SID Khronos Open Standards for AR May17

Total Page:16

File Type:pdf, Size:1020Kb

SID Khronos Open Standards for AR May17 Open Standards for AR Neil Trevett | Khronos President NVIDIA VP Developer Ecosystem [email protected] | @neilt3d LA, May 2017 © Copyright Khronos Group 2017 - Page 1 Khronos Mission Software Silicon Khronos is an International Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access hardware acceleration for 3D graphics, Virtual and Augmented Reality, Parallel Computing, Neural Networks and Vision Processing © Copyright Khronos Group 2017 - Page 2 Khronos Standards Ecosystem 3D for the Web Real-time 2D/3D - Real-time apps and games in-browser - Cross-platform gaming and UI - Efficiently delivering runtime 3D assets - VR and AR Displays - CAD and Product Design - Safety-critical displays VR, Vision, Neural Networks Parallel Computation - VR/AR system portability - Tracking and odometry - Machine Learning acceleration - Embedded vision processing - Scene analysis/understanding - High Performance Computing (HPC) - Neural Network inferencing © Copyright Khronos Group 2017 - Page 3 Why AR Needs Standard Acceleration APIs Without API Standards With API Standards Platform Application Fragmentation Portability Everything Silicon runs on CPU Acceleration Standard Acceleration APIs provide PERFORMANCE, POWER AND PORTABILITY © Copyright Khronos Group 2017 - Page 4 AR Processing Flow Download 3D augmentation object and scene data Tracking and Positioning Generate Low Latency Vision Geometric scene 3D Augmentations for sensor(s) reconstruction display by optical system Semantic scene understanding (Neural Networks) AR Application Interact with sensor, haptic and display devices © Copyright Khronos Group 2017 - Page 5 Vulkan – Portable New Generation GPU API 7 Cross Platform All Major GPU Companies shipping Vulkan Drivers – for Desktop and Mobile Platforms Mobile, Embedded and Console Platforms Supporting Vulkan Android 7.0 Nintendo Switch Android TV Embedded Linux Vulkan support Initial Vulkan mobile DOTA 2 on Vulkan DOOM shipping on Vulkan support Vulkan support in V5.4 in Unity 5.6 renderer in 4.12 port of Source 2 Vulkan port of id Tech 6 since V1.8 Late May 2017 © Copyright Khronos Group 2017 - Page 6 Vulkan Explicit GPU Control Vulkan = high performance and low latency 3D – Ideal for VR/AR applications Resource management offloaded to app: low-overhead, low-latency Complex drivers Application driver cause overhead Single thread per context and inconsistent Application Consistent behavior: behavior across Memory allocation Multiple Front-end no ‘fighting with driver vendors Thread management heuristics’ Synchronization Compilers High-level Driver GLSL, HLSL etc. Always active Multi-threaded generation Validation and debug layers of command buffers error handling Abstraction loaded only when needed Layered GPU Control Full GLSL Context management SPIR-V SPIR-V intermediate preprocessor and Memory allocation pre-compiled shaders language: shading language compiler in Full GLSL compiler flexibility Error detection driver Thin Driver Loadable debug and Explicit GPU Control validation layers Multi-threaded command OpenGL vs. creation. Multiple graphics, OpenGL ES command and DMA queues GPU GPU Unified API across all platforms with feature set flexibility Vulkan 1.0 provides access to OpenGL ES 3.1 / OpenGL 4.X-class GPU functionality but with increased performance and flexibility © Copyright Khronos Group 2017 - Page 7 Khronos APIs for Virtual Reality Khronos 3D APIs already But What About powering VR rendering INPUT Hardware for AR/VR.. Device discovery Multiple sensor tracking Device Events The standard for desktop VR today Haptics Parameters for optics corrections etc. etc… On millions of mobile VR devices Powering WebVR in browsers OpenXR! Cross-Platform, portable AR/VR The future of explicit, low-latency VR © Copyright Khronos Group 2017 - Page 8 OpenXR – Solving AR/VR Fragmentation VR VR VR VR VR VR VR VR App App App App App App App App 1 2 3 4 1 2 3 4 Proprietary Proprietary Engine Engine Application Interface Device Layer VR VR VR VR VR VR VR VR VR VR Device Device Device Device Device Device Device Device Device Device 1 2 3 4 5 1 2 3 4 5 Before OpenXR After OpenXR VR Market Wide interoperabilityof Fragmentation VR apps and devices © Copyright Khronos Group 2017 - Page 9 OpenXR Working Group Members Design work started in December 2016 Typically 12-18 months to develop a V1.0 specification © Copyright Khronos Group 2017 - Page 10 OpenXR and VR Run-times – a Win-Win Access to any OpenXR Application Any successful standard encourages and Proprietary APIs enables healthy industry competition Extensions Application Interface OpenXR will not replace VR Run-time VR run-times – or outlaw existing interfaces Proprietary OpenXR will simply provide cross-vendor Driver Interfaces APIs that can be exposed by a runtime to Extensions Device Layer access more apps and devices Access to any OpenXR Device OpenXR for portable AR/VR apps and devices – with initial focus on VR © Copyright Khronos Group 2017 - Page 11 OpenVX Vision Engines Wide range of vision hardware architectures Middleware OpenVX provides a high-level Graph-based abstraction -> Applications Graph-level optimizations Can be implemented on almost any hardware or processor -> Portable, Efficient Vision Processing! Software GPU Portability DSP Hardware X100 Dedicated Hardware Vision DSPs X10 Vision GPU Node Compute Vision Vision Node Node Multi-core Vision CPU Node Power Efficiency X1 Computation Flexibility Vision Processing Graph © Copyright Khronos Group 2017 - Page 12 OpenVX - Graph-Level Abstraction • OpenVX developers express a graph of image operations (‘Nodes’) - Using a C API • Nodes can be executed on any hardware or processor coded in any language - Implementers can optimize under the high-level graph abstraction • Graphs are the key to run-time power and performance optimizations - E.g. Node fusion, tiled graph processing for cache efficiency etc. Pyr Camera OpenVX Nodes t Rendering Input Output RGB YUV Gray Array of Frame Color Frame Channel Frame Image Optical Keypoints Harris Conversion Extract Pyramid Flow Track Array of Features OpenVX Graph Ftrt-1 Feature Extraction Example Graph © Copyright Khronos Group 2017 - Page 13 OpenVX Ecosystem E.g. AMD Open source OpenVX Extensions Neural Network Acceleration To o ls Graph Save and Restore - Highly optimized for x86 16-bit image operation CPU and OpenCL for GPU - “Graph Optimizer” looks New Functionality at entire processing pipeline and removes, Under Discussion replaces, merges functions to improve NNEF Import performance and bandwidth Programmable user - Scripting for rapid kernels with prototyping, without re- accelerator offload compiling, at production performance levels http://gpuopen.com/compute- Evolving product/amd-openvx/ Functionality Multiple Shipping Tool s Implementations © Copyright Khronos Group 2017 - Page 14 OpenVX 1.2 and Neural Net Extension • Convolution Neural Network topologies can be represented as OpenVX graphs - Layers are represented as OpenVX nodes - Layers connected by multi-dimensional tensors objects - Layer types include convolution, activation, pooling, fully-connected, soft-max - CNN nodes can be mixed with traditional vision nodes • Import/Export Extension - Efficient handling of network Weights/Biases or complete networks • OpenVX will be able to import NNEF files into OpenVX Neural Nets Vision Node Native Vision Vision Downstream Camera Application Node Node Control CNN Nodes Processing An OpenVX graph mixing CNN nodes with traditional vision nodes © Copyright Khronos Group 2017 - Page 15 Safety Critical APIs New Generation APIs for safety Experience and Guidelines certifiable vision, graphics and compute OpenGL SC 1.0 - 2005 OpenGL SC 2.0 - April 2016 e.g. ISO 26262 and DO-178B/C Fixed function graphics subset Shader programmable pipeline subset OpenGL ES 1.0 - 2003 OpenGL ES 2.0 - 2007 Fixed function graphics Shader programmable pipeline Khronos SCAP OpenVX SC 1.1 Released 1st May 2017 ‘Safety Critical Advisory Panel’ Guidelines for designing APIs that Vulkan SC being discussed Restricted “deployment” implementation Small driver size executes on the target hardware by reading ease system certification. Open to Khronos member AND Advanced functionality the binary format and executing the pre- industry experts. If interested to Graphics and compute compiled graphs join contact [email protected] © Copyright Khronos Group 2017 - Page 16 glTF – Cross-Platform 3D Assets glTF enables portable, efficient, sophisticated 3D assets for all 3D applications Now glTF 2.0 has PBR! Cool, portable materials Rendering API independence glTF – OpenGL Transmission Format Coming to Microsoft Office! Efficient transmission of 3D assets Laugh Engine running on Vulkan https://github.com/jian-ru/laugh_engine © Copyright Khronos Group 2017 - Page 17 Please Get Involved! • Information on all these standards at Khronos - www.khronos.org • Khronos is driving to new levels of community engagement - Specifications and resources increasingly open for industry input and feedback • Any company or organization is welcome to join Khronos - For a voice and a vote in any of these standards • If joining is not possible – ask about a Khronos Advisory Panel - Free of charge – enables design reviews, requirements and contributions • Still no cross-vendor camera APIs? - Is the time right for this to be a target for standardization? • Neil Trevett - [email protected] - @neilt3d © Copyright Khronos Group 2017 - Page 18.
Recommended publications
  • Visual Development Environment for Openvx
    ______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION Visual Development Environment for OpenVX Alexey Syschikov, Boris Sedov, Konstantin Nedovodeev, Sergey Pakharev Saint Petersburg State University of Aerospace Instrumentation Saint Petersburg, Russia {alexey.syschikov, boris.sedov, konstantin.nedovodeev, sergey.pakharev}@guap.ru Abstract—OpenVX standard has appeared as an answer II. STATE OF THE ART from the computer vision community to the challenge of accelerating vision applications on embedded heterogeneous OpenVX is intended to increase performance and reduce platforms. It is designed as a low-level programming framework power consumption of machine vision applications. It is that enables software developers to leverage the computer vision focused on embedded systems with real-time use cases such as hardware potential with functional and performance portability. face, body and gesture tracking, video surveillance, advanced In this paper, we present the visual environment for OpenVX driver assistance systems (ADAS), object and scene programs development. To the best of our knowledge, this is the reconstruction, augmented reality, visual inspection etc. first time the graphical notation is used for OpenVX programming. Our environment addresses the need to design The using of OpenVX standard functions is a way to ensure OpenVX graphs in a natural visual form with automatic functional portability of the developed software to all hardware generation of a full-fledged program, saving the programmer platforms that support OpenVX. from writing a bunch of a boilerplate code. Using the VIPE visual IDE to develop OpenVX programs also makes it possible to work Since the OpenVX API is based on opaque data types, with our performance analysis tools.
    [Show full text]
  • GLSL 4.50 Spec
    The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • The Importance of Data
    The landscape of Parallel Programing Models Part 2: The importance of Data Michael Wong and Rod Burns Codeplay Software Ltd. Distiguished Engineer, Vice President of Ecosystem IXPUG 2020 2 © 2020 Codeplay Software Ltd. Distinguished Engineer Michael Wong ● Chair of SYCL Heterogeneous Programming Language ● C++ Directions Group ● ISOCPP.org Director, VP http://isocpp.org/wiki/faq/wg21#michael-wong ● [email protected][email protected] Ported ● Head of Delegation for C++ Standard for Canada Build LLVM- TensorFlow to based ● Chair of Programming Languages for Standards open compilers for Council of Canada standards accelerators Chair of WG21 SG19 Machine Learning using SYCL Chair of WG21 SG14 Games Dev/Low Latency/Financial Trading/Embedded Implement Releasing open- ● Editor: C++ SG5 Transactional Memory Technical source, open- OpenCL and Specification standards based AI SYCL for acceleration tools: ● Editor: C++ SG1 Concurrency Technical Specification SYCL-BLAS, SYCL-ML, accelerator ● MISRA C++ and AUTOSAR VisionCpp processors ● Chair of Standards Council Canada TC22/SC32 Electrical and electronic components (SOTIF) ● Chair of UL4600 Object Tracking ● http://wongmichael.com/about We build GPU compilers for semiconductor companies ● C++11 book in Chinese: Now working to make AI/ML heterogeneous acceleration safe for https://www.amazon.cn/dp/B00ETOV2OQ autonomous vehicle 3 © 2020 Codeplay Software Ltd. Acknowledgement and Disclaimer Numerous people internal and external to the original C++/Khronos group, in industry and academia, have made contributions, influenced ideas, written part of this presentations, and offered feedbacks to form part of this talk. But I claim all credit for errors, and stupid mistakes. These are mine, all mine! You can’t have them.
    [Show full text]
  • Standards for Vision Processing and Neural Networks
    Standards for Vision Processing and Neural Networks Radhakrishna Giduthuri, AMD [email protected] © Copyright Khronos Group 2017 - Page 1 Agenda • Why we need a standard? • Khronos NNEF • Khronos OpenVX dog Network Architecture Pre-trained Network Model (weights, …) © Copyright Khronos Group 2017 - Page 2 Neural Network End-to-End Workflow Neural Network Third Vision/AI Party Applications Training Frameworks Tools Datasets Trained Vision and Neural Network Network Inferencing Runtime Network Model Architecture Desktop and Cloud Hardware Embedded/Mobile Embedded/MobileEmbedded/Mobile Embedded/Mobile/Desktop/CloudVision/InferencingVision/Inferencing Hardware Hardware cuDNN MIOpen MKL-DNN Vision/InferencingVision/Inferencing Hardware Hardware GPU DSP CPU Custom FPGA © Copyright Khronos Group 2017 - Page 3 Problem: Neural Network Fragmentation Neural Network Training and Inferencing Fragmentation NN Authoring Framework 1 Inference Engine 1 NN Authoring Framework 2 Inference Engine 2 NN Authoring Framework 3 Inference Engine 3 Every Tool Needs an Exporter to Every Accelerator Neural Network Inferencing Fragmentation toll on Applications Inference Engine 1 Hardware 1 Vision/AI Inference Engine 2 Hardware 2 Application Inference Engine 3 Hardware 3 Every Application Needs know about Every Accelerator API © Copyright Khronos Group 2017 - Page 4 Khronos APIs Connect Software to Silicon Software Silicon Khronos is an International Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access
    [Show full text]
  • Khronos Template 2015
    Ecosystem Overview Neil Trevett | Khronos President NVIDIA Vice President Developer Ecosystem [email protected] | @neilt3d © Copyright Khronos Group 2016 - Page 1 Khronos Mission Software Silicon Khronos is an Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access hardware acceleration for graphics, parallel compute and vision © Copyright Khronos Group 2016 - Page 2 http://accelerateyourworld.org/ © Copyright Khronos Group 2016 - Page 3 Vision Pipeline Challenges and Opportunities Growing Camera Diversity Diverse Vision Processors Sensor Proliferation 22 Flexible sensor and camera Use efficient acceleration to Combine vision output control to GENERATE PROCESS with other sensor data an image stream the image stream on device © Copyright Khronos Group 2016 - Page 4 OpenVX – Low Power Vision Acceleration • Higher level abstraction API - Targeted at real-time mobile and embedded platforms • Performance portability across diverse architectures - Multi-core CPUs, GPUs, DSPs and DSP arrays, ISPs, Dedicated hardware… • Extends portable vision acceleration to very low power domains - Doesn’t require high-power CPU/GPU Complex - Lower precision requirements than OpenCL - Low-power host can setup and manage frame-rate graph Vision Engine Middleware Application X100 Dedicated Vision Processing Hardware Efficiency Vision DSPs X10 GPU Compute Accelerator Multi-core Accelerator Power Efficiency Power X1 CPU Accelerator Computation Flexibility © Copyright Khronos Group 2016 - Page 5 OpenVX Graphs
    [Show full text]
  • Real-Time Computer Vision with Opencv Khanh Vo Duc, Mobile Vision Team, NVIDIA
    Real-time Computer Vision with OpenCV Khanh Vo Duc, Mobile Vision Team, NVIDIA Outline . What is OpenCV? . OpenCV Example – CPU vs. GPU with CUDA . OpenCV CUDA functions . Future of OpenCV . Summary OpenCV Introduction . Open source library for computer vision, image processing and machine learning . Permissible BSD license . Freely available (www.opencv.org) Portability . Real-time computer vision (x86 MMX/SSE, ARM NEON, CUDA) . C (11 years), now C++ (3 years since v2.0), Python and Java . Windows, OS X, Linux, Android and iOS 3 Functionality Desktop . x86 single-core (Intel started, now Itseez.com) - v2.4.5 >2500 functions (multiple algorithm options, data types) . CUDA GPU (Nvidia) - 250 functions (5x – 100x speed-up) http://docs.opencv.org/modules/gpu/doc/gpu.html . OpenCL GPU (3rd parties) - 100 functions (launch times ~7x slower than CUDA*) Mobile (Nvidia): . Android (not optimized) . Tegra – 50 functions NEON, GLSL, multi-core (1.6–32x speed-up) 4 Functionality Image/video I/O, processing, display (core, imgproc, highgui) Object/feature detection (objdetect, features2d, nonfree) Geometry-based monocular or stereo computer vision (calib3d, stitching, videostab) Computational photography (photo, video, superres) Machine learning & clustering (ml, flann) CUDA and OpenCL GPU acceleration (gpu, ocl) 5 Outline . What is OpenCV? . OpenCV Example – CPU vs. GPU with CUDA . OpenCV CUDA functions . Future of OpenCV . Summary OpenCV CPU example #include <opencv2/opencv.hpp> OpenCV header files using namespace cv; OpenCV C++ namespace int
    [Show full text]
  • The Openvx™ Specification
    The OpenVX™ Specification Editor: Radhakrishna Giduthuri, Intel, The Khronos® OpenVX Working Group Version 1.3, Thu, 10 Sep 2020 07:04:36 +0000: Git branch information not available Table of Contents 1. Introduction . 2 1.1. Abstract . 2 1.2. Purpose . 2 1.3. Scope of Specification . 2 1.4. Normative References . 2 1.5. Version/Change History . 3 1.6. Deprecation . 3 1.7. Normative Requirements . 3 1.8. Typographical Conventions . 3 1.8.1. Naming Conventions . 4 1.8.2. Vendor Naming Conventions . 4 1.9. Glossary and Acronyms . 5 1.10. Acknowledgements . 5 2. Design Overview . 8 2.1. Software Landscape . 8 2.2. Design Objectives . 8 2.2.1. Hardware Optimizations . 8 2.2.2. Hardware Limitations . 9 2.3. Assumptions . 9 2.3.1. Portability. 9 2.3.2. Opaqueness . 9 2.4. Object-Oriented Behaviors . 9 2.5. OpenVX Framework Objects . 9 2.6. OpenVX Data Objects . 10 2.7. Error Objects . 11 2.8. Graphs Concepts . 11 2.8.1. Linking Nodes . 11 2.8.2. Virtual Data Objects . 11 2.8.3. Node Parameters . 14 2.8.4. Graph Parameters . 15 2.8.5. Execution Model . 15 Asynchronous Mode . 15 2.8.6. Graph Formalisms . 15 Contained & Overlapping Data Objects . 16 2.8.7. Node Execution Independence . 18 2.8.8. Verification. 20 2.9. Callbacks . 21 2.10. User Kernels. 21 2.10.1. Parameter Validation. 23 The Meta Format Object. 23 2.10.2. User Kernels Naming Conventions . 23 2.11. Immediate Mode Functions . 24 2.12. Targets . ..
    [Show full text]
  • The Openvx™ Specification
    The OpenVX™ Specification Version 1.0.1 Document Revision: r31169 Generated on Wed May 13 2015 08:41:43 Khronos Vision Working Group Editor: Susheel Gautam Editor: Erik Rainey Copyright ©2014 The Khronos Group Inc. i Copyright ©2014 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specifica- tion for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specifi- cation are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions.
    [Show full text]
  • The Openvx™ Specification
    The OpenVX™ Specification Version 1.2 Document Revision: dba1aa3 Generated on Wed Oct 11 2017 20:00:10 Khronos Vision Working Group Editor: Stephen Ramm Copyright ©2016-2017 The Khronos Group Inc. i Copyright ©2016-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specifica- tion for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specifi- cation are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions.
    [Show full text]
  • Khronos Open API Standards for Mobile Graphics, Compute And
    Open API Standards for Mobile Graphics, Compute and Vision Processing GTC, March 2014 Neil Trevett Vice President Mobile Ecosystem, NVIDIA President Khronos © Copyright Khronos Group 2014 - Page 1 Khronos Connects Software to Silicon Open Consortium creating ROYALTY-FREE, OPEN STANDARD APIs for hardware acceleration Defining the roadmap for low-level silicon interfaces needed on every platform Graphics, compute, rich media, vision, sensor and camera processing Rigorous specifications AND conformance tests for cross- vendor portability Acceleration APIs BY the Industry FOR the Industry Well over a BILLION people use Khronos APIs Every Day… © Copyright Khronos Group 2014 - Page 2 Khronos Standards 3D Asset Handling - 3D authoring asset interchange - 3D asset transmission format with compression Visual Computing - 3D Graphics - Heterogeneous Parallel Computing Over 100 companies defining royalty-free APIs to connect software to silicon Camera Control API Acceleration in HTML5 - 3D in browser – no Plug-in - Heterogeneous computing for JavaScript Sensor Processing - Vision Acceleration - Camera Control - Sensor Fusion © Copyright Khronos Group 2014 - Page 3 The OpenGL Family OpenGL 4.4 is the industry’s most advanced 3D API Cross platform – Windows, Linux, Mac, Android Foundation for productivity apps Target for AAA engines and games The most pervasively available 3D API – 1.6 Billion devices and counting Almost every mobile and embedded device – inc. Android, iOS Bringing proven desktop functionality to mobile JavaScript binding to OpenGL
    [Show full text]
  • The Opengl ES Shading Language
    The OpenGL ES® Shading Language Language Version: 3.20 Document Revision: 12 246 JuneAugust 2015 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost 1 Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • A Distributed Framework for Low-Latency Openvx Over the RDMA Noc of a Clustered Manycore Julien Hascoet, Benoît Dupont De Dinechin, Karol Desnos, Jean-Francois Nezan
    A Distributed Framework for Low-Latency OpenVX over the RDMA NoC of a Clustered Manycore Julien Hascoet, Benoît Dupont de Dinechin, Karol Desnos, Jean-Francois Nezan To cite this version: Julien Hascoet, Benoît Dupont de Dinechin, Karol Desnos, Jean-Francois Nezan. A Distributed Framework for Low-Latency OpenVX over the RDMA NoC of a Clustered Manycore. IEEE High Performance Extreme Computing Conference (HPEC 2018), Sep 2018, Waltham, MA, United States. 10.1109/hpec.2018.8547736. hal-02049414 HAL Id: hal-02049414 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02049414 Submitted on 8 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Distributed Framework for Low-Latency OpenVX over the RDMA NoC of a Clustered Manycore Julien Hascoet¨ 1,2, Benoˆıt Dupont de Dinechin1, Karol Desnos2, Jean-Franc¸ois Nezan2 1 Kalray, Montbonnot-Saint-Martin, France 2 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes, France {jhascoet, benoit.dinechin}@kalray.eu, {kdesnos, jnezan}@insa-rennes.fr Abstract—OpenVX is a standard proposed by the Khronos such manycore processors is challenging, as application soft- group for cross-platform acceleration of computer vision and ware must distribute processing on the clusters and use the deep learning applications.
    [Show full text]