Evolution: Rooting the Eukaryotic Tree of Life

Total Page:16

File Type:pdf, Size:1020Kb

Evolution: Rooting the Eukaryotic Tree of Life View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Dispatch R151 Dispatches Evolution: Rooting the Eukaryotic Tree of Life The root of the eukaryotic tree is a major unresolved question in evolutionary transcription and, particularly, biology. A recent study marshals mitochondrial genes to place that root translation [13]. This scenario implies between the enigmatic Excavates and all other eukaryotes, providing an that the mitochondrion was gained interesting new perspective on early eukaryotic evolution. before the radiation of all known eukaryotes, suggesting that Tom A. Williams The root of the eukaryotes has been mitochondrial genes might provide an studied intensively in recent years, interesting source of information about Eukaryotes are the group of organisms although as yet no consensus appears the eukaryotic root. The idea is that, whose cells contain a mitochondrion in sight. Published analyses have since mitochondria are descended and a nucleus. Although we often think placed the root within the Amorphea from Bacteria, trees of mitochondrial of eukaryotes as comprising animals, [7], between the Amorphea and all genes can be rooted on the bacterial plants, fungi, and the single-celled other eukaryotes [8], between the branch, polarizing the relationships protists, molecular phylogenetics has Archaeplastida (plants) and all other within the eukaryotic portion of the turned that view on its head [1]. At the eukaryotes [9], or within the Excavates tree — an approach pioneered by level of the genome, eukaryotic [10] — all with rather different Derelle and Lang [8] and developed biodiversity is largely microbial, with implications for the history and the in the recent study of He et al. [6]. each of the familiar multicellular groups process of eukaryotic evolution. While this work is unlikely to settle the arising independently from unicellular One reason for this lack of agreement debate for good, He et al. employ ancestors [2]. In this emerging view, may be the intrinsic difficulty of rooting state-of-the-art methods, and their which is based mainly on phylogenetic the eukaryotic tree. The great analyses focus attention on the most analyses of large sets of broadly evolutionary distance that separates important challenges remaining in this distributed genes [3–5], most eukaryotes from their closest field. eukaryotes can be classified into one of prokaryotic relatives makes standard As a starting point for their analyses, three major lineages. These are the phylogenetic rooting approaches He et al. [6] screened genomes from Amorphea (animals, fungi, and unreliable and prone to artefact. This the Amorphea, Diaphoretickes and Amoebozoans such as the slime mould has led authors to explore alternative Excavates for mitochondrial genes. Dictyostelium), the Diaphoretickes approaches, such as using the They identified 37 genes which were (including plants and most other information from gene duplications and found in all, or almost all, eukaryotes, photosynthetic eukaryotes), and the losses [7] or slowly evolving molecular and whose closest prokaryotic Excavates — a diverse group of characters such as gene fusions [9] to homologues were among the Bacteria. unicellular eukaryotes that includes root the tree. The problem is that when They found that the protein products important parasites such as Giardia, these alternative strategies disagree, of most of these genes were targeted Trichomonas, and Trypanosoma. it is difficult to determine the best to the mitochondria of modern Despite this rapid progress, some of approach. As an added difficulty, the eukaryotes, consistent with the idea the most interesting questions about interior branches of the eukaryotic tree that the genes originally entered the eukaryotic evolution remain separating the major groups often eukaryotic lineage with the ancestor of unresolved. Foremost among these appear to be rather short, perhaps the mitochondrion. Note that these is the position of the root of the suggesting that the Amorphea, genes are often not encoded by the eukaryotic tree, a critical point Diaphoretickes and Excavates mitochondrial genome, because many about which there is currently little diverged from each other over a mitochondrial genes have been consensus. A new study by He et al. [6] relatively short period of time following transferred to the nucleus during reported in this issue of Current Biology the origin of eukaryotes — the eukaryotic evolution [14]. Importantly, represents an important contribution to so-called ‘big bang’ of eukaryotic He et al. were able to show that their this ongoing debate. evolution [11,12]. set of genes contained a consistent The root of a phylogenetic tree Despite these difficulties in inferring phylogenetic signal within the is fundamental to its biological the root, recent discoveries have eukaryotes — that is, that they interpretation, defining the starting fleshed out our understanding of generally agreed on the structure of the point and polarizing the subsequent eukaryotic origins and the ancestral eukaryotic tree. Since each gene on its divergence events within the tree. For eukaryote. The balance of evidence own did not provide much rooting the eukaryotic tree, the root position is now favours a symbiogenic origin for information, the authors combined all critical for identifying the genes and the eukaryotic cell, in which an 37 genes and inferred a single tree. traits that may have been present in the Alpha-proteobacterium — the ancestor Assuming that the mitochondrion was ancestral eukaryote, for tracing the of the mitochondrion — formed a acquired before the diversification of evolution of these traits throughout partnership with an Archaeon, the main eukaryotic lineages, this tree the eukaryotic radiation, and for whose trace in modern eukaryotes could then be rooted on the branch establishing the deep relationships is found mainly in the genetic leading to the bacterial outgroups among the major eukaryotic groups. apparatus of DNA synthesis, (Figure 1). Following this logic, He et al. Current Biology Vol 24 No 4 R152 Excavates have much to learn about the earliest period of eukaryotic evolution, and will surely stimulate further debate. References Mitochondrion 1. Adl, S.M., Simpson, A.G.B., Lane, C.E., Lukes, J., Bass, D., Bowser, S.S., Brown, M.W., Burki, F., Dunthorn, M., Hampl, V., et al. (2012). mtDNA mtDNA The revised classification of eukaryotes. Diaphoretickes J. Eukaryot. Microbiol. 59, 429–493. 2. O’Malley, M.A., Simpson, A.G.B., and Alpha-proteobacterium Roger, A.J. (2012). The other eukaryotes in light Ancestral eukaryote of evolutionary protistology. Biol. Philos. 28, 299–330. 3. Parfrey, L.W., Grant, J., Tekle, Y.I., Lasek- Nesselquist, E., Morrison, H.G., Sogin, M.L., Amorphea Patterson, D.J., and Katz, L.A. (2010). Broadly sampled multigene analyses yield a Current Biology well-resolved eukaryotic tree of life. Syst. Biol. 59, 518–533. 4. Burki, F., Shalchian-Tabrizi,K., and Pawlowski, J. Figure 1. Mitochondrial genes root the eukaryotic tree. (2008). Phylogenomics reveals a new ‘megagroup’ including most photosynthetic Genes that entered the eukaryotic lineage with the mitochondrial endosymbiont trace the sub- eukaryotes. Biol. Lett. 4, 366–369. sequent evolutionary diversification of the eukaryotes. The recent study of He et al. [6] sug- 5. Hampl, V., Hug, L., Leigh, J.W., Dacks, J.B., gests that one of the deepest splits lies between the Excavates and all other eukaryotes. Lang, B.F., Simpson, A.G.B., and Roger, A.J. (2009). Phylogenomic analyses support the monophyly of Excavata and resolve rooted the tree between the Excavates comes down to the definition of relationships among eukaryotic ‘supergroups’. Proc. Natl. Acad. Sci. USA 106, 3859–3864. and all other eukaryotes. mitochondrial genes: while He et al. 6. He, D., Fiz-Palacios, O., Fu, C.-J., Fehling, J., If correct, an Excavate root would emphasised bacterial genes that Tsai, C.-C., and Baldauf, S.L. (2014). An reinforce the astonishing biodiversity of contain a congruent phylogenetic alternative root for the eukaryotic tree of life. Curr. Biol. 24, 465–470. microbial eukaryotes by placing all of signal and are broadly conserved 7. Katz, L.A., Grant, J.R., Parfrey, L.W., and the familiar multicellular groups — across eukaryotes, Derelle and Lang Burleigh, J.G. (2012). Turning the crown upside down: gene tree parsimony roots the animals, plants, and fungi — on one screened for eukaryotic genes of eukaryotic tree of life. Syst. Biol. 61, 653–660. side of the eukaryotic tree. It would also alpha-proteobacterial affinity, based 8. Derelle, R., and Lang, B.F. (2012). Rooting the support an emerging view of the last on the idea that the mitochondrion eukaryotic tree with mitochondrial and bacterial proteins. Mol. Biol. Evol. 29, common eukaryotic ancestor as a is descended from an Alpha- 1277–1289. relatively complex single-celled proteobacterium. As a result of these 9. Rogozin, I.B., Basu, M.K., Csu¨ro¨ s, M., and Koonin, E.V. (2009). Analysis of rare genomic organism that already possessed a different criteria, there was only changes does not support the unikont-bikont gene repertoire comparable in size moderate overlap between the genes phylogeny and suggests cyanobacterial and complexity to modern used in the two studies. In particular, symbiosis as the point of primary radiation of eukaryotes. Genome Biol. Evol. 1, 99–113. eukaryotes [15,16]. not all of the genes analyzed by He et al. 10. Cavalier-Smith, T. (2010). Kingdoms Protozoa But with a number of incompatible are alpha-proteobacterial, with some and Chromista and the eozoan root of the eukaryotic tree. Biol. Lett. 6, 342–345. rootings now proposed for the tracing their ancestry to other bacterial 11. Koonin, E.V. (2010). The origin and early eukaryotic tree, why should this new groups. This does not necessarily rule evolution of eukaryotes in the light of root be preferred to any of the out a mitochondrial origin, because the phylogenomics. Genome Biol. 11, 209. 12. Eme, L., Sharpe, S.C., Brown, M.W., and alternatives? One reason might be the ancestral mitochondrial genome likely Roger, A.J.
Recommended publications
  • Identification of a Novel Fused Gene Family Implicates Convergent
    Chen et al. BMC Genomics (2018) 19:306 https://doi.org/10.1186/s12864-018-4685-y RESEARCH ARTICLE Open Access Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling Fei Chen1,2,3, Liangsheng Zhang1, Zhenguo Lin4 and Zong-Ming Max Cheng2,3* Abstract Background: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results: Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK,comprisesSnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions: This report identified a novel gene fusion and dated its precise fusion time
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
    Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Extensive Molecular Tinkering in the Evolution of the Membrane Attachment Mode of the Rheb Gtpase
    www.nature.com/scientificreports OPEN Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb Received: 14 December 2017 Accepted: 15 March 2018 GTPase Published: xx xx xxxx Kristína Záhonová1, Romana Petrželková1, Matus Valach 2, Euki Yazaki3, Denis V. Tikhonenkov4, Anzhelika Butenko1, Jan Janouškovec5, Štěpánka Hrdá6, Vladimír Klimeš1, Gertraud Burger 2, Yuji Inagaki7, Patrick J. Keeling8, Vladimír Hampl6, Pavel Flegontov1, Vyacheslav Yurchenko1 & Marek Eliáš1 Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifcations include: (1) accretion to the N-terminus of two diferent phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the frst proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed fagellate SRT308; (2) acquisition of lipidic modifcations of the N-terminal region, namely myristoylation and/ or S-palmitoylation in seven diferent protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Evolution of the Eukaryotic Membrane Trafficking System As Revealed
    Evolution of the eukaryotic membrane trafficking system as revealed by comparative genomic and phylogenetic analysis of adaptin, golgin, and SNARE proteins by Lael Dan Barlow A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physiology, Cell, and Developmental Biology Department of Biological Sciences University of Alberta c Lael Dan Barlow, 2019 Abstract All eukaryotic cells possess a complex system of endomembranes that functions in traffick- ing molecular cargo within the cell, which is not observed in prokaryotic cells. This membrane trafficking system is fundamental to the cellular physiology of extant eukaryotes, and includes or- ganelles such as the endoplasmic reticulum, Golgi apparatus, and endosomes as well as the plasma membrane. The evolutionary history of this system offers an over-arching framework for research on membrane trafficking in the field of cell biology. However, the evolutionary origins of this system in the evolution from a prokaryotic ancestor to the most recent common ancestor of extant eukaryotes is a major evolutionary transition that remains poorly understood. A leading paradigm is described by the previously proposed Organelle Paralogy Hypothesis, which posits that coordi- nated duplication and divergence of genes encoding organelle-specific membrane trafficking pro- teins underlies a corresponding evolutionary history of organelle differentiation that produced the complex sets of membrane trafficking organelles found in extant eukaryotes. This thesis focuses
    [Show full text]
  • Protists – a Textbook Example for a Paraphyletic Taxon
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 166–172 www.elsevier.de/ode Protists – A textbook example for a paraphyletic taxon$ Martin Schlegela,Ã, Norbert Hu¨lsmannb aInstitute for Biology II, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany bFree University of Berlin, Institute of Biology/Zoology, Working group Protozoology, Ko¨nigin-Luise-Straße 1-3, 14195 Berlin, Germany Received 7 September 2004; accepted 21 November 2006 Abstract Protists constitute a paraphyletic taxon since the latter is based on the plesiomorphic character of unicellularity and does not contain all descendants of the stem species. Multicellularity evolved several times independently in metazoans, higher fungi, heterokonts, red and green algae. Various hypotheses have been developed on the evolution and nature of the eukaryotic cell, considering the accumulating data on the chimeric nature of the eukaryote genome. Subsequent evolution of the protists was further complicated by primary, secondary, and even tertiary intertaxonic recombinations. However, multi-gene sequence comparisons and structural data point to a managable number of such events. Several putative monophyletic lineages and a gross picture of eukaryote phylogeny are emerging on the basis of those data. The Chromalveolata comprise Chromista and Alveolata (Dinoflagellata, Apicomplexa, Ciliophora, Perkinsozoa, and Haplospora). Major lineages of the former ‘amoebae’ group within the Heterolobosa, Cercozoa, and Amoebozoa. Cercozoa, including filose testate amoebae, chlorarachnids, and plasmodiophoreans seem to be affiliated with foraminiferans. Amoebozoa consistently form the sister group of the Opisthokonta (including fungi, and with choanoflagellates as sister group of metazoans). A clade of ‘plants’ comprises glaucocystophytes, red algae, green algae, and land vascular plants. The controversial debate on the root of the eukaryote tree has been accelerated by the interpretation of gene fusions as apomorphic characters.
    [Show full text]
  • Evolution: Revisiting the Root of the Eukaryote Tree
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Dispatch R165 cytokinesis and are enhanced by Rho 18. Yamada, T., Hikida, M., and Kurosaki, T. (2006). and RGA-4 in the germ line and in the early and suppressed by Rac. J. Cell Biol. 166, Regulation of cytokinesis by mgcRacGAP in B embryo of C. elegans. Development 134, 61–71. lymphocytes is independent of GAP activity. 3495–3505. 16. Severson, A.F., Baillie, D.L., and Bowerman, B. Exp. Cell Res. 312, 3517–3525. (2002). A formin homology protein and a 19. Schonegg, S., Constantinescu, A.T., Hoege, C., profilin are required for cytokinesis and and Hyman, A.A. (2007). The Rho GTPase- Department of Molecular Genetics and Cell Arp2/3-independent assembly of cortical activating proteins RGA-3 and RGA-4 are Biology, University of Chicago, Chicago, microfilaments in C. elegans. Curr. Biol. 12, required to set the initial size of PAR domains IL 60637, USA. 2066–2075. in Caenorhabditis elegans one-cell E-mail: [email protected] 17. Zhang, W., and Robinson, D.N. (2005). Balance embryos. Proc. Natl. Acad. Sci. USA of actively generated contractile and resistive 104, 14976–14981. forces controls cytokinesis dynamics. Proc. 20. Schmutz, C., Stevens, J., and Spang, A. (2007). Natl. Acad. Sci. USA 102, 7186–7191. Functions of the novel RhoGAP proteins RGA-3 DOI: 10.1016/j.cub.2008.12.028 Evolution: Revisiting the Root of the been controversial since they were first proposed [6]. Now, with the Eukaryote Tree rapid accumulation of genome-scale data for diverse protist species, a flurry of phylogenomic analyses A recent phylogenomic investigation shows that the enigmatic flagellate [7–9] are putting these hypotheses Breviata is a distinct anaerobic lineage within the eukaryote super-group to the test.
    [Show full text]
  • Evidence for Endosymbiotic Gene Transfer and the Early Evolution of Photosynthesis
    Evolution of Glutamine Synthetase in Heterokonts: Evidence for Endosymbiotic Gene Transfer and the Early Evolution of Photosynthesis Deborah L. Robertson and Aure´lien Tartar Biology Department, Clark University Although the endosymbiotic evolution of chloroplasts through primary and secondary associations is well established, the evolutionary timing and stability of the secondary endosymbiotic events is less well resolved. Heterokonts include both photosynthetic and nonphotosynthetic members and the nonphotosynthetic lineages branch basally in phylogenetic reconstructions. Molecular and morphological data indicate that heterokont chloroplasts evolved via a secondary endo- symbiosis, involving a heterotrophic host cell and a photosynthetic ancestor of the red algae and this endosymbiotic event may have preceded the divergence of heterokonts and alveolates. If photosynthesis evolved early in this lineage, nuclear genomes of the nonphotosynthetic groups may contain genes that are not essential to photosynthesis but were derived from the endosymbiont genome through gene transfer. These genes offer the potential to trace the evolutionary history of chloroplast gains and losses within these lineages. Glutamine synthetase (GS) is essential for ammonium assimilation and glutamine biosynthesis in all organisms. Three paralogous gene families (GSI, GSII, and GSIII) have been identified and are broadly distributed among prokaryotic and eukaryotic lineages. In diatoms (Heterokonta), the nuclear-encoded chloroplast and cytosolic-localized GS isoforms are encoded by members of the GSII and GSIII family, respectively. Here, we explore the evolutionary history of GSII in both photosynthetic and nonphotosynthetic heterokonts, red algae, and other eukaryotes. GSII cDNA sequences were obtained from two species of oomycetes by polymerase chain reaction amplification. Additional GSII sequences from eukaryotes and bacteria were obtained from publicly available databases and genome projects.
    [Show full text]
  • The Distribution of Genes Associated with Regulated Cell Death Is Decoupled from the Mitochondrial Phenotypes Within Unicellular Eukaryotic Hosts
    fcell-08-536389 September 23, 2020 Time: 11:36 # 1 BRIEF RESEARCH REPORT published: 23 September 2020 doi: 10.3389/fcell.2020.536389 The Distribution of Genes Associated With Regulated Cell Death Is Decoupled From the Mitochondrial Phenotypes Within Unicellular Eukaryotic Hosts Jérôme Teulière*, Guillaume Bernard and Eric Bapteste Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France Genetically regulated cell death (RCD) occurs in all domains of life. In eukaryotes, the evolutionary origin of the mitochondrion and of certain forms of RCD, in particular apoptosis, are thought to coincide, suggesting a central general role for mitochondria in cellular suicide. We tested this mitochondrial centrality hypothesis across a dataset Edited by: of 67 species of protists, presenting 5 classes of mitochondrial phenotypes, including Binfeng Lu, University of Pittsburgh, United States functional mitochondria, metabolically diversified mitochondria, functionally reduced Reviewed by: mitochondria (Mitochondrion Related Organelle or MRO) and even complete absence of Marek Eliáš, mitochondria. We investigated the distribution of genes associated with various forms University of Ostrava, Czechia Javier del Campo, of RCD. No homologs for described mammalian regulators of regulated necrosis could University of Miami, United States be identified in our set of 67 unicellular taxa. Protists with MRO and the secondarily *Correspondence: a mitochondriate Monocercomonoides exilis display heterogeneous reductions of Jérôme Teulière apoptosis gene sets with respect to typical mitochondriate protists. Remarkably, despite [email protected] the total lack of mitochondria in M. exilis, apoptosis-associated genes could still be Specialty section: identified. These same species of protists with MRO and M.
    [Show full text]
  • Final Copy 2021 05 11 Scam
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Scambler, Ross D Title: Exploring the evolutionary relationships amongst eukaryote groups using comparative genomics, with a particular focus on the excavate taxa General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring the evolutionary relationships amongst eukaryote groups using comparative genomics, with a particular focus on the excavate taxa Ross Daniel Scambler Supervisor: Dr. Tom A. Williams A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master of Science (by research) in the Faculty of Life Sciences, Novem- ber 2020.
    [Show full text]