Proceedings of International Conference on Alternatives to Methyl Bromide

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of International Conference on Alternatives to Methyl Bromide PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALTERNATIVES TO METHYL BROMIDE LISBON, PORTUGAL, 27-30 SEPTEMBER 2004 1 Title: Proceedings of International Conference on Alternatives to Methyl Bromide Editors: Tom Batchelor and Flávia Alfarroba ISBN: Printed: European Commission, Brussels, Belgium 2 PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALTERNATIVES TO METHYL BROMIDE Editors Tom Batchelor and Flávia Alfarroba 3 4 ACKNOWLEDGEMENTS The organisers are very grateful for the hard work and support from the following people, organisations and commercial enterprises: CONFERENCE ORGANISATION Steering Committee: Mr João Gonçalves (Ministry of Environment); Mme Flávia Alfarroba (Ministry of Agriculture); Mr Ricardo Gomes (Ministry of Agriculture); Prof Manuel Belo Moreira (Technical University of Lisbon); Antonieta Castro (Ministry of Environment); Dr Tom Batchelor (European Commission) Scientific Committee: Dr Tom Batchelor (European Commission); Prof Silva Fernandes (Technical University of Lisbon); Dr Antonio Lavadinho (Ministry of Agriculture) Logistics: Prof Manuel Belo Moreira (Technical University of Lisbon); Mme Antonieta Castro (Ministry of Environment); Mr Luis Morbey (Ministry of Environment); Dr Vidal Abreu (Ministry of Agriculture); Mme Joaquina Fonseca (Ministry of Agriculture) Alternatives Fair: Mr Ricardo Gomes, Mr Joao Sousa Alves, Mr Jorge Moreira (Ministry of Agriculture); Dr Melanie Miller (Consultant); Prof Manuel Belo Moreira (Technical University of Lisbon) MAJOR SPONSORS Instituto do Ambiente (IA, Ministry of Environment), Direcção-Geral de Protecção das Culturas (DGPC, Ministry of Agriculture), Associação para o Desenvolvimento do Instituto Superior de Agronomia (ADISA, Technical University of Lisbon / Faculty of Agronomy), and the European Commission. We are grateful to Dow AgroSciences for a financial contribution towards the cost of travel that allowed some technical experts to attend this conference. 5 6 IN MEMORIAM Dr Franco Lamberti died suddenly in his home on 16 August 2004 at the age of 67. He was a highly-regarded nematologist with worldwide experience in taxonomy and crop protection. He collected specimens of nematodes in many countries and prepared excellent keys for their identification. Dr Lamberti pionereed research and studies on plant nematology in Italy and established the first Italian Plant Nematology Institute, supported by the Italian National Council of Research (CNR), at Bari, Italy in the early 1970s. His managerial skills were unmatched, as testified by the large number of meetings that he promoted or organised, including workshops and congresses on various aspects of plant nematology. Dr Lamberti was author of 662 publications including many on alternatives to methyl bromide, covering all the range of nematological research, starting from 1963. He was a fellow of the Society of Nematologists, a founder of the Italian Society of Nematology and was awarded recently the Distinguished Service Award and Special Award of the Organization of the Nematologists of Tropical America. His expertise and friendship will be missed by all the nematological community. Dr Lamberti is survived by his wife Teresa, daughter Carlotta, son Lamberto, and grandchildren, who receive our condolences. 7 8 FOREWORD Portugal was pleased to have hosted the “Fifth International Conference on Alternatives to Methyl Bromide”. Previous European conferences that were held in Tenerife (1997), Rome (1998), Heraklion (1999) and Sevilla1 (2002) made important contributions towards Europe’s endeavour to phase out methyl bromide, an ozone depleting pesticide. Once in widespread use, a range of alternatives have now largely replaced methyl bromide leaving only ‘critical uses’ and quarantine and pre-shipment’ uses permitted from 1 January 2005. Agriculture is a very important sector in many countries and especially to those in Europe. Many agricultural producers and food processors are aware of consumer demand for pesticide-free products, and have made efforts to reduce and eliminate pesticides in the food chain and the environment, wherever possible. The phase-out result is beneficial for our long term health and the future health of life on this planet. It is within this context that methyl bromide users in Europe are striving to replace methyl bromide with sustainable alternatives as soon as possible. The Conference in Lisbon brought together farmers, food processors, researchers, extension workers and industry that have a vested interest in the successful replacement of methyl bromide with viable alternatives. The Conference obtained the best information available on alternatives that are both under development and those already implemented worldwide. In particular, the conference focused on the identification of alternatives for critical uses. Critical uses are those uses of methyl bromide for which alternatives have yet to be developed, based on strict criteria established by the Parties to the Montreal Protocol and, additionally for Europe, Europe-wide and Member State regulations. The European Community is one of eight Parties that have requested critical uses. The papers presented in this conference by 55 pest and disease control experts from 10 Member States and 7 countries show that a range of alternatives to methyl bromide have been developed recently and, when implemented, could reduce or even eliminate the need for critical uses. Topics on alternatives to methyl bromide covered in the conference included: Keynote papers that summarised the procedures for critical use exemptions (CUEs) for methyl bromide submitted to, and evaluated by, the Montreal Protocol’s technical experts, and the results of their work; the procedures for licensing methyl bromide for CUEs; The impact of European legislation on pesticides including methyl bromide and its alternatives; an update on methyl bromide and ozone depletion; agriculture certification standards; industry-government partnerships for rapid registration of alternatives; technology transfer; and the importance of leadership in eliminating methyl bromide; Overview papers that examined the development and implementation of alternatives in tomato and strawberry crops where most of the methyl bromide is consumed; Scientific and commercial papers that showed the new products under development and the state of play for alternatives that have been on the market for a range of crops for some time. These papers were grouped into sessions on Strawberry production; Cut-flowers and ornamentals; Improved application methods; Quarantine and pre-shipment; Tomato, pepper and other vegetables; Structures, commodities and artifacts; and International standards, technology transfer and adoption of alternatives. Alternatives Fair where companies were invited to display and demonstrate products and equipment on methyl bromide alternatives; Alternatives in use that consisted of summary presented by the co-chairs of each of the sessions; Posters were displayed that supported the presentations made by experts. 1 Go to Sevilla Conference Proceedings for papers 9 The Conference was an opportunity for all those involved in developing, implementing and using alternatives to examine the potential for replacing existing MB use, and future methyl bromide CUEs, with alternatives. This conference showed in many papers and speeches that, based on experience with using the alternatives, the alternatives are as cost-effective as methyl bromide, some less expensive. Innovative technology is now being used to deploy alternatives more effectively in the past in the same way that methyl bromide operations were optimized over the past 40 years of its use. Integrated pest management has always been important, but techniques that rely on this are now becoming more prevalent for replacing methyl bromide with sustainable alternatives. The spirit to find alternatives is alive and well – they need to be taken up as soon as possible ! Tom Batchelor Flávia Alfarroba Ozone Layer Protection Ministry of Agriculture European Commission Direcção-Geral de Protecção das Culturas 10 TABLE OF CONTENTS SUMMARY OF REPORTS OF THE MEETINGS OF THE PARTIES TO THE MONTREAL PROTOCOL ON EXEMPTIONS FOR THE CRITICAL USES OF METHYL BROMIDE FOR 2005 AND 2006, M.F. HILDEBRAND...........................................................................................................................15 THE IMPACT OF THE MONTREAL PROTOCOL AND EUROPEAN UNION CONTROLS ON METHYL BROMIDE, T.A. BATCHELOR ...................................................................................................21 UPDATE ON THE REVIEW OF PESTICIDES IN THE EUROPEAN UNION AND IMPLICATIONS FOR METHYL BROMIDE AND CHEMICAL ALTERNATIVES, L. SMEETS ............................................27 STRAWBERRY FRUIT PRODUCTION: SUMMARIES OF ALTERNATIVES TO METHYL BROMIDE FUMIGATION AND TRIALS IN DIFFERENT GEOGRAPHIC REGIONS, I. PORTER, S. MATTNER, R. GOUNDER, R. MANN, J. BANKS AND P. FRASER ............................................................................29 MAIN RESULTS OF TRIALS ON METHYL BROMIDE ALTERNATIVES FOR STRAWBERRY FRUIT AND RUNNERS PRODUCED IN SPAIN, J.M. LOPEZ-ARANDA, L. MIRANDA, F. ROMERO, B. DE LOS SANTOS, C. SORIA, J.J. MEDINA, F. MONTES, J.M. VEGA, J.I. PAEZ, J. BASCON, A. MARTINEZ-TRECEÑO, D. GARCIA-SINOVAS, E. GARCIA-MENDEZ, M. BECERRIL, A. DE CAL, T. SALTO, M.L. MARTINEZ-BERINGOLA, AND P. MELGAREJO ..............................................................35 SUBSTRATES AS AN ALTERNATIVE TO METHYL BROMIDE FOR STRAWBERRY FRUIT PRODUCTION
Recommended publications
  • Harmful Non-Indigenous Species in the United States
    Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests.
    [Show full text]
  • Jordan Beans RA RMO Dir
    Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation.
    [Show full text]
  • Eggplant Integrated Pest Management
    Eggplant Integrated Pest Management AN ECOLOGICAL GUIDE TRAINING RESOURCE TEXT ON CROP DEVELOPMENT, MAJOR AGRONOMIC PRACTICES, DISEASE AND INSECT ECOLOGY, INSECT PESTS, NATURAL ENEMIES AND DISEASES OF EGGPLANT FAO Inter-Country Programme for Integrated Pest Management In Vegetables in South and Southeast Asia June 2003 TABLE OF CONTENTS ACKNOWLEDGEMENTS WHY THIS GUIDE? .................................................................................................................................... 1 1 INTRODUCTION ..................................................................................................................................... 2 1.1 INTEGRATED PEST MANAGEMENT: BEYOND BUGS….......................................................................... 2 1.2 THE VEGETABLE IPM PROGRAMME .................................................................................................. 2 1.3 DEVELOPING VEGETABLE IPM BASED ON RICE IPM ........................................................................... 3 1.4 EGGPLANT: A BIT OF HISTORY........................................................................................................... 3 2 EGGPLANT CROP DEVELOPMENT..................................................................................................... 4 2.1 EGGPLANT GROWTH STAGES............................................................................................................ 5 2.2 SUSCEPTIBILITY OF EGGPLANT GROWTH STAGES TO PESTS ..............................................................
    [Show full text]
  • Arthropod Pests of Citrus Roots
    lds. r at ex­ ual to ap ­ ila­ red t is een vi­ Clayton W. McCoy fa­ University of Florida ks Citrus Res ea rch and Educati on Center, Lake Alfred )0­ Ily I'::y les Ill­ up 10 Arthropod Pests of Citrus Roots 'ul r-J!l 'Ie '](1 cc The major arthropods that are injurious to plant roots are Geographical Distribution members of the classes Insecta and Acari (mites). Two-thi rds of these pests are members of the order Coleoptera (beetles), Citrus root weevi ls are predominantly trop ical ; however, a which as larvae cause serious economic loss in a wide range few temperate species are important pests in the United States, of plan t hosts. Generally, the larvae hatch from eggs laid by Chile. Argentina. Australia. and New Zealand (Table 14.1). adults on plan ts or in the soil and complete part of their life The northern blue-green citrus root weevil, Pachnaeus opalus; cycle chewing on plant roots, and in many cases as adults the Fuller rose beetle, Asynonychus godmani: and related spe ­ they feed on the foli age of the same or other host plan ts. A cies in the genus Pantomorus are found in temperate areas. Ap ­ number of arthropods inhabit the rhizosphere of citrus trees. proximately 150 species have been recorded in the Caribbean some as unique syrnbionts, but few arc injurious to the roots. region, including Florida. Central America, and South America, Only citrus root weevils. termi tes. and ants. in descending or­ feeding as larvae on the roots of all species of the genus Citrus.
    [Show full text]
  • Soil Conservation
    Soil conservation Erosion barriers on disturbed slope, Marin County, California Contour plowing in Pennsylvania in 1938. The rows formed slow surface water run-off during rainstorms to prevent soil erosion and allows the water time to infiltrate into the soil. Soil conservation is the prevention of loss of the top most layer of the soil from erosion or prevention of reduced fertility caused by over usage, acidification, salinization or other chemical soil contamination. Slash-and-burn and other unsustainable methods of subsistence farming are practiced in some lesser developed areas. A sequel to the deforestation is typically large scale erosion, loss of soil nutrients and sometimes total desertification. Techniques for improved soil conservation include crop rotation, cover crops, conservation tillage and planted windbreaks, affect both erosion and fertility. When plants die, they decay and become part of the soil. Code 330 defines standard methods recommended by the U.S. Natural Resources Conservation Service. Farmers have practiced soil conservation for millennia. In Europe, policies such as the Common Agricultural Policy are targeting the application of best management practices such as reduced tillage, winter cover crops,[1] plant residues and grass margins in order to better address the soil conservation. Political and economic action is further required to solve the erosion problem. A simple governance hurdle concerns how we value the land and this can be changed by cultural adaptation.[2] Contour ploughing Contour ploughing orients furrows following the contour lines of the farmed area. Furrows move left and right to maintain a constant altitude, which reduces runoff. Contour ploughing was practiced by the ancient Phoenicians, and is effective for slopes between two and ten percent.[3] Contour ploughing can increase crop yields from 10 to 50 percent, partially as a result of greater soil retention.[4] Terrace farming Terracing is the practice of creating nearly level areas in a hillside area.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, MICROMITE 4L, 02/05/2002
    Lf/JO - '176 i)../s/~o~ UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE 01' PREVENTION. PESTICIDES ANO TOXIC SUBSTANCES Judith O. Ball Registration Specialist FEe 5 20D2 Research .t DcveIopment 74 Amity 1load Bethany, CT 06524-3402 Subject: EPA Reg. No. 400-476, Micromite 4L Label Amendment Letter dated Jamwy 17, 2002 Dear Ms. Ball: The 1abe1ina referred to above, submitted in connection with registration undec the Fedenl 1nJecticide, FIII'&icide and Rodenticide Act (FIFRA), u amended, is acceptable provided tIIIt you make the following change to the iIbd: • Bold or highlight lDert Inpients A stamped copy is enclosed for your records. Please submit one (I) copy of your fina1 printed 1abeIing before you releue the product for shipment. If you have any questions or comments about this lett«, pleue contact me at 703-308-8291. Sincerely yours, Rita Kumar, Senior Regulatory Specialist Insecticide Rodenticide Branch Registration Division (7S0Se 1-A]3EL Restricted Use Pesticide. Due to toxicity to aquatic invertebrate animals. For retail sale to and use only by Certified Applicators, or persons under their direct supervision, and only for those uses covered by the Certified Applicator's certification. CCEPTElJ with COMMENl."'S Micromite® 4~'A Letter Dated Insect Growth Regulator FEB 5 2002 Net UDder the Fede,,' Insect~nts: Suspension Concentrate fwABiclde, and Rodenticide. Act, as amended, for th~ pesl.l.dde For Use on Citrus 'Teg!::;tcred, w,d,"'j t:'!), " lh~i~ N{.1 ...LfJro-I-/ iL Active IngredIent: (% by weight) Diflubenzuron N·II (4·Chlorophenyl)amino jcarbonylj- 2, 6·difluorobenzamide· ............... 40.4% Inert Ingredients: ...................................................................................
    [Show full text]
  • Tomato Integrated Pest Management : an Ecological Guide
    Why this guide? About this guide This ecological guide is developed by the FAO Inter-Country Programme for IPM in vegetables in South and Southeast Asia. It is an updated version of the Tomato IPM Ecological Guide dated June 1996. The objective of this ecological guide is to provide general technical background information on tomato production, supplemented with field experiences from the National IPM programmes connected to FAOs Vegetable ICP, and from related organizations active in farmer participatory IPM. Reference is made to exercise protocols developed by Dr. J. Vos of CABI Bioscience (formerly IIBC/CAB International) for FAO. The exercises are described in Vegetable IPM Exercise book, 1998 which contains examples of practical training exercises that complement the technical background information from this guide. Who will use this guide? National IPM programmes, IPM trainers, and others interested in IPM training and farmer participatory research. How to use this guide The ecological guides are technical reference manuals. They give background information and refer to exercises/studies that can be done in the field during training of trainers (TOT), farmers field schools (FFS) and action research to better understand a topic. The information in the guides is not specific for one country. Rather, this guide is an inspirational guide that provides a wealth of technical information and gives ideas of IPM practices from several countries, mainly from the Asian Region, to inspire IPM people world-wide to conduct discovery-based IPM training and to set up experiments to see if such practices would work in their countries and continents of assignment.
    [Show full text]
  • Research Progress on Continuous Cropping Obstacle and Green Control of Strawberry
    E3S Web of Conferences 251, 02044 (2021) https://doi.org/10.1051/e3sconf/202125102044 TEES 2021 Research Progress on Continuous Cropping Obstacle and Green Control of Strawberry Zhengwei Xiea, Qianqian Mab*, Wanyun Pengc, Zhide Wangd, Peng Wue, Yexing Sunf Dazhou Academy of Agricultural Sciences, Dazhou, Sichuan, China Abstract. Continuous cropping obstacle is a big problem of Strawberry planting. Continuous cropping obstacle leads to the accumulation of phenolic acids, imbalance of soil microorganism, deterioration of physical and chemical properties, resulting in sharp decline in Strawberry yield and quality. At present, the prevention and cure of continuous cropping obstacle of Strawberry is an urgent problem to be solved. The pathogen does not produce drug resistance, is safe to fresh fruit and does not pollute the environment. 1 Introduction The continuous cropping disease of strawberry was the main factor restricting strawberry production at Strawberry is one of the most widely cultivated fruit present, and the disease was prevalent in strawberry trees in the world. It is known as "the Queen of Berries". producing areas all over the world, the occurrence of the In 2018, the world strawberry planting area is 372,400 disease, the light leading to yield reduction and yield hm2, the annual yield is 8337,100 tons. In 2017, the reduction, heavy or no harvest, serious constraints on the world imported 947,500 tons of strawberries and sustainable development of strawberry. In the past, exported 951,400 tons. China is the largest strawberry chemical bactericides were widely used to disinfect the producing country in the world, and its annual output has soil, but the chemical disinfecting of the soil would been the first in the world since 1994.
    [Show full text]
  • The Flat Bark Beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlantic Canada
    A peer-reviewed open-access journal ZooKeysTh e 2:fl 221-238at bark (2008)beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlantic Canada 221 doi: 10.3897/zookeys.2.14 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research The flat bark beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlantic Canada Christopher G. Majka Nova Scotia Museum, 1747 Summer Street, Halifax, Nova Scotia, Canada Corresponding author: Christopher G. Majka ([email protected]) Academic editor: Michael Th omas | Received 16 July 2008 | Accepted 5 August 2008 | Published 17 September 2008 Citation: Majka CG (2008) Th e Flat Bark Beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlan- tic Canada. In: Majka CG, Klimaszewski J (Eds) Biodiversity, Biosystematics, and Ecology of Canadian Coleoptera. ZooKeys 2: 221-238. doi: 10.3897/zookeys.2.14 Abstract Eighteen species of flat bark beetles are now known in Atlantic Canada, 10 in New Brunswick, 17 in Nova Scotia, four on Prince Edward Island, six on insular Newfoundland, and one in Labrador. Twenty-three new provincial records are reported and nine species, Uleiota debilis (LeConte), Uleiota dubius (Fabricius), Nausibius clavicornis (Kugelann), Ahasverus advena (Waltl), Cryptolestes pusillus (Schönherr), Cryptolestes turcicus (Grouvelle), Charaphloeus convexulus (LeConte), Chara- phloeus species nr. adustus, and Placonotus zimmermanni (LeConte) are newly recorded in the re- gion, one of which C. sp. nr. adustus, is newly recorded in Canada. Eight are cosmopolitan species introduced to the region and North America, nine are native Nearctic species, and one, Pediacus fuscus Erichson, is Holarctic. All the introduced species except for one Silvanus bidentatus (Fab- ricius), a saproxylic species are found on various stored products, whereas all the native species are saproxylic.
    [Show full text]
  • 36 Wood Destroying Insects
    CHAPTER 36 THE BEST CONTROL OR HOW TO PERMANENTLY AND SAFELY CONTROL ALL WOOD DESTROYING ORGANISMS http://www.pctonline.com/copesan/ (without killing yourself) The February 1999 issue of Pest Control magazine on page 18 quotes Dr. Austin Frishman as saying, “We know that termiticides alone will not solve most termite problems.” This chapter will show you how to safely solve them without using any volatile termiticide poisons. At the time a live tree is cut down, nearly half its weight consists of water! The most destructive factor to wood in structures is excessive moisture, not wood destroying insects. Correct all moisture and humidity problems and you will also control almost all wood destroying insect problems without using any poisons. Use ventilation, moisture barriers, fans, air conditioners and/or dehumidifiers first, last and always. 1347 FORWARD Far more volatile, “registered,” synthetic pesticide poison is used to control termites than any other structural pest you will ever encounter. No volatile synthetic residual insecticide or economic poison is completely safe no matter what the professional pest control industry claims. The U. S. Environmental Protection Agency (EPA), when it approves one of the economic poisons, basically is only concerned with the harmful effects that occur from a single exposure of only the active ingredient by any route of entry or its acute toxicity expressed as its LD50 or LC50 value which is the lethal dose or concentration (relative amount) of only the active ingredient required to kill 50 % of a test population, e.g., male rats. LD50 values are recorded in milligrams of active ingredient per kilogram of body weight of the test animal.
    [Show full text]
  • ESCUELA DE CIENCIAS BIOLÓGICAS Y AMBIENTALES CARRERA DE INGENIERÍA EN GESTIÓN AMBIENTAL MODALIDAD CLÁSICA “Ensamblaje De
    ESCUELA DE CIENCIAS BIOLÓGICAS Y AMBIENTALES CARRERA DE INGENIERÍA EN GESTIÓN AMBIENTAL MODALIDAD CLÁSICA “Ensamblaje de una Comunidad de Coleópteros (Tenebrionidae - Carabidae) en un gradiente altitudinal, adaptaciones al cambio global, cantón Catamayo – Ecuador” Trabajo de fin de carrera previa la obtención del título de Ingeniero en Gestión Ambiental AUTOR: Daniel Alejandro Sotomayor Bastidas DIRECTOR: Marín Armijos Diego Stalin, Ing. Centro universitario Loja 2012 CERTIFICACIÓN DEL DIRECTOR DE TESIS Ingeniero Diego Stalin Marín Armijos DOCENTE – DIRECTOR DE TESIS C E R T I F I C A: Que el presente trabajo de investigación, denominado: “ENSAMBLAJE DE UNA COMUNIDAD DE COLEÓPTEROS (TENEBRIONIDAE - CARABIDAE) EN UN GRADIENTE ALTITUDINAL, ADAPTACIONES AL CAMBIO GLOBAL, CANTÓN CATAMAYO – ECUADOR” realizado por el estudiante: Daniel Alejandro Sotomayor Bastidas, ha sido cuidadosamente revisado por el suscrito, por lo que he podido constatar que cumple con todos los requisitos de fondo y de forma establecidos por la Universidad Técnica Particular de Loja y por la Escuela de Ciencias Biológicas y Ambientales, Carrera de Ingeniería en Gestión Ambiental, por lo que autorizo su presentación. Lo Certifico.- Loja, 11 de Abril de 2012. ……………………………………., Ing. Diego Stalin Marín Armijos II CESIÓN DE DERECHOS Yo, DANIEL ALEJANDRO SOTOMAYOR BASTIDAS declaro ser autor del presente trabajo y eximo expresamente a la Universidad Técnica Particular de Loja y a sus representantes legales de posibles reclamos o acciones legales. Adicionalmente declaro conocer y aceptar la disposición del Art. 67 del Estatuto Orgánico de la Universidad Técnica Particular de Loja que en su parte pertinente textualmente dice: “Forman parte del patrimonio de la Universidad la propiedad intelectual de investigaciones, trabajos científicos o técnicos de tesis de grado que se realicen a través, o con el apoyo financiero, académico o institucional (operativo) de la Universidad”.
    [Show full text]
  • 4 Biology, Behavior, and Ecology of Insects in Processed Commodities
    4 Biology, Behavior, and Ecology of Insects in Processed Commodities Rizana M. Mahroof David W. Hagstrum Most insects found in storage facilities consume Red flour beetle, Tribolium commodities, but some feed on mold growing castaneum (Herbst) on stored products. Others may be predators and parasitoids. Insects that attack relatively dry pro- Red flour beetle adults (Figure 1) are reddish brown. cessed commodities (those with about 10% or more Eggs are oblong and white. Adults show little moisture content at 15 to 42oC) can cause signifi- preference for cracks or crevices as oviposition sites. cant weight losses during storage. Insects occur in Eggshells are coated with a sticky substance that aids flour mills, rice mills, feed mills, food processing in attaching the eggs to surfaces and causes small facilities, breakfast and cereal processing facilities, particles to adhere to them (Arbogast 1991). Larvae farm storages, grain bins, grain elevators, bakeries, are yellowish white with three pair of thoracic legs. warehouses, grocery stores, pet-food stores, herbari- ums, museums, and tobacco curing barns. Economic Typically, there are six to seven larval instars, losses attributed to insects include not only weight depending on temperature and nutrition. Larvae loss of the commodity, but also monitoring and pest move away from light, living concealed in the food. management costs and effects of contamination on Full-grown larvae move to the food surface or seek product trade name reputation. shelter for pupation. Pupae are white and exarate, which means that appendages are not fused to the body. External genitalic characters on pupae can be Life Histories used to differentiate males and females (Good 1936).
    [Show full text]