Djvu Document

Total Page:16

File Type:pdf, Size:1020Kb

Djvu Document Vol. 2, no. 1, March 1988 INSECTA MUNDI 43 A Revision of the New World--Sp~ec~i~e~s~o,!:f================== Cryptolestes Ganglbauer (Coleoptera: Cucujidae: Laemophloeinae) M.e. Thomas Pest Identification Laboratory West Virginia Department of Agriculture Charleston, WV 23505 Abstract Jar genera. Of the genera most closelY allied to Cryp-- tolestes, Planolestes Lefkovitch seems to be adequately The New World species ofCryptalestes Ganglbauer defined and distinct (Lefkoviteh 1957), but A4icrobrontes are revised and keys, diagnoses, descriptions, and il- Reitter to hloeus Case and D smerus Case ose some problems. According to I etkovitch (1958b), Mirrnbrontes is "... well differentiated from Cryptolestes and from other seem Casey and L. bieDtor Chevrolat, are reassigned to Laemophloeinae..." Yet, my examination of the type Cryptolestes. Eight new species are described: C. dissimu­ s~ecies of Microbrontes M. laemophloeoides Reitter~ has latus (southwestern United States); C. dybas; (Florida); C. fned to reveal any differences of apparent generi im- portance between it and Cryptolestes uncicornis (Reitter) or C. punctatus (LeConte). C. uncicornis was described as ampiyacfls (Peru); and C. calabozus (Venezuela). Cryp a lAierobnmtes butLefkovitch (1958b) assigned it to C':!'P tolestes uncicornis (Reitter) is revived from synonymy tolestes noti~ that it" ~ossesses the diStin~iShin~ under C. punctatus (LeConte). C. schwarz; (Casey) is re- featur:s otc ptolestes "FeitherMicrobrontes cmlJf'F- vived from synonymy under C. weisei (Reitter), and four specific names are synonymized' C quadratus (Casey) [ C. uncicornis (Reitter)]; C. extricatus (Casey) and C. species of CryptoleStes fOr ¥lhich the genitalia have been adumbratus Casey [-c. punctatus (LeConte)]; and illustrated. However, a s;ecies described below from Laemophloells COllcavus (Reitter) [ C. bicolOl (Che\ifolat)]. Argentina (and dearly ted to lmcicol'llis and puncta dis~tus rei Cryptolestes horni (Casey) and C. Casey are re- tus ossesses a sin Ie enital sclerite while several r i . loeus Sharp. Lectotypes are designated for Laemophloeus tal sclerites Several of these species also have narrowly gemmatus LeConte, Cryptolestes adumbratus Casey, and Laemophloeus quadratus Casey. Introduction Because ofthe economic importanceas stored pro- r Fi . 1 . However both of these , c arac er s a es are a so presen In • unClcornlS an onomically best-known genus of the family. Ho.wev~r, punctatus (Fig. 2), and I am assigning these species to taxonomic problems remain to be solved, espeCIally in Cryptolestes pending a worldwide study of Cryptolestes determining the generic limits of Cryptolestes and simi- M.e. Thomas: Cryptol€Stes Pages 43-65 44 INSECTA MUNDI Vol. 2, no. 1, March 1988 and related genera. but are not dealt 'with further here. Both Banks (1979) Other genera which seem to be weakly distin­ and Reid (1942a) incorrectly labelled the sclerotizations guished from Cryptolestes (as presently understood) are of the internal sac of various Cryptolestes species as the Leptophloeus Casey, the type of which is Laemophloeus an­ aedeagus and parameres, which have less value in dis­ gw;tulw; LeConte, and oysmerus Casey, the type of tinguishing species than do the structures of the inter which is D. bast/lis Casey. Lefkovitch (1959a) distinguish nal sac. ed adults of Leptophloeus from those of Cryptolestes by As with their taxonomy, the biology of the stored their subcylindlical body and 5-5-5 male tal sal fonnula. products species of Cryptutestes has been intensively in- Lefkovitch (1962) described several African species that vestigated and is among the best-known of the Coleop- possessed 5-5-4 tarsi and placed them in a species group tera For fUrther details on the biology and ecology of separate from thebulkof Leptophloeus species. However, those species, see Ashby (1961); Barker & Johnson (1968); the male of Leptophloeus angustulus has 5 5 4 tarsi and Barnes & Kaloostian (1940); Bishop (1959); Borden et a1. possesses genital sderotizations similar to those of some (1979), Corbett et a1. (1937), Currie (1967), Da"ies (1949), species of Cryptolestes. And some species of Cryptolestes Dolinski & Loschiavo (1973); Dyte (1961, 1966); Finlayson possess a 5-5-5 male tarsal formula. so that the only (1950a. 1950b): Freeman (1952. 1962): Gupta & Sinha major distinguishing characters separating adults of (1960); Howe (1943); Lefkovitch & Currie (1967); Lef­ Leptopliloells from those of Cryptolgstgs appear to be the kOvitch & Milne (1963); Letkovitch (1959b, 19623, 1962e, subcylindrical body and concomitant narrowing of the 1962f); Loschiavo & Sinha (1966); Lucas & Oxley (1946); intercoxal process of sternum III. Additionally, I have Payne (1946); Rilelt (1949); Sinha (1961,1965); Sinha et al. seen specimens of an undesctibed species hom the (1962); Snnth (1962, 1965, 1966, 1972); SUI tees (1963, 1964, western United States that strongly resembles C. fer­ 1965); Tuff & Telford (1964); Watters (1969); Williams rugineus in general babib!s, even to me laterally ex- (1954); WOjcik (1969) panded mandibles in the male, but would be assigned The biology of the non-economic species of Cryp- currently to Leprophloeus because of its subeylindrical rolestes is almost completely unknown, except that, like body and narrow intercoxal process of sternum III. It most laemophloeines, they occur under bark of hard- may be that some of these character states, e.g., laterally wood logs and are apparently fun&vorous. However, expanded mandibles and possession of gemtalic scler- LefkOVltch [1965a] reported that C capens,s and C jer- otizations in both males and females, are ancestral for rugineus are n • •• actively though not exclusively preda- all or most of these genera and are subject to secondary tory...U Individuals of one of the new species described loss. Adults of Dysmerus are distinguished from those of below have been reported to feed on scale insects, and Cryptolestes by their subcylindrical bodies, bizarrely at least some members of Leptophloeus and Dysmerus modified male antennal scapes and the lateral attarn- have been recorded as predators of bark beetles. ment of the pedicel to the scape in both sexes (Lef­ In some species ofCryptolestes the last larval instar kOvitch 1958). spins a silken cocoon in ",ihich to pupate (Roberts & Clearly much more workneeds to be done in Cryp- Rilett 1953). They are apparently unique among Coleop- rolestes and related genera to adequately delineate the tera because the silk is produced from epidermal glands characters that define the generic groupings. It is cer- on the prosternum. tainly premature to begin splitting up Cryptolestes into Four species of Cryptolestes, ferruginells (Stephens), subgenera, as Iablokoff- Khnzorian (1977) has done, tllrcicus (Grouvelle), pllsilllls (Schonherr), and plIsi/lOides when the limits of the genus as a whole are still unclear. (Steel and Howe), are important stored products pests of Lefko',ritch arranged the economic species in groups nearly worldwide distribution (Howe &. Le£kot..itch based on palterns of sexual dimorphism and humidity 1957). Three others, capensis (Waltl), ugandae Steel and requirements (Lefkovitch 1965b) and their predilection Howe, and ldapperichi Lefkovitch, are also known from towards predation, cocoon characteristics, and resist- stored products but are of more limited distribution ance to methyl bromide fumigation (Lefkovitch 1965a). Cryptolestes capensis occurs in thecountriesbordering the The taxonomy and identification of the stored pro Mediterranean (Howe and Lefkovitch 1957). Laemo ducts species of Cryptolestes have been the subjects of phloells rotundicollis Casey, described from South numeJOus papers, among which are. Banks (1979), Biege CaJOlina, was synonymized with capensis by Lefkovilch & Partida (1976)' Green (1979)' labJokoff-Khnzorian (1967)' I have not seen any North American specimens (1978); Lefkovltch (1959a, 1962g); Reid (1942a). SIX of capensls dunng thiS stUdy. Cryptolestes ugandae IS re­ cosmopolitan species that have been recorded from, or stricted to Central ...\frica (Leikovitch 1962c) Cryptolestes which are likely to occur in, stored products in the New klapperichi was described in 1962 from Afghanistan (Lef- World are illustrated and included in the key to species, kovitch 1962a) and shortly thereafter 'ivas recorded from M.e. Thomas: Cryptolestes Pages 43-65 Vol. 2, no. 1, March 1988 INSECTA MUNDI 45 ~. ,«) ~ 1----- ..... _... ~ ..- \\\\ v rr )) '\./ TTT\I \II \\11 I III '1 _----..jj)i~ ~1? \~ 1'J ~1J1 I 2 ~ ~ ~ ~ ., ,,/ Iff/ "!. "- /' 3 U( 4 /ft/ Ii ~ 1/ ') '\\ Ir ---"'"'\ - / n I C-/ 'I ~ ~ ~ (I if "\ ~ - 1\ ff ~ " II J ,,- II (j)J ~ ~) ((1.,''0 ~} ~J ~ # ~ J IV II hI Fi9ures 115. Crypwlestes spp . l\nterior eOltaI cavities: 1))C. (erru"ltffiSgl (pSte hen~;))~ C. ltllcioomis ()Reitte~; armature of in ternal sac: 3) C pusillus (Schonherr); 5) C dissimulatus Thomas, n.sp.; 6) C klapperichi Lefkovitch; 7) C turcicus (Grouvelle); 8) C. pusilleides (Steel & Howe); sclerotization of bursa copulatrix: 9) C. pusillus (Schonherr); 10) C. ferrugineus (Stephens); 11) C dissimukltus Thomas, n.sp.; 12) C klapperichi (Lefkovitch); 13) C turcicus (Grouvelle); 14) C pusilloides (Steel & Howe); 15) e. dybasi Thomas, n.sp. Arabia (Lefkovitch 1965b). Less than 15 years later, Green Type Species: Of Cryptolestes, Cucujus ferrugineus (1979) recorded klapperichi in stored products from Sri Stephens [by subsequent designation of Casey (1916)]; Lanka and Malaysia. I have seen a long series of speci- of
Recommended publications
  • Beetles of the Tristan Da Cunha Islands
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Koleopterologische Rundschau Jahr/Year: 2013 Band/Volume: 83_2013 Autor(en)/Author(s): Hänel Christine, Jäch Manfred A. Artikel/Article: Beetles of the Tristan da Cunha Islands: Poignant new findings, and checklist of the archipelagos species, mapping an exponential increase in alien composition (Coleoptera). 257-282 ©Wiener Coleopterologenverein (WCV), download unter www.biologiezentrum.at Koleopterologische Rundschau 83 257–282 Wien, September 2013 Beetles of the Tristan da Cunha Islands: Dr. Hildegard Winkler Poignant new findings, and checklist of the archipelagos species, mapping an exponential Fachgeschäft & Buchhandlung für Entomologie increase in alien composition (Coleoptera) C. HÄNEL & M.A. JÄCH Abstract Results of a Coleoptera collection from the Tristan da Cunha Islands (Tristan and Nightingale) made in 2005 are presented, revealing 16 new records: Eleven species from eight families are new records for Tristan Island, and five species from four families are new records for Nightingale Island. Two families (Anthribidae, Corylophidae), five genera (Bisnius STEPHENS, Bledius LEACH, Homoe- odera WOLLASTON, Micrambe THOMSON, Sericoderus STEPHENS) and seven species Homoeodera pumilio WOLLASTON, 1877 (Anthribidae), Sericoderus sp. (Corylophidae), Micrambe gracilipes WOLLASTON, 1871 (Cryptophagidae), Cryptolestes ferrugineus (STEPHENS, 1831) (Laemophloeidae), Cartodere ? constricta (GYLLENHAL,
    [Show full text]
  • Fumigant and Feeding Deterrent Activity of Essential Oils Against Cryptolestes Ferrugineus (Stephens) (Coleoptera: Laemophloeidae)
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 9, September 2020 E-ISSN: 2085-4722 Pages: 4301-4308 DOI: 10.13057/biodiv/d210948 Fumigant and feeding deterrent activity of essential oils against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) SILVI IKAWATI1,2,♥, TOTO HIMAWAN2, ABDUL LATIEF ABADI2, HAGUS TARNO2 1Graduate Program, Faculty of Agriculture, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia 2Department of Plant Pest and Disease, Faculty of Agriculture, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia. Tel.: +62-341-551665, 565845, Fax.: +62-341-560011, email: [email protected] Manuscript received: 26 July 2020. Revision accepted: 25 August 2020. Abstract. Ikawati S, Himawan T, Abadi AL, Tarno H. 2020. Fumigant and feeding deterrent activity of essential oils against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Biodiversitas 21: 4301-4308. This study aimed to determine the fumigant and antifeedant activity of some plant essential oils against Cryptolestes ferrugineus. Essential oils were extracted from cinnamon (Cinnamomum verum), kaffir lime (Citrus hystrix), citronella grass (Cymbopogon nardus), zodea (Euodia suaveolens), and clove (Syzygium aromaticum). The extraction used the maceration method with n-Hexane as a solvent. The results of the experiments showed that all essential oils have fumigant toxicity. Fumigant toxicity of kaffir lime, citronella grass, zodea, and clove oil; eggs and pupae were more susceptible than adults and larvae, while for cinnamon, pupae and adults were more susceptible than eggs and larvae. Median Lethal Concentration (LC50) of all essential oils for eggs larvae, pupae, and adults respectively, for cinnamon were 17, 24, 9, and 12 ppm, for kaffir lime were 12, 17, 8 and 15 ppm, however, on citronella grass were 11, 22, 8, and 14 ppm, for zodea were 16, 22, 10 and 20 ppm, for clove were 11, 24, 7 and 14 ppm.
    [Show full text]
  • Economic Cost of Invasive Non-Native Species on Great Britain F
    The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat.
    [Show full text]
  • The Flat Bark Beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlantic Canada
    A peer-reviewed open-access journal ZooKeysTh e 2:fl 221-238at bark (2008)beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlantic Canada 221 doi: 10.3897/zookeys.2.14 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research The flat bark beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlantic Canada Christopher G. Majka Nova Scotia Museum, 1747 Summer Street, Halifax, Nova Scotia, Canada Corresponding author: Christopher G. Majka ([email protected]) Academic editor: Michael Th omas | Received 16 July 2008 | Accepted 5 August 2008 | Published 17 September 2008 Citation: Majka CG (2008) Th e Flat Bark Beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlan- tic Canada. In: Majka CG, Klimaszewski J (Eds) Biodiversity, Biosystematics, and Ecology of Canadian Coleoptera. ZooKeys 2: 221-238. doi: 10.3897/zookeys.2.14 Abstract Eighteen species of flat bark beetles are now known in Atlantic Canada, 10 in New Brunswick, 17 in Nova Scotia, four on Prince Edward Island, six on insular Newfoundland, and one in Labrador. Twenty-three new provincial records are reported and nine species, Uleiota debilis (LeConte), Uleiota dubius (Fabricius), Nausibius clavicornis (Kugelann), Ahasverus advena (Waltl), Cryptolestes pusillus (Schönherr), Cryptolestes turcicus (Grouvelle), Charaphloeus convexulus (LeConte), Chara- phloeus species nr. adustus, and Placonotus zimmermanni (LeConte) are newly recorded in the re- gion, one of which C. sp. nr. adustus, is newly recorded in Canada. Eight are cosmopolitan species introduced to the region and North America, nine are native Nearctic species, and one, Pediacus fuscus Erichson, is Holarctic. All the introduced species except for one Silvanus bidentatus (Fab- ricius), a saproxylic species are found on various stored products, whereas all the native species are saproxylic.
    [Show full text]
  • Insecticidal and Repellent Activities of Mimosa Pudica L. (Fabaceae) Against Cryptolestes Pusillus (Schon) (Coleoptera: Cucujidae)
    Int.J.Curr.Microbiol.App.Sci (2020) 9(9): 2222-2235 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 9 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.909.277 Insecticidal and Repellent Activities of Mimosa pudica L. (Fabaceae) against Cryptolestes pusillus (Schon) (Coleoptera: Cucujidae) Ujjwal Kumar Mondol and W. Islam* Institute of Biological Sciences, University of Rajshahi, Bangladesh *Corresponding author ABSTRACT The insecticidal and repellent activities were observed by residual film method and surface K eyw or ds film application methods respectively. Leaf, stem and root of Mimosa pudica L. were Insecticidal, screened through Petroleum ether, chloroform, ethyl acetate and methanol extracts against repellent activities, flat grain beetle, Cryptolestes pusillus (Schon.). The plant extracts showed less to high Residual film 2 mortality by using 0.25, 0.50, 1.0 and 2.0 mg/cm doses and the root extract showed most method, Surface potency. In 72 h of exposure, chloroform extract of root showed the lowest LD50 value film application (2.024 mg/cm 2) and 95% confidence limit was 1.730-2.292. In case of leaf, stem and root method, Mimosa the highest mortality was recorded in chloroform extracts were 73.3, 70.0, 80.0%; 80.0, pudica, 76.7, 90.0% and 90.0, 86.7, 96.7% respectively in 24, 48 and 72 h. The repellency Cryptolestes response among the three parts of the tested plant was different (p<0.05) and dose effect pusillus was more effective than exposure effect.
    [Show full text]
  • 53Rd ANNUAL MEETING
    55th ANNUAL MEETING of the SOUTHWESTERN BRANCH of the ENTOMOLOGICAL SOCIETY OF AMERICA http://swbesa.tamu.edu and the ANNUAL MEETING of the SOCIETY OF SOUTHWESTERN ENTOMOLOGISTS 19-22 FEBRUARY 2007 Omni Hotel Marina Tower 707 North Shoreline Blvd. Corpus Christi, TX 78401 (361)-887-1600; www.omnihotels.com 1 TABLE OF CONTENTS PAGE SPONSORS 2 MEETING INFORMATION 3 PROGRAM SUMMARY 5 OFFICERS AND COMMITTEES 8 PROGRAM: 10 MONDAY, 19 FEBRUARY 10 TUESDAY, 20 FEBRUARY 10 WEDNESDAY, 21 FEBRUARY 20 THURSDAY, 22 FEBRUARY 26 SWB-ESA AUTHOR INDEX 28 PRESIDENTS AND CHAIRMEN OF SWB-ESA 30 AUTHORS E-MAIL ADDRESSES 32 SUBMITTED ABSTRACTS 34 MAP OF HOTEL 51 SPONSORS We thank the following people and organizations for their generous donations in support of Insect Expo and other functions of the SWB-ESA meeting: Trece Inc. Bayer Environmental Science Dr. David Pledger DuPont Crop Protection Coastal Bend Pest Control Association 2 MEETING INFORMATION REGISTRATION: All persons attending the meetings or participating in the program must register. On-site registration fees for the SWB-ESA meeting are: Full One day Banquet meeting only only Active SWB or SSWE member $130 $50 $30 Student SWB or SSWE member* 50 25 30 Non-member 150 65 30 Youth member 10 10 10 Spouse/Guest 40 20 30 Honorary/Emeritus Gratis** Gratis Gratis *Student SWB or SSWE members: the fee is $ 5.00 if you are a volunteer helper at the meeting. **Gratis, but please register. ESA CERTIFICATION BOARD INFORMATION: Information regarding the Certification Board of ESA is available at the Registration Desk. SPONSORS: We thank our sponsors for their generous support of activities such as the Insect Expo, student mixer, Linnaean Games, and continental breakfast and breaks.
    [Show full text]
  • Determination of Phosphine Concentration for Cryptolestes
    12th International Working Conference on Stored Product Protection (IWCSPP) in Berlin, Germany, October 7-11, 2018 6 Phostoxin Tablets - 1 24 60 300 300 24 7 Phostoxin Tablets - 2 24 60 580 460 21 8 Magtoxin Plates - 2 24 175 900 750 21 9 Magtoxin Plates V 1 24 270 400 280 10 10 Phostoxin Tablets - 3 48 13 770 730 35 * - non-special-sealed containers The range of the dates infestation in the control was 3% to 30%. The dates were infested with alive adults of sap beetles (Coleoptera: Nitidulidae) and the larva of moths. Post fumigations no live insects were found. The dates infestation by dead insects in Magtoxin plates using the OMT 501 was 0-1%, in plates without the OMT 501 2%, in the trials with the tablets 2-18% (table 3). Tab. 3 The efficacy of Phosphine fumigation in dates disinfestation in the field trials Date infestation % Phosphine Dosage Exposure time Trial # OMT 501 control treatment formulation g/m3 h alive dead alive dead 1 Magtoxin Plates V 4 24 6 0 0 0 2 Magtoxin Plates V 2 24 9 0 0 3 3 Magtoxin Plates V 2 48 6 0 0 2 6 Phostoxin Tablets - 1 24 3 0 0 2 7 Phostoxin Tablets - 2 24 6 0 0 18 8 Magtoxin Plates - 2 24 12 0 0 2 9 Magtoxin Plates V 1 24 22 7 0 5 10 Phostoxin Tablets - 3 48 3 3 0 8 No phosphine residues were found in any of the fumigated dates. Discussion The best results were achieved in the trials with Magtoxin plates using the OMT 501.
    [Show full text]
  • Your Name Here
    RELATIONSHIPS BETWEEN DEAD WOOD AND ARTHROPODS IN THE SOUTHEASTERN UNITED STATES by MICHAEL DARRAGH ULYSHEN (Under the Direction of James L. Hanula) ABSTRACT The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, ground- dwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.
    [Show full text]
  • EPPO Datasheet: Pityophthorus Juglandis
    EPPO Datasheet: Pityophthorus juglandis Last updated: 2020-07-03 Pityophthorus juglandis and its associated fungus Geosmithia morbida are responsible for the thousand cankers disease of walnut. IDENTITY Preferred name: Pityophthorus juglandis Authority: Blackman Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Coleoptera: Curculionidae: Scolytinae Common names: walnut twig beetle view more common names online... EPPO Categorization: A2 list, Alert list (formerly) view more categorizations online... EU Categorization: A2 Quarantine pest (Annex II B) EPPO Code: PITOJU more photos... Notes on taxonomy and nomenclature The family Scolytidae was recently moved as a subfamily (Scolytinae) within the family Curculionidae. HOSTS Pityophthorus juglandis infests only walnut (Juglans spp.) and wingnut species (Pterocarya spp.), with a strong preference for black walnut (J. nigra). Historically, P. juglandis was mainly reported on J. major in Arizona and New Mexico, the native areas of the beetle, where it was considered as a minor pest. Observations carried out in these States suggest that damage from P. juglandis is restricted primarily to shaded or weakened branches and twigs in the upper crown. The expansion of the beetle’s host range to J. regia and J. nigra growing in plantations or in urban landscapes in the Western USA appears to have taken place during the last 20 years (EPPO, 2015). On these new host species, the beetle activity is more aggressive than on native Western American walnuts (e.g. J. major). Host list: Juglans ailanthifolia, Juglans californica, Juglans cathayensis, Juglans cinerea, Juglans hindsii, Juglans major, Juglans mandshurica, Juglans microcarpa, Juglans mollis, Juglans nigra, Juglans regia, Juglans, Pterocarya fraxinifolia, Pterocarya rhoifolia, Pterocarya stenoptera, Pterocarya GEOGRAPHICAL DISTRIBUTION Species native to Northern Mexico and the South-Western United States (California, Arizona, New Mexico).
    [Show full text]
  • 4 Biology, Behavior, and Ecology of Insects in Processed Commodities
    4 Biology, Behavior, and Ecology of Insects in Processed Commodities Rizana M. Mahroof David W. Hagstrum Most insects found in storage facilities consume Red flour beetle, Tribolium commodities, but some feed on mold growing castaneum (Herbst) on stored products. Others may be predators and parasitoids. Insects that attack relatively dry pro- Red flour beetle adults (Figure 1) are reddish brown. cessed commodities (those with about 10% or more Eggs are oblong and white. Adults show little moisture content at 15 to 42oC) can cause signifi- preference for cracks or crevices as oviposition sites. cant weight losses during storage. Insects occur in Eggshells are coated with a sticky substance that aids flour mills, rice mills, feed mills, food processing in attaching the eggs to surfaces and causes small facilities, breakfast and cereal processing facilities, particles to adhere to them (Arbogast 1991). Larvae farm storages, grain bins, grain elevators, bakeries, are yellowish white with three pair of thoracic legs. warehouses, grocery stores, pet-food stores, herbari- ums, museums, and tobacco curing barns. Economic Typically, there are six to seven larval instars, losses attributed to insects include not only weight depending on temperature and nutrition. Larvae loss of the commodity, but also monitoring and pest move away from light, living concealed in the food. management costs and effects of contamination on Full-grown larvae move to the food surface or seek product trade name reputation. shelter for pupation. Pupae are white and exarate, which means that appendages are not fused to the body. External genitalic characters on pupae can be Life Histories used to differentiate males and females (Good 1936).
    [Show full text]
  • Western Australian Viticulture Industry Biosecurity Plan
    Western Australian Viticulture Industry Biosecurity Plan Version 1.1; August 2017 Contributing Organisations The Western Australian Viticulture Industry Biosecurity Plan was coordinated by the Department of Primary Industries and Regional Development and developed through a partnership approach using government and industry resources and expertise. The development of this plan was made possible by Royalties for Regions Funding. The following organisations and agencies were involved in the review of the plan: • The Department of Primary Industries and Regional Development. • Wines of Western Australia • Table Grapes Western Australia Document citation DPIRD 2017, Western Australian Viticulture Industry Biosecurity Plan, version 1.1. Department of Primary Industries and Regional Development, Western Australia. Copyright © Western Australian Agriculture Authority, 2017 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Primary Industries and Regional Development resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever without prior written permission of the Western Australian Agriculture Authority.
    [Show full text]
  • Checklists of Cucujidae, Laemophloeidae, and Silvanidae (Coleoptera: Cucujoidea) from Iran Michael C
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2016 Checklists of Cucujidae, Laemophloeidae, and Silvanidae (Coleoptera: Cucujoidea) from Iran Michael C. Thomas Florida State Collection of Arthropods, [email protected] Hassan Ghahari Islamic Azad University, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Thomas, Michael C. and Ghahari, Hassan, "Checklists of Cucujidae, Laemophloeidae, and Silvanidae (Coleoptera: Cucujoidea) from Iran" (2016). Insecta Mundi. 1002. http://digitalcommons.unl.edu/insectamundi/1002 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0498 Checklists of Cucujidae, Laemophloeidae, and Silvanidae (Coleoptera: Cucujoidea) from Iran Michael C. Thomas Florida State Collection of Arthropods Florida Department of Agriculture and Consumer Services P.O. Box 147100 Gainesville, FL 32614-7100 Hassan Ghahari Department of Plant Protection Yadegar - e-Imam Khomeini (RAH) Shahre Rey Branch Islamic Azad University Tehran, Iran Date of Issue: August 26, 2016 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Michael C. Thomas and Hassan Ghahari Checklists of Cucujidae, Laemophloeidae, and Silvanidae (Coleoptera: Cucujoidea) from Iran Insecta Mundi 0498: 1-12 ZooBank Registered: LSID: urn:lsid:zoobank.org:pub:8F4C729F-E604-4E32-B592-E82C3FE0C00A Published in 2016 by Center for Systematic Entomology, Inc. P. O.
    [Show full text]