Eggplant Integrated Pest Management

Total Page:16

File Type:pdf, Size:1020Kb

Eggplant Integrated Pest Management Eggplant Integrated Pest Management AN ECOLOGICAL GUIDE TRAINING RESOURCE TEXT ON CROP DEVELOPMENT, MAJOR AGRONOMIC PRACTICES, DISEASE AND INSECT ECOLOGY, INSECT PESTS, NATURAL ENEMIES AND DISEASES OF EGGPLANT FAO Inter-Country Programme for Integrated Pest Management In Vegetables in South and Southeast Asia June 2003 TABLE OF CONTENTS ACKNOWLEDGEMENTS WHY THIS GUIDE? .................................................................................................................................... 1 1 INTRODUCTION ..................................................................................................................................... 2 1.1 INTEGRATED PEST MANAGEMENT: BEYOND BUGS….......................................................................... 2 1.2 THE VEGETABLE IPM PROGRAMME .................................................................................................. 2 1.3 DEVELOPING VEGETABLE IPM BASED ON RICE IPM ........................................................................... 3 1.4 EGGPLANT: A BIT OF HISTORY........................................................................................................... 3 2 EGGPLANT CROP DEVELOPMENT..................................................................................................... 4 2.1 EGGPLANT GROWTH STAGES............................................................................................................ 5 2.2 SUSCEPTIBILITY OF EGGPLANT GROWTH STAGES TO PESTS ............................................................... 5 3 MAJOR AGRONOMIC PRACTICES...................................................................................................... 8 3.1 CLIMATE AND SITE SELECTION .......................................................................................................... 9 3.2 SELECTING A VARIETY...................................................................................................................... 9 3.2.1 Hybrids and open pollinated varieties.................................................................................... 9 3.2.2 Resistant varieties................................................................................................................ 10 3.3 SEED SELECTION........................................................................................................................... 11 3.4 SEED EXTRACTION......................................................................................................................... 12 3.5 SEED GERMINATION....................................................................................................................... 12 3.6 SEED TREATMENTS........................................................................................................................ 12 3.6.1 Physical seed treatment ..................................................................................................... 13 3.6.2 Chemical seed treatment.................................................................................................... 14 3.6.3 Botanical seed treatment .................................................................................................... 14 3.6.4 Biological seed treatment ................................................................................................... 14 3.7 SOIL ............................................................................................................................................. 15 3.7.1 The living soil ...................................................................................................................... 15 3.7.2 Soil type .............................................................................................................................. 15 3.7.3 Soil infection........................................................................................................................ 16 3.7.4 Soil sterilization................................................................................................................... 17 3.7.5 Soil pH ................................................................................................................................ 17 3.7.6 Measuring and adjusting soil pH......................................................................................... 18 3.7.7 Soil conservation and erosion control................................................................................. 19 3.8 FERTILIZER MANAGEMENT.............................................................................................................. 20 3.8.1 Macro and micro nutrients .................................................................................................. 20 3.8.2 Soil testing .......................................................................................................................... 21 3.8.3 Role of organic matter and micro-organisms...................................................................... 21 3.8.3.1 Compost ............................................................................................................................ 22 3.8.3.2 Cover crops, Green manure, and Living mulch................................................................. 27 3.8.3.3 Manure............................................................................................................................... 28 3.8.3.4 Organic mulches................................................................................................................ 29 3.8.4 Chemical fertilizers.............................................................................................................. 30 3.8.5 Comparing organic and chemical fertilizers........................................................................ 30 3.8.6 Foliar fertilizers.................................................................................................................... 31 3.8.7 Fertilization needs of eggplant............................................................................................ 31 3.9 PLANTING TIME AND PEST OCCURRENCE......................................................................................... 32 3.10 NURSERY MANAGEMENT ................................................................................................................ 32 3.10.1 Soil sterilization................................................................................................................... 32 3.10.1.1 Burning organic material on the soil ................................................................................ 33 3.10.1.2 Solarization...................................................................................................................... 33 3.10.1.3 Use of sub-soil................................................................................................................. 34 3.10.1.4 Biofumigation................................................................................................................... 34 3.10.1.5 Biological soil sterilization................................................................................................ 34 3.10.1.6 Boiled water..................................................................................................................... 35 3.10.2 Sowing ................................................................................................................................ 35 3.10.2.1 Flat field and raised seedbeds......................................................................................... 35 3.10.2.2 Sowing in pots ................................................................................................................. 36 3.11 FIELD PREPARATION ...................................................................................................................... 37 i Eggplant Ecological Guide 3.11.1 Working the soil .................................................................................................................. 37 3.11.2 Transplanting ...................................................................................................................... 38 3.11.3 Planting density................................................................................................................... 39 3.11.4 Mulching.............................................................................................................................. 39 3.12 PRUNING, RATOON CROPS, AND STAKING........................................................................................ 40 3.13 GRAFTING..................................................................................................................................... 41 3.14 WATER MANAGEMENT.................................................................................................................... 42 3.14.1 Drainage ............................................................................................................................. 42 3.14.2 Irrigation .............................................................................................................................. 42 3.15 INTERCROPPING AND TRAP CROPS ................................................................................................. 43 3.15.1 Intercropping and barrier crops........................................................................................... 43 3.15.2 Trap crops..........................................................................................................................
Recommended publications
  • The Importance of Alternative Host Plants As Reservoirs of the Cotton Leaf Hopper, Amrasca Devastans, and Its Natural Enemies
    1 The importance of alternative host plants as reservoirs of the 2 cotton leaf hopper, Amrasca devastans, and its natural enemies 3 4 Rabia Saeeda, Muhammad Razaqb and Ian C.W. Hardyc 5 6 aEntomology Department, Central Cotton Research Institute, Multan, Pakistan 7 bDepartment of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin 8 Zakariya University, Multan, Pakistan 9 cSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, 10 UK 11 12 13 14 15 Correspondence to: 16 Dr Ian C.W. Hardy 17 School of Biosciences, University of Nottingham, Sutton Bonington Campus, 18 Loughborough, LE12 5RD, UK 19 20 Tel: +441159516052 21 Fax: +441159516261 22 Email: [email protected] 23 _____________________________________________ 24 Accepted 21-12-2-14 25 Saeed R, Razaq M & Hardy ICW 2015 The importance of alternative host plants as reservoirs 26 of the cotton leaf hopper, Amrasca devastans, and its natural enemies. Journal of Pest 27 Science 88:517-531 28 _____________________________________________ 29 1 30 31 Abstract 32 Many agricultural pests can be harboured by alternative host plants but these can also harbour 33 the pests’ natural enemies. We evaluated the capacity of non-cotton plant species (both 34 naturally growing and cultivated) to function as alternative hosts for the cotton leaf hopper 35 Amrasca devastans (Homoptera: Ciccadellidae) and its natural enemies. Forty eight species 36 harboured A. devastans. Twenty four species were true breeding hosts, bearing both nymphal 37 and adult A. devastans, the rest were incidental hosts. The crop Ricinus communis and the 38 vegetables Abelomoschus esculentus and Solanum melongena had the highest potential for 39 harbouring A.
    [Show full text]
  • Soil Conservation
    Soil conservation Erosion barriers on disturbed slope, Marin County, California Contour plowing in Pennsylvania in 1938. The rows formed slow surface water run-off during rainstorms to prevent soil erosion and allows the water time to infiltrate into the soil. Soil conservation is the prevention of loss of the top most layer of the soil from erosion or prevention of reduced fertility caused by over usage, acidification, salinization or other chemical soil contamination. Slash-and-burn and other unsustainable methods of subsistence farming are practiced in some lesser developed areas. A sequel to the deforestation is typically large scale erosion, loss of soil nutrients and sometimes total desertification. Techniques for improved soil conservation include crop rotation, cover crops, conservation tillage and planted windbreaks, affect both erosion and fertility. When plants die, they decay and become part of the soil. Code 330 defines standard methods recommended by the U.S. Natural Resources Conservation Service. Farmers have practiced soil conservation for millennia. In Europe, policies such as the Common Agricultural Policy are targeting the application of best management practices such as reduced tillage, winter cover crops,[1] plant residues and grass margins in order to better address the soil conservation. Political and economic action is further required to solve the erosion problem. A simple governance hurdle concerns how we value the land and this can be changed by cultural adaptation.[2] Contour ploughing Contour ploughing orients furrows following the contour lines of the farmed area. Furrows move left and right to maintain a constant altitude, which reduces runoff. Contour ploughing was practiced by the ancient Phoenicians, and is effective for slopes between two and ten percent.[3] Contour ploughing can increase crop yields from 10 to 50 percent, partially as a result of greater soil retention.[4] Terrace farming Terracing is the practice of creating nearly level areas in a hillside area.
    [Show full text]
  • Tomato Integrated Pest Management : an Ecological Guide
    Why this guide? About this guide This ecological guide is developed by the FAO Inter-Country Programme for IPM in vegetables in South and Southeast Asia. It is an updated version of the Tomato IPM Ecological Guide dated June 1996. The objective of this ecological guide is to provide general technical background information on tomato production, supplemented with field experiences from the National IPM programmes connected to FAOs Vegetable ICP, and from related organizations active in farmer participatory IPM. Reference is made to exercise protocols developed by Dr. J. Vos of CABI Bioscience (formerly IIBC/CAB International) for FAO. The exercises are described in Vegetable IPM Exercise book, 1998 which contains examples of practical training exercises that complement the technical background information from this guide. Who will use this guide? National IPM programmes, IPM trainers, and others interested in IPM training and farmer participatory research. How to use this guide The ecological guides are technical reference manuals. They give background information and refer to exercises/studies that can be done in the field during training of trainers (TOT), farmers field schools (FFS) and action research to better understand a topic. The information in the guides is not specific for one country. Rather, this guide is an inspirational guide that provides a wealth of technical information and gives ideas of IPM practices from several countries, mainly from the Asian Region, to inspire IPM people world-wide to conduct discovery-based IPM training and to set up experiments to see if such practices would work in their countries and continents of assignment.
    [Show full text]
  • Research Progress on Continuous Cropping Obstacle and Green Control of Strawberry
    E3S Web of Conferences 251, 02044 (2021) https://doi.org/10.1051/e3sconf/202125102044 TEES 2021 Research Progress on Continuous Cropping Obstacle and Green Control of Strawberry Zhengwei Xiea, Qianqian Mab*, Wanyun Pengc, Zhide Wangd, Peng Wue, Yexing Sunf Dazhou Academy of Agricultural Sciences, Dazhou, Sichuan, China Abstract. Continuous cropping obstacle is a big problem of Strawberry planting. Continuous cropping obstacle leads to the accumulation of phenolic acids, imbalance of soil microorganism, deterioration of physical and chemical properties, resulting in sharp decline in Strawberry yield and quality. At present, the prevention and cure of continuous cropping obstacle of Strawberry is an urgent problem to be solved. The pathogen does not produce drug resistance, is safe to fresh fruit and does not pollute the environment. 1 Introduction The continuous cropping disease of strawberry was the main factor restricting strawberry production at Strawberry is one of the most widely cultivated fruit present, and the disease was prevalent in strawberry trees in the world. It is known as "the Queen of Berries". producing areas all over the world, the occurrence of the In 2018, the world strawberry planting area is 372,400 disease, the light leading to yield reduction and yield hm2, the annual yield is 8337,100 tons. In 2017, the reduction, heavy or no harvest, serious constraints on the world imported 947,500 tons of strawberries and sustainable development of strawberry. In the past, exported 951,400 tons. China is the largest strawberry chemical bactericides were widely used to disinfect the producing country in the world, and its annual output has soil, but the chemical disinfecting of the soil would been the first in the world since 1994.
    [Show full text]
  • Selection of Housekeeping Genes and Demonstration of Rnai in Cotton Leafhopper
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 1-12-2018 Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, Amrasca biguttula biguttula (Ishida) Satnam Singh Punjab Agricultural University, India Mridula Gupta Punjab Agricultural University, India Suneet Pandher Punjab Agricultural University, India Gurmeet Kaur Punjab Agricultural University, India Pankaj Rathore Punjab Agricultural University, India See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons, and the Genetics and Genomics Commons Repository Citation Singh, Satnam; Gupta, Mridula; Pandher, Suneet; Kaur, Gurmeet; Rathore, Pankaj; and Palli, Subba Reddy, "Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, Amrasca biguttula biguttula (Ishida)" (2018). Entomology Faculty Publications. 155. https://uknowledge.uky.edu/entomology_facpub/155 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Satnam Singh, Mridula Gupta, Suneet Pandher, Gurmeet Kaur, Pankaj Rathore, and Subba Reddy Palli Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, Amrasca biguttula biguttula (Ishida) Notes/Citation Information Published in PLOS ONE, v. 13, no. 1, e0191116, p. 1-21. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
    [Show full text]
  • Seasonal Incidence of Sap Sucking Insect Pests of Cotton
    Indian Journal of Applied Entomology 28(1) : 46–49 (2014) SEASONAL INCIDENCE OF SAP SUCKING INSECT PESTS OF COTTON MAHENDRA PAL*, R. SWAMINATHAN AND O. P. AMETA Department of Entomology, Rajasthan College of Agriculture (MPUAT), Udaipur (Rajasthan) 313001 *[email protected] ABSTRACT A field experiment to record the seasonal incidence of sap sucking insect pests of cotton was carried out during May to November, 2012 at the Instructional Farm, Rajasthan College of Agriculture, Udaipur (Rajasthan). The study revealed that the incidence of sap sucking insect pests started at 26th SMW and the peak population of aphids (52.80 aphids/plant) and thrips (41.60 thrips/plant) was recorded in 41st and 40th SMW, respectively; whereas, the population of jassids and whitefly reached the peak with mean 19.80 jassids /plant and 31.87 whiteflies/plant during the 31st and 30th SMW, respectively. The jassid and whitefly population was significantly and positively correlated to mean atmospheric temperature and mean relative humidity. Aphid population was positively correlated to mean atmospheric temperature and mean relative humidity. The mean relative humidity had significant positive correlation with the population of thrips. Key words: Seasonal incidence, sap sucking insect pests, cotton. INTRODUCTION MATERIALS AND METHODS Cotton (Gossypium spp.), an important commercial The seasonal incidence of insect pests of cotton was crop in Indian agriculture, is cultivated in varied agro- studied for which an experiment was laid out in uniformly climatic conditions across nine major states of India sized plots measuring 5m × 5m replicated six times. Variety covering an area of 12.19 m ha with the production and GH-8 was grown under natural conditions in untreated productivity of 34.70 m bales and 484 kg per hectare, plots at 90cm x 90cm row to row and plant to plant spacing respectively.
    [Show full text]
  • Classification of Botany and Use of Plants
    SECTION 1: CLASSIFICATION OF BOTANY AND USE OF PLANTS 1. Introduction Botany refers to the scientific study of the plant kingdom. As a branch of biology, it mainly accounts for the science of plants or ‘phytobiology’. The main objective of the this section is for participants, having completed their training, to be able to: 1. Identify and classify various types of herbs 2. Choose the appropriate categories and types of herbs for breeding and planting 1 2. Botany 2.1 Branches – Objectives – Usability Botany covers a wide range of scientific sub-disciplines that study the growth, reproduction, metabolism, morphogenesis, diseases, and evolution of plants. Subsequently, many subordinate fields are to appear, such as: Systematic Botany: its main purpose the classification of plants Plant morphology or phytomorphology, which can be further divided into the distinctive branches of Plant cytology, Plant histology, and Plant and Crop organography Botanical physiology, which examines the functions of the various organs of plants A more modern but equally significant field is Phytogeography, which associates with many complex objects of research and study. Similarly, other branches of applied botany have made their appearance, some of which are Phytopathology, Phytopharmacognosy, Forest Botany, and Agronomy Botany, among others. 2 Like all other life forms in biology, plant life can be studied at different levels, from the molecular, to the genetic and biochemical, through to the study of cellular organelles, cells, tissues, organs, individual plants, populations and communities of plants. At each of these levels a botanist can deal with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life.
    [Show full text]
  • Arab Journal of Plant Protection
    Under the Patronage of H.E. the President of the Council of Ministers, Lebanon Arab Journal of Plant Protection Volume 27, Special Issue (Supplement), October 2009 Abstracts Book 10th Arab Congress of Plant Protection Organized by Arab Society for Plant Protection in Collaboration with National Council for Scientific Research Crowne Plaza Hotel, Beirut, Lebanon 26-30 October, 2009 Edited by Safaa Kumari, Bassam Bayaa, Khaled Makkouk, Ahmed El-Ahmed, Ahmed El-Heneidy, Majd Jamal, Ibrahim Jboory, Walid Abou-Gharbieh, Barakat Abu Irmaileh, Elia Choueiri, Linda Kfoury, Mustafa Haidar, Ahmed Dawabah, Adwan Shehab, Youssef Abu-Jawdeh Organizing Committee of the 10th Arab Congress of Plant Protection Mouin Hamze Chairman National Council for Scientific Research, Beirut, Lebanon Khaled Makkouk Secretary National Council for Scientific Research, Beirut, Lebanon Youssef Abu-Jawdeh Member Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon Leila Geagea Member Faculty of Agricultural Sciences, Holy Spirit University- Kaslik, Lebanon Mustafa Haidar Member Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon Walid Saad Member Pollex sal, Beirut, Lebanon Samir El-Shami Member Ministry of Agriculture, Beirut, Lebanon Elia Choueiri Member Lebanese Agricultural Research Institute, Tal Amara, Zahle, Lebanon Linda Kfoury Member Faculty of Agriculture, Lebanese University, Beirut, Lebanon Khalil Melki Member Unifert, Beirut, Lebanon Imad Nahal Member Ministry of Agriculture, Beirut,
    [Show full text]
  • Effect of Abiotic and Biotic Factors on Jassid and Fruit and Shoot Borer in Kharif Okra Crop J.B
    Effect of Abiotic and Biotic Factors on Jassid and Fruit and Shoot borer in kharif Okra Crop J.B. YADAV, R.S. SINGH, H.P. SINGH AND AANJANI KUMAR SINGH International Journal of Plant Protection, Vol. 2 No. 1 : 119-122 (April to September, 2009) See end of the article for SUMMARY authors’ affiliations The field density of Amrasca biguttula biguttula and Earias vittella along with their associated abiotic and biotic factors were observed in okra field at Kanpur. The incidence of jassid, Amrasca biguttula Correspondence to : biguttula began from July and fruit and shoot borer, Earias vittella from August and continued till J.B. YADAV Department of October. Among the parasitoids, Anagrus flaveolus associated with jassid and Trichogramma chilonis Entomology, C.S. Azad with E.vittella were the most important natural enemies. The percentage of parasitism of A.flaveolus University of ranged from 3 to 9 and of Trichogramma chilonis from 10 to 12 per cent. The data revealed a high Agriculture and positive relationship between the pest and parasitoids indicating an important role in suppressing pest Technology, KANPUR population to some extent. Predator, Chrysoperla carnea was recorded preying on nymph and adult of (U.P.) INDIA Amrasca biguttula biguttula. The abiotic factors were closely related with pest population. kra (Abelmoschus esculentus) is an enemies were recorded on five randomly Oimportant vegetable crop in India. It is selected plants from each replication. Immature attacked by a number of insect-pests, mites and stage of Earias vittella were collected from nematodes (Chaudhary and Dadheech, 1989). okra field on every observation date and reared Among these pests, the jassids and shoot and separately in laboratory to record the number fruits borer are the most important.The cost of of parasitoids emerging from them and to plant protection with chemical pesticide is very identify the parasitoids.
    [Show full text]
  • Fungi P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come
    P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come Fungi P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come Fungi Biology and Applications Second Edition Editor Kevin Kavanagh Department of Biology National University of Ireland Maynooth Maynooth County Kildare Ireland A John Wiley & Sons, Ltd., Publication P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come This edition first published 2011 © 2011 by John Wiley & Sons, Ltd. Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered Office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/ wiley-blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Crop Diversification for Sustainable Insect Pest Management in Eggplant (Solanales: Solanaceae) G
    Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae) G. K. Sujayanand1,4,*, R. K. Sharma1, K. Shankarganesh1, Supradip Saha2 and R. S. Tomar3 Abstract An experiment was conducted to manage the eggplant (brinjal) shoot and fruit borer Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), the leafhopper Amrasca biguttula biguttula (Ishida) (Hemiptera: Cicadellidae), and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) during kharif, the southwest monsoon season (Jul-Oct), in 2010 and 2011 at an experimental farm at the Division of Entomology, Indian Agricultural Research Institute, New Delhi. The experiment consisted of 7 different treatments with brinjal or eggplant ‘Pusa Kranti’, Solanum melongena L. (So- lanales: Solanaceae), as the main crop and coriander, marigold or mint as intercrops, along with a border crop (maize or cowpea) acting as refuge crops. Treatment T1 (maize as border crop and coriander as intercrop) harbored the smallest cumulative mean leafhopper population (6.90 insects per 3 leaves per plant) and the next to smallest mean whitefly population (9.64 insects per 3 leaves per plant) during monsoon season of 2010 and 2011. Treatment T3 (maize as border crop and marigold as intercrop) was second best in reducing the leafhopper population (7.27 insects per 3 leaves per plant), while it was the best treatment in reducing the whitefly population (8.36 insects per 3 leaves per plant). The sole crop (T7) harbored the largest whitefly (20.17 insects per 3 leaves per plant) and leafhopper (12.61 insects per 3 leaves per plant) populations among the 7 treatments. The lowest mean percentage fruit infestation was recorded from treatment T1 (by number: 27.72; by weight: 27.81).
    [Show full text]
  • Biodiversity of Insect Pest Complex Infesting Okra [Abelmoschus
    Journal of Entomology and Zoology Studies 2017; 5(5): 1968-1972 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Biodiversity of insect pest complex infesting okra JEZS 2017; 5(5): 1968-1972 © 2017 JEZS [Abelmoschus esculentus] in Tripura, N.E. India Received: 11-07-2017 Accepted: 12-08-2017 Navendu Nair Navendu Nair, U Giri, T Bhattacharjee, B Thangjam, N Paul and MR Department of Agriculture Debnath Entomology, College of Agriculture, Tripura, India Abstract U Giri Field experiments were conducted to study the biodiversity of insect pest species infesting okra in Department of Agronomy, Tripura during two seasons viz, summer (April to July, 2016) and winter (October, 2016 to January, College of Agriculture, Tripura, 2017). A total of twenty eight insect pest species belonging to 6 orders were found to infest this crop. India Maximum number of species were belonging to Hemiptera (12 nos.) followed by Lepidoptera (9 nos.) and Coleoptera (4 nos.). The Shannon and Wiener diversity index (H’) during summer and winter season T Bhattacharjee for the insect pest complex of okra was calculated as 1.01 and 0.91, respectively. The Simpson’s Department of Horticulture, diversity index (D) during summer and winter season was calculated as 0.14 and 0.19, respectively. College of Agriculture, Tripura, India These two indices for summer and winter season were more or less equal and exhibited a similar diversification. Similarly, Species Richness (7.31 and 7.49) and Species Evenness (0.71 and 0.64) during B Thangjam summer and winter season were more or less equal. However, by number the Leaf hopper (Amrasca Department of Agriculture biguttula biguttula ), Leaf beetle (Podagrica sp.), Blister beetle (Mylabris pustulata) and Leaf folder Entomology, College of (Syllepte derogata) were more abundant in the field during summer season where as, Leaf hopper Agriculture, Tripura, India (Amrasca biguttula biguttula), Aphid (Aphis gossypii), White fly (Bemisia tabaci) and Leaf folder (Syllepte derogata) were more abundant during winter season.
    [Show full text]