor of Science, University of North Carolina-Asheville, Asheville, North Carolina, 2014 Thesis Presented in partial fulfillment of the requirements for the degree of Master of Science in Geology The University of Montana Missoula, MT May, 2016 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School James W. Sears, Committee Chair Department of Geosciences Rebecca Bendick Department of Geosciences Marc S. Hendrix Department of Geosciences Andrew Ware Department of Physics and Astronomy Parker, Stuart, M. S., May, 2016 Geology Tectonic alteration of a major Neogene river drainage of the Basin and Range Chairperson: James W.
    [Show full text]
  • Seasonal Status of the American Pipit in Idaho
    SEASONAL STATUS OF THE AMERICAN PIPIT IN IDAHO DANIEL M. TAYLOR, 244 N. 12th, Pocatello,Idaho 83201 In Idaho, the AmericanPipit (Antbus rubescens)has been considered primarilya migrant,either locally common but erratic (Larrison et al. 1967) or uncommonin springand commonin fall (Burleigh1972). Severalother writers(Merriam 1891, Merrill 1898, Newhouse1960, Levy 1962) consid- ered it an abundantfall migrantbut gaveno indicationof actualnumbers. The one (Larrisonet al. 1967) or two (Burleigh1972) winterrecords were from Lewiston.Larrison et al. (1967) suspectedthat pipitsmight breed on someof the state'shigh mountains,while Burleigh(1972) knew of only Merriam's(1891) statementthat they breedin the Salmon River Mountains and a report by L. B. McQueenof breedingin the upper Pahsimeroi drainagenear Borah Peak. This scantinessof breedingevidence may be why the mostrecent A.O.U. checklist(1983) statesthat the AmericanPipit breedslocally on mountaintopsin severalRocky Mountain states but does not specificallylist Idaho. In this paper I consolidateand enhancewhat is known aboutAmerican Pipit distributionin Idaho with reference to adjacent areas. I present evidenceof additionalbreeding, concentrations of thousandsof fall mi- grants,and the species'regular but erraticwintering in much of southern Idaho.I analyzeChristmas Bird Countdata for patternsin winterdistribu- tion relatedto differencesin weather,elevation, geography, and annual variability. METHODS I gatheredrecent American Pipit recordsfrom a literaturereview and my own fieldnotes for the last 15 years.All ChristmasBird Counts(CBCs) for Idahosince 1978 were included,as well as somefrom adjacentMontana and Washington.Long-term counts from southernIdaho were examined statisticallyin a mannersimilar to that of Lauranceand Yensen(1985) and Dunning and Brown (1982). Weather data were extracted from U.S. EnvironmentalData Servicemonthly reports from eachweather station in or closeto eachCBC.
    [Show full text]
  • 2015 Idaho Wolf Monitoring Progress Report
    2015 IDAHO WOLF MONITORING PROGRESS REPORT Photo by IDFG Prepared By: Jason Husseman, Idaho Department of Fish and Game Jennifer Struthers, Idaho Department of Fish and Game Edited By: Jim Hayden, Idaho Department of Fish and Game March 2016 EXECUTIVE SUMMARY At the end of 2015, Idaho’s wolf population remained well-distributed and well above population minimums required under Idaho’s 2002 Wolf Conservation and Management Plan. Wolves range in Idaho from the Canadian border south to the Snake River Plain, and from the Washington and Oregon borders east to the Montana and Wyoming borders. Dispersing wolves are reported in previously unoccupied areas. The year-end population for documented packs, other documented groups not qualifying as packs and lone wolves was estimated at 786 wolves. Biologists documented 108 packs within the state at the end of 2015. In addition, there were 20 documented border packs counted by Montana, Wyoming, and Washington that had established territories overlapping the Idaho state boundary. Additional packs are suspected but not included due to lack of documentation. Mean pack size was 6.4 wolves, nearly identical to the 2014 average of 6.5. Reproduction (production of at least 1 pup) was documented in 69 packs, representing the minimum number of reproductive packs extant in the state. Determination of breeding pair status was made for 53 packs at year’s end. Of these, 33 packs (62%) met breeding pair criteria, and 20 packs did not. No determination of breeding pair status was made for the remaining 55 packs. Mortalities of 358 wolves were documented in Idaho in 2015, and remained essentially unchanged from 2014 (n = 360).
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • A Geological Reconnaissance Between
    Pamphlet No. 74 November 1945 STATE OF IDAHO Charles C. Gossett,· Governor IDAHO BUREAU OF MINES AND GEOLOGY , A. w. Fahrenwald, Director . A· GEOLOGICAL RECONNAISSANCE BETWEEN·· THE slm· AID SALMON RIVERS NOBTI. OF BIGGIIS, mAIO By Warren R. Wagner University of Idaho Moscow, Idaho TABLE OF CONTENTS Page Introduction .................................................................................... ~................................................................................................................. 1 ~~S:p~~ .. ~.:~~~.. ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~ Acknowledgement ............................... ,.. ~ ........ ~ ..................................................•.. ~ .......... :.................................................................... 1 Geography and· physiography ..................................................................................................................................................................... l' Location ................................................................................................................................................................................................. 1 Surface features ........... :..................................................................................................................................................................... 1 Climate ................................................................................................................................................................................................
    [Show full text]
  • Discoveries of Mass Independent Isotope Effects in the Solar System: Past, Present and Future Mark H
    Reviews in Mineralogy & Geochemistry Vol. 86 pp. 35–95, 2021 2 Copyright © Mineralogical Society of America Discoveries of Mass Independent Isotope Effects in the Solar System: Past, Present and Future Mark H. Thiemens Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093 USA [email protected] Mang Lin State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry, Chinese Academy of Sciences Guangzhou, Guangdong 510640 China University of Chinese Academy of Sciences Beijing 100049 China [email protected] THE BEGINNING OF ISOTOPES Discovery and chemical physics The history of the discovery of stable isotopes and later, their influence of chemical and physical phenomena originates in the 19th century with discovery of radioactivity by Becquerel in 1896 (Becquerel 1896a–g). The discovery catalyzed a range of studies in physics to develop an understanding of the nucleus and the properties influencing its stability and instability that give rise to various decay modes and associated energies. Rutherford and Soddy (1903) later suggested that radioactive change from different types of decay are linked to chemical change. Soddy later found that this is a general phenomenon and radioactive decay of different energies and types are linked to the same element. Soddy (1913) in his paper on intra-atomic charge pinpointed the observations as requiring the observations of the simultaneous character of chemical change from the same position in the periodic chart with radiative emissions required it to be of the same element (same proton number) but differing atomic weight. This is only energetically accommodated by a change in neutrons and it was this paper that the name “isotope” emerges.
    [Show full text]
  • 1 2.6 Physical Chemistry and Thermal Evolution of Ices at Ganymede 1 C
    1 1 2.6 Physical Chemistry and Thermal Evolution of Ices at Ganymede 2 C. Ahrens, NASA Goddard Space Flight Center, Greenbelt, MD; [email protected] 3 A. Solomonidou, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA; & LEISA 4 – Observatoire de Paris, CNRS, UPMC Univ., Paris 06, Univ. Paris-Diderot, Meudon, France; 5 [email protected] 6 K. Stephan, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany; 7 [email protected] 8 K. Kalousova, Charles University, Faculty of Mathematics and Physics, Department of Geophysics, 9 Prague, Czech Republic; [email protected] 10 N. Ligier, Institut d’Astrophysique Spatiale, Université Paris-Saclay, Orsay, France; 11 [email protected] 12 T. McCord, Bear Fight Institute, Winthrop, WA; [email protected] 13 C. Hibbitts, Applied Physics Laboratory, Johns Hopkins University, Laurel, MD; 14 [email protected] 15 16 Abstract 17 18 Ganymede’s surface is composed mostly of water ice and other icy materials in addition to minor non-ice 19 components. The formation and evolution of Ganymede’s landforms highly depend on the nature of the 20 icy materials as they present various thermal and rheological behaviors. This chapter reviews the 21 currently known thermodynamic parameters of the ice phases and hydrates reported on Ganymede, which 22 seem to affect the evolution of the surface, using mainly results from the Voyager and Galileo missions. 23 24 Keywords: Ganymede; Ices; Ices, Mechanical Properties; Experimental techniques; Geological 25 processes 26 27 1 Introduction 28 29 Icy bodies of the outer solar system, including satellites of the gas giants, harbor surface ices made of 30 volatile molecules, clathrates, and complex molecules like hydrocarbons.
    [Show full text]