Good Environmental Practices in Bioenergy Feedstock Production 49

Total Page:16

File Type:pdf, Size:1020Kb

Good Environmental Practices in Bioenergy Feedstock Production 49 49 Good Environmental Practices in Bioenergy Feedstock Production 49 In order to ensure that modern bioenergy on biodiversity and ecosystems, which development is sustainable and that it provide a range of goods and services Good Environmental safeguards food security, a number of good that are key for food security. practices can be implemented throughout The good practices compiled in the ASSESSMENT the bioenergy supply chain. BEFSCI report are divided into three Practices in Bioenergy Building on FAO’s work on good practices in main groups. The first group is comprised AND agriculture and forestry, the FAO’s Bioenergy and of agricultural management approaches (namely Feedstock Production Food Security Criteria and Indicators (BEFSCI) project Ecosystem Approach, Conservation Agriculture and has compiled a set of good environmental practices that Organic Agriculture), which provide comprehensive and can be implemented by bioenergy feedstock producers so holistic frameworks and principles of sustainable agriculture. as to minimize the risk of negative environmental impacts The second group consists of integrated, sustainable from their operations, and to ensure that modern bioenergy agricultural and forestry management systems, namely delivers on its climate change mitigation potential. Agroforestry, Integrated Food-Energy Systems, and Multiple Making Bioenergy Work for MONITORING These practices can improve both the efficiency and Cropping Systems and Crop Rotation. The third and last sustainability in the use of land, water and agricultural inputs group includes a broad range of field-level agricultural and Climate and Food Security ] for bioenergy production, with positive environmental and forestry practices that can be implemented on the ground socio-economic effects, including a reduction in the potential by bioenergy feedstock producers, such as No- or Minimum competition with food production. These practices can also Tillage, Integrated Pest Management, and Integrated Plant minimize the impacts of bioenergy feedstock production Nutrient Management. ENERGY [ !rt Climate, Energy and Tenure Division (NRC) publications Series: www.fao.org/climatechange/61878 Working papers: www.fao.org/climatechange/61879 NRC Contact: [email protected] Food and Agriculture Organization of the United Nations (FAO) ENVIRONMENT CLIMATE CHANGE ENVIRONMENT AND NATURAL RESOURCES MANAGEMENT WORKING PAPER www.fao.org ISBN 978-92-5-107148-9 FAO 9 789251 071489 I2596E/1/01.12 Background image in this page elaborated from “L’Encyclopédie Diderot et D’Alembert” Other images: Photo credits (left to right): ©FAO/Alberto Conti ©FAO/Caroline Thomas ©FAO/Peter DiCampo ©FAO/Caroline Thomas ©FAO/Giuseppe Bizzarri ©FAO/Alberto Conti ©FAO/Jon Spaull Copies of FAO publications can be requested from Sales and Marketing Group Office of Knowledge Exchange, Research and Extension Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla - 00153 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org/icatalog/inter-e.htm Environment and Natural Resources series design: [email protected], 2004 49 Good Environmental Practices in Bioenergy Feedstock Production MONITORING AND ASSESSMENT Making Bioenergy Work for Climate and Food Security ENERGY [] Edited by Andrea Rossi ENVIRONMENT AND NATURAL RESOURCES MANAGEMENT WORKING PAPER ENVIRONMENT CLIMATE CHANGE ENVIRONMENT CLIMATE Bioenergy and Food Security Criteria and Indicators project Food and Agriculture Organization of the United Nations (FAO) ] BIOENERGY AND FOOD SECURITY [ The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-107148-9 All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. © FAO 2012 II FOREWORD The global demand for modern bioenergy, and especially liquid biofuels, is rapidly growing, driven mainly by climate change mitigation policies and increasing oil prices. This creates both opportunities and risks for developing countries. On the one hand, modern bioenergy development can boost both agricultural and rural development by raising agricultural productivity, creating new employment and income-generating opportunities, and improving access to modern energy services in rural areas. On the other hand, if not properly managed, modern bioenergy development can trigger a number of negative environmental and socio-economic impacts, for instance by putting pressure on key resources such as land and water. The environmental and socio-economic sustainability of modern bioenergy has been highly debated over the past few years. One of the most controversial issues that has dominated this debate is the relationship between bioenergy and food security. In order to shed light on this complex issue and help policy-makers understand and manage the risks and opportunities for food security associated with various bioenergy development pathways, the Bioenergy and Food Security (BEFS) project of the Food and Agriculture Organization (FAO) of the United Nations developed an Analytical Framework and a toolbox, which are being implemented in several countries. Building on this work, FAO’s Bioenergy and Food Security Criteria and Indicators (BEFSCI) project has developed a set of criteria, indicators, good practices and policy options on sustainable bioenergy development that foster rural development and food security. BEFSCI aims to inform the development of national frameworks aimed at preventing the risk of negative impacts – and increasing the opportunities – of bioenergy development on food security, and help developing countries monitor and respond to the impacts of bioenergy development on food security. In order to ensure that modern bioenergy development is sustainable and that it safeguards food security, a number of good practices can be implemented throughout the bioenergy supply chain. Drawing from FAO’s work on good practices in agriculture and forestry, the BEFSCI project has compiled a set of good environmental practices that bioenergy feedstock producers can adopt in order to minimize the risk of negative environmental impacts from their operations and to ensure that modern bioenergy delivers on its climate change mitigation potential. These practices can improve the efficiency and sustainability in the use of land, water and agricultural inputs for bioenergy production, thus reducing the potential competition with food production. Although the focus of this report is on bioenergy, the practices described in it are relevant for any agricultural and forestry production, regardless of the use of the feedstocks. Alexander Müller Assistant Director-General Natural Resources Management and Environment Department FAO III ] ACKNOWLEDGEMENTS This report was prepared under the overall supervision of Heiner Thofern, Senior Natural Resources Management Officer, and the technical supervision of Andrea Rossi, Natural Resources Management Officer, of the Climate, Energy and Tenure Division (NRC). We would like to thank the many FAO colleagues who provided advice, insights, and comments throughout the development of this report including Elizabeth Beall, Jim Carle, Romina Cavatassi, Theodor Friedrich, Sophie Grouwels, Barbara Herren, Walter Kollert, Cesare Pacini, Anne Sophie Poisot, Pilar Santacoloma, and Nadia Scialabba. We would also like to thank Alessandro Flammini, Laura Perugini and Stephanie Vertecchi for their assistance in the finalization of this document. The work was carried out in the context of the Bioenergy and Food Security Criteria and Indicators (BEFSCI) project (GCP/INT/081/GER) funded by the German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV). BIOENERGY AND FOOD SECURITY [ Good Environmental Practices in Bioenergy Feedstock Production - Making Bioenergy Work for Climate and Food Security Edited by Andrea Rossi 225 pages, 5 figures, and 2 tables Environment and Natural Resources Working Paper No.49 – FAO, Rome, 2012 Keywords: Good practices, agriculture, forestry, bioenergy, biofuels, food security, sustainability, soil quality, water availability and quality, biodiversity, agrobiodiversity, climate change mitigation, agricultural productivity, income, agricultural inputs, farmers development, access to energy, human health and safety.
Recommended publications
  • Riparian Vegetation Management
    Engineering in the Water Environment Good Practice Guide Riparian Vegetation Management Second edition, June 2009 Your comments SEPA is committed to ensuring its Good Practice Guides are useful and relevant to those carrying out activities in Scotland’s water environment. We welcome your comments on this Good Practice Guide so that we can improve future editions. A feedback form and details on how to send your comments to us can be found at the back of this guide in Appendix 1. Acknowledgements This document was produced in association with Northern Ecological Services (NES). Page 1 of 47 Engineering in the Water Environment Good Practice Guide: Riparian Vegetation Management Second edition, June 2009 (Document reference: WAT-SG-44) Contents 1 Introduction 3 1.1 What’s included in this Guide? 3 2 Importance of riparian vegetation 6 3 Establishing/creating vegetation 8 3.1 Soft or green engineering techniques 8 3.2 Seeding and planting of bare soil 10 3.3 Creating buffer strips 11 3.4 Planting trees and shrubs 15 3.5 Marginal vegetation 18 3.6 Urban watercourses 21 4 Managing vegetation 24 4.1 Management of grasses and herbs 24 4.2 Management of heath and bog 27 4.3 Management of adjacent wetlands 28 4.4 Management of non-native plant species 29 4.5 Management of scrub and hedgerows 31 4.6 Management of individual trees 31 4.7 Management of trees – riparian woodland 33 4.8 Management of trees – conifer plantations 35 4.9 Large woody debris 37 4.10 Marginal vegetation 37 4.11 Urban watercourses 40 4.12 Use of herbicides 40 4.13 Environmental management of vegetation 41 4.14 Vegetation management plans 41 5 Sources of further information 42 5.1 Publications 42 5.2 Websites 44 Appendix 1: Feedback form – Good Practice Guide WAT-SG-44 45 Page 2 of 47 1 Introduction This document is one of a series of good practice guides produced by SEPA to help people involved in the selection of sustainable engineering solutions that minimise harm to the water environment.
    [Show full text]
  • Riparian Buffer Restoration
    Pennsylvania Stormwater Best Management Practices Manual Chapter 6 BMP 6.7.1: Riparian Buffer Restoration A riparian buffer is a permanent area of trees and shrubs located adjacent to streams, lakes, ponds, and wetlands. Riparian forests are the most beneficial type of buffer for they provide ecological and water quality benefits. Restoration of this ecologically sensitive habitat is a responsive action to past activities that may have eliminated any vegetation. Key Design Elements Potential Applications Residential: Yes Commercial: Yes Ultra Urban: Yes Industrial: Yes Retrofit: Yes Highway/Road: Limited · Reestablish buffer areas along perennial, intermittent, and ephemeral streams · Plant native, diverse tree and shrub vegetation Stormwater Functions · Buffer width is dependant on project preferred function (water quality, habitat creation, etc.) · Minimum recommended buffer width is 35’ from top of stream Volume Reduction: Medium bank, with 100’ preferred. Recharge: Medium · Create a short-term maintenance and long-term maintenance Peak Rate Control: Low/Med. plan Water Quality: Med./High · Mature forest as a vegetative target · Clear, well-marked boundary Water Quality Functions TSS: 65% TP: 50% NO3: 50% 363-0300-002 / December 30, 2006 Page 191 of 257 Pennsylvania Stormwater Best Management Practices Manual Chapter 6 Description The USDA Forest Service estimates that over one-third of the rivers and streams in Pennsylvania have had their riparian areas degraded or altered. This fact is sobering when one considers the important stormwater functions that riparian buffers provide. The non-structural BMP, Riparian Forest Buffer Protection, addresses the importance of protecting the three-zone system of existing riparian buffers. The values of riparian buffers – economic, environmental, recreational, aesthetic, etc.
    [Show full text]
  • An Agroforestry Project: Sustainable Tree-Shrub-Grass Buffer Strips
    Volume 78 Article 5 1-1-1991 An Agroforestry Project: Sustainable Tree-Shrub- Grass Buffer Strips Along Waterways Richard Schultz Iowa State University Joe Colletti Iowa State University Carl Mize Iowa State University Andy Skadberg Iowa State University Bruce Menzel Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/amesforester Part of the Forest Sciences Commons Recommended Citation Schultz, Richard; Colletti, Joe; Mize, Carl; Skadberg, Andy; and Menzel, Bruce (1991) "An Agroforestry Project: Sustainable Tree- Shrub-Grass Buffer Strips Along Waterways," Ames Forester: Vol. 78 , Article 5. Available at: https://lib.dr.iastate.edu/amesforester/vol78/iss1/5 This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Forester by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. AN AGROFORESTRY PROJECT: susTAINABLE TREE-SHFIUB-GRASS BUFFEFI STRIPS ALONG WATERWAYS BY F]lCHAF]D SCHULTZ, JOE COLLETTl, CAFZL MIZE, ANDY SKADBEFIG, AND BFIUCE MENZEL Introduction the streambank, the aquatic ecosystem, and for providing wildlife habitat for terrestrial Iowa is a mosaic landscape of agricultural animals. crops, pasture lands, native woodlands. prai- rie remnants, wetlands, and a network of A cooperative project on a private farm was streams and rivers. With settlement and the started in the spring of 1990. An interdiscipli- increased mecha- naryteam fromthe nization of agricul- Departments of ture, many natural Forestry, a as ` sgffi se.>< isee`s±gg // //,i/// i/// i/ // // //////i1/,,,,,74,i,,;,,#,// ,z/ /// Agronomy, Geol- woodland corri- `x,`,`/`se*/a <.*ng ng`'` -i- dors along these `asJz '3¥sezl , ` i ogy and Atmo- i // /// streams and rivers spheric Sciences, i$3& and Animal Ecol- were removed.
    [Show full text]
  • Invasive Plants: Ecological Effects, Status, Management Challenges in Tanzania and the Way Forward
    J. Bio. & Env. Sci. 2017 Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 10, No. 3, p. 204-217, 2017 http://www.innspub.net REVIEW PAPER OPEN ACCESS Invasive plants: ecological effects, status, management challenges in Tanzania and the way forward Issakwisa B. Ngondya*, Anna C. Treydte, Patrick A. Ndakidemi, Linus K. Munishi 1Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering. The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania Article published on March 31, 2017 Key words: Competition, Allelopathy, Weeds, IPM, Mowing Abstract Over decades invasive plants have been exerting negative pressure on native vascular plant’s and hence devastating the stability and productivity of the receiving ecosystem. These effects are usually irreversible if appropriate strategies cannot be taken immediately after invasion, resulting in high cost of managing them both in rangelands and farmlands. With time, these non-edible plant species will result in a decreased grazing or browsing area and can lead to local extinction of native plants and animals due to decreased food availability. Management of invasive weeds has been challenging over years as a result of increasingly failure of chemical control as a method due to evolution of resistant weeds, higher cost of using chemical herbicide and their effects on the environment. While traditional methods such as timely uprooting and cutting presents an alternative for sustainable invasive weeds management they have been associated with promotion of germination of undesired weeds due to soil disturbance. The fact that chemical and traditional methods for invasive weed management are increasing failing nature based invasive plants management approaches such as competitive facilitation of the native plants and the use of other plant species with allelopathic effects can be an alternative management approach.
    [Show full text]
  • Buffering the Buffer, by Leslie M. Reid, And
    Buffering the Buffer1 Leslie M. Reid2 and Sue Hilton3 Abstract: Riparian buffer strips are a widely accepted tool for helping to sustain ¥ Maintenance of the aquatic food web through provision aquatic ecosystems and to protect downstream resources and values in forested of leaves, branches, and insects areas, but controversy persists over how wide a buffer strip is necessary. The physical integrity of stream channels is expected to be sustained if the ¥ Maintenance of appropriate levels of predation and characteristics and rates of tree fall along buffered reaches are similar to those in competition through support of appropriate riparian undisturbed forests. Although most tree-fall-related sediment and woody debris ecosystems inputs to Caspar Creek are generated by trees falling from within a tree’s height of the channel, about 30 percent of those tree falls are triggered by trees falling ¥ Maintenance of water quality through filtering of from upslope of the contributing tree, suggesting that the core zone over which sediment, chemicals, and nutrients from upslope sources natural rates of tree fall would need to be sustained is wider than the one-tree- height’s-width previously assumed. Furthermore, an additional width of “fringe” ¥ Maintenance of an appropriate water temperature buffer is necessary to sustain appropriate tree-fall rates within the core buffer. regime through provision of shade and regulation of air Analysis of the distribution of tree falls in buffer strips and un-reentered stream- temperature and humidity side forests along the North Fork of Caspar Creek suggests that rates of tree fall are abnormally high for a distance of at least 200 m from a clearcut edge, a ¥ Maintenance of bank stability through provision of root distance equivalent to nearly four times the current canopy height.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Template for Pdfs.Pmd
    2.12 Stream temperature and buffers Buffers can help maintain cooler water temperatures in small streams if the vegetation provides adequate shade on the water surface. This can be beneficial for coldwater aquatic species and for water quality. Stream shade is comprised of topographic shade provided by nearby hills, bank shade, and vegetative shade. Streams with vegetation removed usually have undesirable summer temperature increases from 5 to 11oC. Aspect, channel morphology, and groundwater input may affect temperatures more than buffers. Key Design Considerations • Incorporate topography and bank shade in the design. • Trees and shrubs provide the most shade but unmowed or ungrazed grass buffers can provide shade on streams less than 8 feet in width. • Buffer shading effectiveness decreases as stream width increases. • Windthrow may be common in buffers retained after timber harvest and wider buffers may be necessary. • Buffers may need to be wider (150 to 1000 ft) to maintain other microclimatic factors (e.g., soil temperature, humidity). 2.12 Biodiversity 2.12 References Anbumozhi, V.; Radhakrishnan, J.; Yamaji, E. 2005. Impact of riparian buffer zones on water quality and associated management considerations. Ecological Engineering. 24: 517-523. Barton, D.R.; Taylor, W.D.; Biette, R.M. 1985. Dimensions of riparian buffer strips required to maintain trout habitat in southern Ontario streams. North American Journal of Fisheries Management. 5: 364- 378. Beschta, R.L. 1997. Riparian shade and stream temperature: an alternative perspective. Rangelands. 19: 25-28. Blann, K.; Nerbonne, J.F.; Vondracek, B. 2002. Relationships of riparian buffer type to water temperature in the Driftless area ecoregion of Minnesota.
    [Show full text]
  • 35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods
    35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods. & Dressl. each segment, usually only the uppermost persisting, linear, 5-25 cm long, 1.5-4.5 mm broad, obscurely emar- Psygmorchis pusilla (L.) Dods. & Dressl., Phytologia ginate at apex. Inflorescences single flowers or more com- 24:288. 1972 monly few-flowered fascicles or abbreviated, few-flowered Oncidium pusillum (L.) Reichb.f. racemes, borne at apex of stems; flowers white, 3.5-4.5 Dwarf epiphyte, to 8 cm tall; pseudobulbs lacking. Leaves mm long; sepals 3-4.5 mm long, 1-2 mm wide; petals as ± dense, spreading like a fan, equitant, ± linear, 2-6 cm long as sepals, 0.5-1 mm wide; lip 3.5-5 mm long, 2-3.5 long, to 1 cm wide. Inflorescences 1-6 from base of mm wide, entire or obscurely trilobate; column narrowly leaves, about equaling leaves, consisting of long scapes, winged. Fruits oblong-elliptic, ca 1 cm long (including the apices with several acute, strongly compressed, im- the long narrowly tapered base), ca 2 mm wide. Croat bricating sheaths; flowers produced in succession from 8079. axils of sheaths; flowers 2-2.5 cm long; sepals free, Common in the forest, usually high in trees. Flowers spreading, bright yellow, keeled and apiculate, the dorsal in the early dry season (December to March), especially sepal ca 5 mm long, nearly as wide, the lateral sepals in January and February. The fruits mature in the middle 4-5 mm long, 1-1.5 mm wide, hidden by lateral lobes to late dry season. of lip; petals to 8 mm long and 4 mm wide, bright yellow Confused with S.
    [Show full text]
  • Adoption of Conservation Buffers: Barriers and Strategies
    United States Department of Adoption of Conservation Agriculture Buffers: Barriers and Natural Strategies Resources Conservation Service Social Sciences Institute October 2002 Adoption of Conservation Buffers Front cover photo courtesy of NRCS Photo Gallery http://photogallery.nrcs.usda.gov/ Acknowledgments Supporting data for this publication includes social science research studies, reports from the Conservation Technology Information Center, and summaries of field interviews. I would especially like to thank NRCS technical specialists David Buland, Jim Cropper, David Faulkner, Aaron Hinkston, Jim Robinson, Gary Wells, and Bruce Wight for their time and expertise. Sandy Hodge, State Specialist-Public Policy, Community Development Extension Program, University of Missouri, graciously assisted me with her time and technical materials, including photos. Thanks also to Frank Clearfield, director, Social Sciences Institute, and to Peter Smith, director, NRCS Resource Economics and Social Sciences Adoption of Conservation Buf Division, for taking the time to help edit and modify this document, and Mary Mattinson, Suzi Self, and Wendy Pierce, NRCS National Cartography and Geospatial Center, for editing and preparing the document for publication. Gail Brant Sociologist Social Sciences Institute fers Adoption of Conservation Buffers Adoption of Conservation Buffers: Barriers and Strategies Contents Introduction .................................................................................................................................................................
    [Show full text]
  • Chemotaxonomic Significance of Hydroxylated
    Biochemical Systematics and Ecology 26 (1998) 379Ð401 Chemotaxonomic significance of hydroxylated pipecolic acids in Central American Inga (Fabaceae: Mimosoideae: Ingeae) Timothy C. Morton* The Pennsylvania State University, Pesticide Research Lab, University Park, PA 16802, USA Received 30 May 1997; Accepted 22 July 1997 Abstract Hydroxylated pipecolic acid derivatives of 47 species of Inga were analyzed primarily from herbarium leaf samples supplemented by field collections. Inga species are noted for their morphological variability, which has resulted in considerable taxonomic confusion. Pipecolic acid chemistry appears to be a relatively stable character within species, and the large number of pipecolic acid derivatives translates to greater intraspecific diversity in chemical patterns (18 distinct hydroxypipecolic acid patterns) than previously found in related genera. This chemical diversity makes pipecolic acids particularly useful in solving taxonomic problems in this genus; problems such as identification of distinct species with convergent morphology and identifica- tion of mislabeled herbarium specimens. Chemistry provides data independent of morphology with which to assess recent changes in nomenclature (some of which are supported, others not) and may also be useful in the assessment of hybridization and in delimitation of proper species boundaries. At present our chemical knowledge is too fragmentary to allow strong statements regarding relationships above the species level, but there is a trend for taxa traditionally grouped on morphological criteria to share similar chemistries. ( 1998 Elsevier Science Ltd. All rights reserved. Keywords: Inga Fabaceae Mimosoideae pipecolic nonprotein amino acid chemotaxonomy 1. Introduction The genus Inga has nearly 400 species, making it one of the larger genera of mimosoid legumes (Elias, 1978). The genus is restricted to the American tropics with * Present address: University of Chicago, Department of Ecology and Evolution, 1101 E.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • Mainstreaming Ecosystem Services and Biodiversity Into Agricultural Production and Management in East Africa Technical Guidance Document
    MAINSTREAMING ECOSYSTEM SERVICES AND BIODIVERSITY INTO AGRICULTURAL PRODUCTION AND MANAGEMENT IN EAST AFRICA TECHNICAL GUIDANCE DOCUMENT BIODIVERSITY & ECOSYSTEM SERVICES IN AGRICULTURAL PRODUCTION SYSTEMS BIODIVERSITY & ECOSYSTEM SERVICES IN AGRICULTURAL PRODUCTION SYSTEMS MAINSTREAMING ECOSYSTEM SERVICES AND BIODIVERSITY INTO AGRICULTURAL PRODUCTION AND MANAGEMENT IN EAST AFRICA Practical issues for consideration in National Biodiversity Strategies and Action Plans to minimize the use of agrochemicals TECHNICAL GUIDANCE DOCUMENT FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS and SECRETARIAT OF THE CONVENTION ON BIOLOGICAL DIVERSITY ROME, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of CBD concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or CBD in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of AOF , or CBD. ISBN 978-92-5-109215-6 (FAO) © FAO, 2016 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]