Khronos Open API Standards for Mobile Graphics, Compute And

Total Page:16

File Type:pdf, Size:1020Kb

Khronos Open API Standards for Mobile Graphics, Compute And Open API Standards for Mobile Graphics, Compute and Vision Processing GTC, March 2014 Neil Trevett Vice President Mobile Ecosystem, NVIDIA President Khronos © Copyright Khronos Group 2014 - Page 1 Khronos Connects Software to Silicon Open Consortium creating ROYALTY-FREE, OPEN STANDARD APIs for hardware acceleration Defining the roadmap for low-level silicon interfaces needed on every platform Graphics, compute, rich media, vision, sensor and camera processing Rigorous specifications AND conformance tests for cross- vendor portability Acceleration APIs BY the Industry FOR the Industry Well over a BILLION people use Khronos APIs Every Day… © Copyright Khronos Group 2014 - Page 2 Khronos Standards 3D Asset Handling - 3D authoring asset interchange - 3D asset transmission format with compression Visual Computing - 3D Graphics - Heterogeneous Parallel Computing Over 100 companies defining royalty-free APIs to connect software to silicon Camera Control API Acceleration in HTML5 - 3D in browser – no Plug-in - Heterogeneous computing for JavaScript Sensor Processing - Vision Acceleration - Camera Control - Sensor Fusion © Copyright Khronos Group 2014 - Page 3 The OpenGL Family OpenGL 4.4 is the industry’s most advanced 3D API Cross platform – Windows, Linux, Mac, Android Foundation for productivity apps Target for AAA engines and games The most pervasively available 3D API – 1.6 Billion devices and counting Almost every mobile and embedded device – inc. Android, iOS Bringing proven desktop functionality to mobile JavaScript binding to OpenGL ES Enabling the Web with GPU access Almost pervasive availability on mobile and desktop browsers Truly portable 3D apps with HTML5 © Copyright Khronos Group 2014 - Page 4 OpenGL ES 3.1 Launched at GDC! • Headline features - Compute Shaders and Draw-Indirect - Compute shaders can create geometry or other rendering data • Expecting rapid adoption - driver upgrade for many SOCs - Backward compatible with 2.0/3.0 so apps can incrementally adopt features • Enabling desktop OpenGL to be used for mobile development - ARB_ES_3_1_compatibility specification to support “OpenGL ES 3.1 context” Driver Silicon Silicon Driver Update Update Update Update 2002 2003 2004 2007 2012 2014 Working 1.0 1.1 2.0 3.0 3.1 Group Formed © Copyright Khronos Group 2014 - Page 5 OpenGL Fallacy: Old and Inefficient Immediate Display Lists Mode Fixed Function Evaluators Ancient crufty stuff Feedback Selectors Selection © Copyright Khronos Group 2014 - Page 6 OpenGL Reality: Modern & Efficient Bindless Multi-Draw ARB Indirect GL4.3 Texture Arrays GL3.0 Buffer SSBO Storage GL4.3 GL4.4 UBO GL3.1 © Copyright Khronos Group 2014 - Page 7 Classic OpenGL Model Memory… indirect draw buffer object buffer object CPU texture object buffer object buffer object texture object GPU buffer object buffer object cmd cmd cmd cmd buffer object render target Direct Drawing Commands buffer object (via the command fifo) © Copyright Khronos Group 2014 - Page 8 … Efficient OpenGL Model Memory access mediated through … Memory OpenGL fences indirect draw buffer object indirect draw buffer object CPU CPU texture object buffer object indirect draw buffer object texture object buffer object GPU buffer object CPU CPU buffer object render target CPU Writes Memory – buffer object GPU Writes Commands to Memory multi-threaded (no API)! Reads Commands from Memory No API – Minimal CPU Involvement … © Copyright Khronos Group 2014 - Page 9 Results • OpenGL enables scalable multi-threading with no new API - CPU and GPU Cores just write to memory - GPU work creation - builds buffers, constructs MDI commands • Integer multiple speedups ~5x – ~15x (not a typo) - On driver limited cases, obviously • Works TODAY on existing drivers! - Mostly OpenGL 4.2+ - Extensions are at least EXT • Does not require a new object model - Does not require breaking existing applications • http://blogs.nvidia.com/blog/2014/03/20/opengl-gdc2014/ © Copyright Khronos Group 2014 - Page 10 EGL 1.5 Released • EGL 1.5 brings functionality from multiple extensions into core - Increased reliability and portability Applications • EGLImages API Interop EGL provides efficient - Sharing textures and renderbuffers transfer of data and events between Khronos APIs • Context Robustness - Defending against malicious code • EGLSync objects - Improved OpenGL /OpenCL interop • Platform extensions - Standardized interactions for multiple OS Application Portability e.g. Android and 64-bit platforms EGL abstracts graphics context management, surface and • sRGB colorspace rendering buffer binding and rendering synchronization • NEXT – EGLStreams into core for vision and OS and Display camera interop Platforms © Copyright Khronos Group 2014 - Page 11 OpenCL as Parallel Compute Foundation • 100+ tool chains and languages leveraging OpenCL - Heterogeneous solutions emerging for the most popular programming languages Aparapi River Trail PyOpenCL Harlan C++ AMP Halide WebCL Compiler Shevlin Park Image JavaScript Java language Language Python wrapper High level directives for Processing binding to extensions for extensions to around language for GPU Uses Clang Fortran C and C++ and LLVM Language OpenCL parallelism JavaScript OpenCL programming OpenCL provides vendor optimized, cross-platform, cross-vendor access to heterogeneous compute resources Device X Device Y Device Z © Copyright Khronos Group 2014 - Page 12 Widening OpenCL Ecosystem Alternative High-level OpenCL C Alternative High-level AlternativeLanguage for AppsFrameworks and Kernel Source Language for Frameworks LanguageKernels for Frameworks Kernels Kernels SPIR Generator (e.g. patched Clang) SPIR SYCL Standard Portable Programming abstraction that combines Intermediate Representation portability and efficiency of OpenCL with SPIR 1.2 Released ease of use and flexibility of C++ January 2014 OpenCL run-time OpenCL C SPIR 1.2 Released here at GDC! can consume SPIR Runtime Device X Device Y Device Z © Copyright Khronos Group 2014 - Page 13 WebCL: Heterogeneous Computing for the Web • WebCL 1.0 specification officially finalized today at GDC! - https://www.khronos.org/webcl • WebCL defines JavaScript binding to the OpenCL APIs - Enables initiation of Kernels written in OpenCL C within the browser • Typical Use Cases - 3D asset codecs, video codecs and processing, imaging and vision processing - Physics for WebGL games, Online data visualization, Augmented Reality OpenCL KernelOpenCL CodeKernel OpenCL CodeKernel OpenCL C JavaScript Runtime API JavaScript Platform API CodeKernel To query, select and initialize Code To build and execute kernels compute devices across multiple devices GPU DSP CPU CPU HW © Copyright Khronos Group 2014 - Page 14 WebGL/WebCL Ecosystem Low-level APIs provide Content Content downloaded from the Web a powerful foundation JavaScript, HTML, CSS, ... for a rich JavaScript Middleware can make WebGL and WebCL middleware ecosystem accessible to non-expert programmers E.g. three.js library: http://threejs.org/ used by JavaScript Middleware majority of WebGL content Browser provides WebGL and WebCL Alongside other HTML5 technologies No plug-in required HTML5 JavaScript / CSS OS Provided Drivers WebGL uses OpenGL ES 2.0 or Angle for OpenGL ES 2.0 over DX9 WebCL uses OpenCL 1.X © Copyright Khronos Group 2014 - Page 15 OpenVX – Power Efficient Vision Acceleration • Acceleration API for real-time vision - Focus on mobile and embedded systems • Enable diverse efficient implementations - From CPUs, through GPUs and DSPs to dedicated hardware Application • Foundational API for vision acceleration - Can be used by middleware libraries or OpenCV open Other higher-level by applications directly source library CV libraries • Complementary to OpenCV - Which is great for prototyping • Khronos open source sample implementation - To be released with final specification - Sample - not reference - spec remains the Open source sample Hardware vendor definitive definition of OpenVX operation implementation implementations © Copyright Khronos Group 2014 - Page 16 OpenVX Graphs – The Key to Efficiency • Vision processing directed graphs for power and performance efficiency - Each Node can be implemented in software or accelerated hardware - Nodes may be fused by the implementation to eliminate memory transfers - Processing can be tiled to keep data entirely in local memory/cache • EGLStreams can provide data and event interop with other Khronos APIs - BUT use of other Khronos APIs are not mandated OpenVX Node Native OpenVX OpenVX Camera Node Node Control OpenVX Node Heterogeneous Processing Example OpenVX Graph © Copyright Khronos Group 2014 - Page 17 OpenVX 1.0 Function Overview • Core data structures - Images and Image Pyramids - Processing Graphs, Kernels, Parameters • Image Processing OpenVX Specification - Arithmetic, Logical, and statistical operations Evolution - Multichannel Color and BitDepth Extraction and Conversion OpenVX 1.0 defines - 2D Filtering and Morphological operations framework for - Image Resizing and Warping creating, managing and executing graphs • Core Computer Vision - Pyramid computation - Integral Image computation Focused set of widely • Feature Extraction and Tracking used functions that are readily accelerated - Histogram Computation and Equalization Widely used extensions adopted into future - Canny Edge Detection versions of the core - Harris and FAST Corner detection Implementers can add - Sparse Optical Flow functions as extensions © Copyright Khronos Group 2014 - Page 18 OpenVX and OpenCV are Complementary Community driven open
Recommended publications
  • Visual Development Environment for Openvx
    ______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION Visual Development Environment for OpenVX Alexey Syschikov, Boris Sedov, Konstantin Nedovodeev, Sergey Pakharev Saint Petersburg State University of Aerospace Instrumentation Saint Petersburg, Russia {alexey.syschikov, boris.sedov, konstantin.nedovodeev, sergey.pakharev}@guap.ru Abstract—OpenVX standard has appeared as an answer II. STATE OF THE ART from the computer vision community to the challenge of accelerating vision applications on embedded heterogeneous OpenVX is intended to increase performance and reduce platforms. It is designed as a low-level programming framework power consumption of machine vision applications. It is that enables software developers to leverage the computer vision focused on embedded systems with real-time use cases such as hardware potential with functional and performance portability. face, body and gesture tracking, video surveillance, advanced In this paper, we present the visual environment for OpenVX driver assistance systems (ADAS), object and scene programs development. To the best of our knowledge, this is the reconstruction, augmented reality, visual inspection etc. first time the graphical notation is used for OpenVX programming. Our environment addresses the need to design The using of OpenVX standard functions is a way to ensure OpenVX graphs in a natural visual form with automatic functional portability of the developed software to all hardware generation of a full-fledged program, saving the programmer platforms that support OpenVX. from writing a bunch of a boilerplate code. Using the VIPE visual IDE to develop OpenVX programs also makes it possible to work Since the OpenVX API is based on opaque data types, with our performance analysis tools.
    [Show full text]
  • GLSL 4.50 Spec
    The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • The Importance of Data
    The landscape of Parallel Programing Models Part 2: The importance of Data Michael Wong and Rod Burns Codeplay Software Ltd. Distiguished Engineer, Vice President of Ecosystem IXPUG 2020 2 © 2020 Codeplay Software Ltd. Distinguished Engineer Michael Wong ● Chair of SYCL Heterogeneous Programming Language ● C++ Directions Group ● ISOCPP.org Director, VP http://isocpp.org/wiki/faq/wg21#michael-wong ● [email protected][email protected] Ported ● Head of Delegation for C++ Standard for Canada Build LLVM- TensorFlow to based ● Chair of Programming Languages for Standards open compilers for Council of Canada standards accelerators Chair of WG21 SG19 Machine Learning using SYCL Chair of WG21 SG14 Games Dev/Low Latency/Financial Trading/Embedded Implement Releasing open- ● Editor: C++ SG5 Transactional Memory Technical source, open- OpenCL and Specification standards based AI SYCL for acceleration tools: ● Editor: C++ SG1 Concurrency Technical Specification SYCL-BLAS, SYCL-ML, accelerator ● MISRA C++ and AUTOSAR VisionCpp processors ● Chair of Standards Council Canada TC22/SC32 Electrical and electronic components (SOTIF) ● Chair of UL4600 Object Tracking ● http://wongmichael.com/about We build GPU compilers for semiconductor companies ● C++11 book in Chinese: Now working to make AI/ML heterogeneous acceleration safe for https://www.amazon.cn/dp/B00ETOV2OQ autonomous vehicle 3 © 2020 Codeplay Software Ltd. Acknowledgement and Disclaimer Numerous people internal and external to the original C++/Khronos group, in industry and academia, have made contributions, influenced ideas, written part of this presentations, and offered feedbacks to form part of this talk. But I claim all credit for errors, and stupid mistakes. These are mine, all mine! You can’t have them.
    [Show full text]
  • Vector Screencast
    Charles University in Prague Faculty of Mathematics and Physics BACHELOR THESIS Simonˇ Rozs´ıval Vektorov´yscreencast Department of Distributed and Dependable Systems Supervisor of the bachelor thesis: Mgr. Martin Dˇeck´y Study programme: Computer science Specialization: Programming and software systems Prague 2015 I would like to thank my supervisor, Martin Dˇeck´y, for his valuable pieces of advice, and Otakar J´ıcha from Khanova ˇskola, for the idea of this project and for lending me a graphics tablet for testing. I would also like to thank my family and friends for supporting me during my studies. I declare that I carried out this bachelor thesis independently, and only with the cited sources, literature and other professional sources. I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University in Prague has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act. In ........ date ............ signature of the author N´azev pr´ace: Vektorov´yscreencast Autor: Simonˇ Rozs´ıval Katedra: Katedra distribuovan´ych a spolehliv´ych syst´em˚u Vedouc´ıbakal´aˇrsk´epr´ace: Mgr. Martin Dˇeck´y Abstrakt: C´ılem bakal´aˇrsk´epr´ace je vytvoˇrit software pro z´aznam a pˇrehr´av´an´ı v´yukov´ych vide´ıpro potˇreby Khanovy ˇskoly. Na rozd´ılod bˇeˇzn´ych vide´ınejsou obrazov´adata uloˇzena ve formˇebitmap, ale jako vektory, coˇz umoˇzn´ısn´ıˇzit da- tovou n´aroˇcnost a vykreslit obraz ostˇre pˇri libovolnˇevelk´em rozliˇsen´ıobrazovky uˇzivatele.
    [Show full text]
  • Browser MMS Email OMA DL Codecs
    Solutions for OEM, ODM and Platform manufacturers Page 1 www.winwap.com Browser MMS Email OMA DL Codecs Page 2 Applications for connected consumer devices WEB Browser . 4 MMS Client . 8 Email Client . 11 OMA Download Agent . 16 Multimedia Codecs by On2 . 17 About Winwap Technologies. 18 OEM SOLUTIONS Page 3 WEB & WAP Browser Apps with open User-Interface The core functionality is built into the SDK. Keep one look and feel for your entire device Only a simple browser frame UI is required as most action takes place The Winwap MMS, Email, Browser and OMA DL solutions for most within the actual browser engine, but you platforms are dividied into SDK and User-Interface parts. The SDK is can design any UI provided in binary object code and provides the core functionality for yourself. each application. The User-Interface can optionally be provided as source code for easy integration and customization. Integrate the applications seamlessly into your device. Email Client The SDK’s support both touch and non-touch methods. Licensing are terms adjusted to fit your business model. All the complex POP and IMAP functionality as Get quick integration support from the same guys that well as folder handling has been integrated into have developed the softare. this very sofisticated SDK. The UI can as with Interoperable on a global scale thanks to over 10 years MMS be designed to look of development. any way you like and this allows you to integrate into widgets and any other part of your specific device solution to add Device integration is simple and allows to customize the value to the product.
    [Show full text]
  • SID Khronos Open Standards for AR May17
    Open Standards for AR Neil Trevett | Khronos President NVIDIA VP Developer Ecosystem [email protected] | @neilt3d LA, May 2017 © Copyright Khronos Group 2017 - Page 1 Khronos Mission Software Silicon Khronos is an International Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access hardware acceleration for 3D graphics, Virtual and Augmented Reality, Parallel Computing, Neural Networks and Vision Processing © Copyright Khronos Group 2017 - Page 2 Khronos Standards Ecosystem 3D for the Web Real-time 2D/3D - Real-time apps and games in-browser - Cross-platform gaming and UI - Efficiently delivering runtime 3D assets - VR and AR Displays - CAD and Product Design - Safety-critical displays VR, Vision, Neural Networks Parallel Computation - VR/AR system portability - Tracking and odometry - Machine Learning acceleration - Embedded vision processing - Scene analysis/understanding - High Performance Computing (HPC) - Neural Network inferencing © Copyright Khronos Group 2017 - Page 3 Why AR Needs Standard Acceleration APIs Without API Standards With API Standards Platform Application Fragmentation Portability Everything Silicon runs on CPU Acceleration Standard Acceleration APIs provide PERFORMANCE, POWER AND PORTABILITY © Copyright Khronos Group 2017 - Page 4 AR Processing Flow Download 3D augmentation object and scene data Tracking and Positioning Generate Low Latency Vision Geometric scene 3D Augmentations for sensor(s) reconstruction display by optical system Semantic scene understanding
    [Show full text]
  • The Opengl Graphics System
    OpenGL R ES Native Platform Graphics Interface (Version 1.0) Editor: Jon Leech Copyright c 2002-2003 Promoters of the Khronos Group (3Dlabs, ARM Ltd., ATI Technologies, Inc., Discreet, Ericsson Mobile, Imagination Technologies Group plc, Motorola, Inc., Nokia, Silicon Graphics, Inc., SK Telecom, and Sun Microsystems). This document is protected by copyright, and contains information proprietary to The Khronos Group. Any copying, adaptation, distribution, public performance, or public display of this document without the express written consent of the copy- right holders is strictly prohibited. The receipt or possession of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manu- facture, use, or sell anything that it may describe, in whole or in part. R This document is a derivative work of ”OpenGL Graphics with the X Window System (Version 1.4)”. Silicon Graphics, Inc. owns, and reserves all rights in, the latter document. OpenGL is a registered trademark, and OpenGL ES is a trademark, of Silicon Graphics, Inc. Contents 1 Overview 1 2 EGL Operation 2 2.1 Native Window System and Rendering APIs . 2 2.1.1 Scalar Types . 2 2.1.2 Displays . 3 2.2 Rendering Contexts and Drawing Surfaces . 3 2.2.1 Using Rendering Contexts . 4 2.2.2 Rendering Models . 4 2.2.3 Interaction With Native Rendering . 4 2.3 Direct Rendering and Address Spaces . 5 2.4 Shared State . 5 2.4.1 Texture Objects . 6 2.5 Multiple Threads . 6 2.6 Power Management . 7 3 EGL Functions and Errors 8 3.1 Errors .
    [Show full text]
  • Standards for Vision Processing and Neural Networks
    Standards for Vision Processing and Neural Networks Radhakrishna Giduthuri, AMD [email protected] © Copyright Khronos Group 2017 - Page 1 Agenda • Why we need a standard? • Khronos NNEF • Khronos OpenVX dog Network Architecture Pre-trained Network Model (weights, …) © Copyright Khronos Group 2017 - Page 2 Neural Network End-to-End Workflow Neural Network Third Vision/AI Party Applications Training Frameworks Tools Datasets Trained Vision and Neural Network Network Inferencing Runtime Network Model Architecture Desktop and Cloud Hardware Embedded/Mobile Embedded/MobileEmbedded/Mobile Embedded/Mobile/Desktop/CloudVision/InferencingVision/Inferencing Hardware Hardware cuDNN MIOpen MKL-DNN Vision/InferencingVision/Inferencing Hardware Hardware GPU DSP CPU Custom FPGA © Copyright Khronos Group 2017 - Page 3 Problem: Neural Network Fragmentation Neural Network Training and Inferencing Fragmentation NN Authoring Framework 1 Inference Engine 1 NN Authoring Framework 2 Inference Engine 2 NN Authoring Framework 3 Inference Engine 3 Every Tool Needs an Exporter to Every Accelerator Neural Network Inferencing Fragmentation toll on Applications Inference Engine 1 Hardware 1 Vision/AI Inference Engine 2 Hardware 2 Application Inference Engine 3 Hardware 3 Every Application Needs know about Every Accelerator API © Copyright Khronos Group 2017 - Page 4 Khronos APIs Connect Software to Silicon Software Silicon Khronos is an International Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access
    [Show full text]
  • Webgl™ Optimizations for Mobile
    WebGL™ Optimizations for Mobile Lorenzo Dal Col Senior Software Engineer, ARM 1 Agenda 1. Introduction to WebGL™ on mobile . Rendering Pipeline . Locate the bottleneck 2. Performance analysis and debugging tools for WebGL . Generic optimization tips 3. PlayCanvas experience . WebGL Inspector 4. Use case: PlayCanvas Swooop . ARM® DS-5 Streamline . ARM Mali™ Graphics Debugger 5. Q & A 2 Bring the Power of OpenGL® ES to Mobile Browsers What is WebGL™? Why WebGL? . A cross-platform, royalty free web . It brings plug-in free 3D to the web, standard implemented right into the browser. Low-level 3D graphics API . Major browser vendors are members of . Based on OpenGL® ES 2.0 the WebGL Working Group: . A shader based API using GLSL . Apple (Safari® browser) . Mozilla (Firefox® browser) (OpenGL Shading Language) . Google (Chrome™ browser) . Opera (Opera™ browser) . Some concessions made to JavaScript™ (memory management) 3 Introduction to WebGL™ . How does it fit in a web browser? . You use JavaScript™ to control it. Your JavaScript is embedded in HTML5 and uses its Canvas element to draw on. What do you need to start creating graphics? . Obtain WebGLrenderingContext object for a given HTMLCanvasElement. It creates a drawing buffer into which the API calls are rendered. For example: var canvas = document.getElementById('canvas1'); var gl = canvas.getContext('webgl'); canvas.width = newWidth; canvas.height = newHeight; gl.viewport(0, 0, canvas.width, canvas.height); 4 WebGL™ Stack What is happening when a WebGL page is loaded . User enters URL . HTTP stack requests the HTML page Browser . Additional requests will be necessary to get Space User JavaScript™ code and other resources WebKit JavaScript Engine .
    [Show full text]
  • Chapter 10 Document Object Model and Dynamic HTML
    Chapter 10 Document Object Model and Dynamic HTML The term Dynamic HTML, often abbreviated as DHTML, refers to the technique of making Web pages dynamic by client-side scripting to manipulate the document content and presen- tation. Web pages can be made more lively, dynamic, or interactive by DHTML techniques. With DHTML you can prescribe actions triggered by browser events to make the page more lively and responsive. Such actions may alter the content and appearance of any parts of the page. The changes are fast and e±cient because they are made by the browser without having to network with any servers. Typically the client-side scripting is written in Javascript which is being standardized. Chapter 9 already introduced Javascript and basic techniques for making Web pages dynamic. Contrary to what the name may suggest, DHTML is not a markup language or a software tool. It is a technique to make dynamic Web pages via client-side programming. In the past, DHTML relies on browser/vendor speci¯c features to work. Making such pages work for all browsers requires much e®ort, testing, and unnecessarily long programs. Standardization e®orts at W3C and elsewhere are making it possible to write standard- based DHTML that work for all compliant browsers. Standard-based DHTML involves three aspects: 447 448 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML Figure 10.1: DOM Compliant Browser Browser Javascript DOM API XHTML Document 1. Javascript|for cross-browser scripting (Chapter 9) 2. Cascading Style Sheets (CSS)|for style and presentation control (Chapter 6) 3. Document Object Model (DOM)|for a uniform programming interface to access and manipulate the Web page as a document When these three aspects are combined, you get the ability to program changes in Web pages in reaction to user or browser generated events, and therefore to make HTML pages more dynamic.
    [Show full text]
  • Ts 129 222 V15.3.0 (2019-04)
    ETSI TS 129 222 V15.3.0 (2019-04) TECHNICAL SPECIFICATION 5G; Common API Framework for 3GPP Northbound APIs (3GPP TS 29.222 version 15.3.0 Release 15) 3GPP TS 29.222 version 15.3.0 Release 15 1 ETSI TS 129 222 V15.3.0 (2019-04) Reference RTS/TSGC-0329222vf30 Keywords 5G ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Khronos Template 2015
    Ecosystem Overview Neil Trevett | Khronos President NVIDIA Vice President Developer Ecosystem [email protected] | @neilt3d © Copyright Khronos Group 2016 - Page 1 Khronos Mission Software Silicon Khronos is an Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access hardware acceleration for graphics, parallel compute and vision © Copyright Khronos Group 2016 - Page 2 http://accelerateyourworld.org/ © Copyright Khronos Group 2016 - Page 3 Vision Pipeline Challenges and Opportunities Growing Camera Diversity Diverse Vision Processors Sensor Proliferation 22 Flexible sensor and camera Use efficient acceleration to Combine vision output control to GENERATE PROCESS with other sensor data an image stream the image stream on device © Copyright Khronos Group 2016 - Page 4 OpenVX – Low Power Vision Acceleration • Higher level abstraction API - Targeted at real-time mobile and embedded platforms • Performance portability across diverse architectures - Multi-core CPUs, GPUs, DSPs and DSP arrays, ISPs, Dedicated hardware… • Extends portable vision acceleration to very low power domains - Doesn’t require high-power CPU/GPU Complex - Lower precision requirements than OpenCL - Low-power host can setup and manage frame-rate graph Vision Engine Middleware Application X100 Dedicated Vision Processing Hardware Efficiency Vision DSPs X10 GPU Compute Accelerator Multi-core Accelerator Power Efficiency Power X1 CPU Accelerator Computation Flexibility © Copyright Khronos Group 2016 - Page 5 OpenVX Graphs
    [Show full text]