Evolution of the Eukaryotic Membrane Trafficking System As Revealed

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Eukaryotic Membrane Trafficking System As Revealed Evolution of the eukaryotic membrane trafficking system as revealed by comparative genomic and phylogenetic analysis of adaptin, golgin, and SNARE proteins by Lael Dan Barlow A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physiology, Cell, and Developmental Biology Department of Biological Sciences University of Alberta c Lael Dan Barlow, 2019 Abstract All eukaryotic cells possess a complex system of endomembranes that functions in traffick- ing molecular cargo within the cell, which is not observed in prokaryotic cells. This membrane trafficking system is fundamental to the cellular physiology of extant eukaryotes, and includes or- ganelles such as the endoplasmic reticulum, Golgi apparatus, and endosomes as well as the plasma membrane. The evolutionary history of this system offers an over-arching framework for research on membrane trafficking in the field of cell biology. However, the evolutionary origins of this system in the evolution from a prokaryotic ancestor to the most recent common ancestor of extant eukaryotes is a major evolutionary transition that remains poorly understood. A leading paradigm is described by the previously proposed Organelle Paralogy Hypothesis, which posits that coordi- nated duplication and divergence of genes encoding organelle-specific membrane trafficking pro- teins underlies a corresponding evolutionary history of organelle differentiation that produced the complex sets of membrane trafficking organelles found in extant eukaryotes. This thesis focuses on investigating the evolution of families of proteins that sustain membrane traffic by organizing vesicle transport between specific compartments. Comparative genomics and phylogenetic analysis methods were applied to trace the evolution of subunits of the Adaptor Protein complexes, which function in vesicle formation, revealing that losses of genes encoding these subunits in Fungi and duplications in plants are relatively recent events, consistent with a highly conserved role of members of this protein family in organizing the membrane trafficking system. Similar methods were applied to the golgin proteins, which extend from membranes of the Golgi apparatus to recognize and tether specific vesicles. This re- vealed considerable conservation of golgins specific to different regions of the Golgi, consistent with ancestral complexity of the Golgi inferred from conservation of morphological complexity ii among eukaryotes. The Soluble N-ethylmaleimide sensitive factor Attachment protein REceptor (SNARE) protein superfamily comprises numerous proteins forming complexes that mediate vesi- cle fusion at specific locations in the cell. An extensive analysis of the SNAREs revealed evidence for additional SNARE proteins present in the last common ancestor of eukaryotes. Finally, the evo- lution of the four constituent families within the SNARE superfamily was explored and relevance to various potential scenarios of early evolution of the membrane trafficking system are discussed. Taken together, the results of this work shed light on the connections between protein evolu- tion and organelle evolution, and provide novel evidence for distinguishing between alternative scenarios for the evolution of the membrane trafficking system. iii Preface Chapter 2 (exclusive of the preface and afterword) has been published as Barlow, L.D., Dacks, J.B., Wideman, J.G., 2014. From all to (nearly) none: Tracing adaptin evolution in Fungi. Cellu- lar Logistics 4, e28114. https://doi.org/10.4161/cl.28114. This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License (https: //creativecommons.org/licenses/by-nc/3.0/). All text in Chapter 2 (exclusive of the pref- ace and afterword) is unmodified from this publication, with the exception of some additional detail added to figure legends. JGW and JBD conceived of and designed the study. JGW performed most of the similarity searches and drafted the manuscript. I performed all phylogenetic analyses, gen- erated figures, and contributed to writing the manuscript. Chapter 3 (exclusive of the preface and afterword) has been published as Larson, R.T., Dacks, J.B., and Barlow, L.D., 2019. Recent gene duplications dominate evolutionary dynamics of adaptor protein complex subunits in embryophytes. Traffic (in press) https://onlinelibrary.wiley. com/doi/abs/10.1111/tra.12698. I obtained permission from John Wiley & Sons, Inc. to re- produce this work in this thesis, and the license number is 4695550381953. All text in Chapter 3 (exclusive of the preface and afterward) is unmodified from this publication (with the exception of a minor correction to the definition of the acronym HSP). With my mentorship, RTL performed similarity searches and phylogenetic analyses for this work as part of one of her undergraduate projects in the Dacks laboratory. JBD initially conceived of the study. RTL and I designed and performed the analyses, and wrote the manuscript. I conceived of and wrote all computer scripts used for performing the analyses. RTL and I prepared figures. Chapter 4 (exclusive of preface and afterword) was published as Barlow, L.D., Nyvltov` a,` E., Aguilar, M., Tachezy, J., Dacks, J.B., 2018. A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biology 16. https://doi.org/10.1186/s12915-018-0492-9. This article was distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). All text in Chapter 4 (exclusive of pref- ace and afterword) is unmodified from this publication, with the exception of changes applied as indicated in the published correction to the article (https://rdcu.be/bR35t). EN and JT de- signed, performed and interpreted the experimental work on Mastigamoeba balamuthi, and also iv wrote the relevant manuscript sections. MA and I performed genomic analysis of M. balamuthi. I performed all molecular evolutionary analyses. JBD and I designed the molecular evolutionary analyses, interpreted the results, and wrote the manuscript. Bioinformatic analyses in Chapter 5 are in preparation for eventual submission as a first-author publication with Joel B. Dacks. The idea for this project was initially conceived of by JBD. I per- formed all the work, including conceiving of and writing all computer scripts used for performing the analyses. Though intriguing, experimental work done with Dictyostelium discoideum in Chap- ter 5 is inconclusive and therefore is not currently intended for publication with the phylogenetic results. I performed this experimental work during a 6 week visit to the laboratory of Robert R. Kay at the Medical Research Council Laboratory of Molecular Biology, where I was instructed in experimental methods primarily by Gareth Bloomfield. Therefore, it is important to note that this experimental work was done in collaboration with RRK and GB. v Acknowledgements During my graduate studies I was supported by a Post-Graduate Scholarship-Doctoral (PGS-D) from the National Sciences and Engineering Council of Canada (NSERC), a President’s Doctoral Prize of Distinction and a 75th Anniversary Award from the University of Alberta, a Short Term Travelling Fellowship from the Company of Biologists (Cambridge, England), two Holtz-Connor travel awards from the International Society of Protistologists, and a travel award from the Interna- tional Society for Evolutionary Protistology. Significant funds for covering my stipend also came from NSERC Discovery grants awarded to my supervisor Joel Dacks. Chapter 2 specific acknowledgements: I am greatful for the opportunity to work with my co-authors on the associated publication: Joel B. Dacks and Jeremy G. Wideman. This work was supported by funding awarded to Joel B. Dacks from the following sources: An NSERC Discovery Grant, a New Faculty Award from Alberta Innovates Technology Futures, and the Canada Research Chairs program. We (myself and the other authors of the associated publication) would like to thank the members of the Dacks lab for discussion, as well as K. James, B. Kopetski, C. Lavergne, S. McCormack, N. Ellis, and C. Thulin for organizational and administrative support. Chapter 3 specific acknowledgements: It was an honour to work with my co-authors Raegan T. Larson and Joel B. Dacks on the associated publication. This project could not have happened without Raegan’s hard work and enthusiasm for plants. This work was supported by (NSERC) Discovery grants (RES0021028, RES0043758, RES0046091) and Joel B. Dacks is the Canada Research Chair (Tier II) in Evolutionary Cell Biology. Raegan T. Larson was supported by an Office of the Provost and Vice President (Academic) Summer Student Award from the University of Alberta Faculty of Medicine and Dentistry. For this work, I was supported by my NSERC PGS-D award. Chapter 4 specific acknowledgements: I very much appreciate the important contributions of my co-authors on the associated publication: Eva Nyvltov` a,` Maria Aguilar, Jan Tachezy, and Joel B. Dacks. In particular, Eva and Jan provided all the Mastigamoeba balamuthi data including ge- nomic data and localization experiments. We (myself and co-authors on the associated publication) would like to thank Christen M. Klinger for collaboration on informatics workflows used for run- ning homology searches and all members of the Dacks lab, past and present, for helpful discussion. We also want to thank Drs Aaron Turkewitz, Paul Melancon, Alan Warren and Frances Brodsky for helpful discussion. In performing
Recommended publications
  • Identification of a Novel Fused Gene Family Implicates Convergent
    Chen et al. BMC Genomics (2018) 19:306 https://doi.org/10.1186/s12864-018-4685-y RESEARCH ARTICLE Open Access Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling Fei Chen1,2,3, Liangsheng Zhang1, Zhenguo Lin4 and Zong-Ming Max Cheng2,3* Abstract Background: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results: Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK,comprisesSnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions: This report identified a novel gene fusion and dated its precise fusion time
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
    Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Extensive Molecular Tinkering in the Evolution of the Membrane Attachment Mode of the Rheb Gtpase
    www.nature.com/scientificreports OPEN Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb Received: 14 December 2017 Accepted: 15 March 2018 GTPase Published: xx xx xxxx Kristína Záhonová1, Romana Petrželková1, Matus Valach 2, Euki Yazaki3, Denis V. Tikhonenkov4, Anzhelika Butenko1, Jan Janouškovec5, Štěpánka Hrdá6, Vladimír Klimeš1, Gertraud Burger 2, Yuji Inagaki7, Patrick J. Keeling8, Vladimír Hampl6, Pavel Flegontov1, Vyacheslav Yurchenko1 & Marek Eliáš1 Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifcations include: (1) accretion to the N-terminus of two diferent phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the frst proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed fagellate SRT308; (2) acquisition of lipidic modifcations of the N-terminal region, namely myristoylation and/ or S-palmitoylation in seven diferent protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa.
    [Show full text]
  • Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture
    Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture 著者 西村 祐貴 内容記述 この博士論文は内容の要約のみの公開(または一部 非公開)になっています year 2016 その他のタイトル プロティストミトコンドリアの多様性と進化:イン トロン、遺伝子組成、ゲノム構造 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7737号 URL http://hdl.handle.net/2241/00144261 Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • 49Th Jírovec's Protozoological Days
    49th Jírovec's Protozoological Days Conference Proceedings Faculty of Science Charles University Prague, Czech Republic 2019 th 49 Jírovec's Protozoological Days Conference Proceedings Faculty of Science, Charles University, 2019 FOREWORD Dear protistologists, colleagues, and friends! Welcome to the, nearly jubilee, 49th Jírovec‟s Protozoological Days, an international protistological conference, traditionally organized by the Protozoological section of the Czech Society for Parasitology. This year„s Protodays are organized by a group from The Faculty of Science, Charles University, where 90 years ago Otto Jírovec received his doctorate and set out the foundations of Czech protistology. Since 1969, the conference has been an opportunity for graduate and postgraduate students, as well as postdocs and young scientists to present their research and results to the scientific community and the international community of protistologists. The topics presented at the conference include areas such as protistology, cell and molecular biology, genomics, phylogeny and systematics, as well as parasitology, biochemistry, and evolutionary biology and include discoveries of significant new organisms, metabolic pathways of organisms important to our understanding of the origin and evolution of life, research on the causes of serious parasitic diseases such as malaria, sleeping sickness, leishmaniasis, and many others, the development of their treatment and prevention. Thanks to English as the main language at the conference and thanks to the growing interest
    [Show full text]
  • Protists – a Textbook Example for a Paraphyletic Taxon
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 166–172 www.elsevier.de/ode Protists – A textbook example for a paraphyletic taxon$ Martin Schlegela,Ã, Norbert Hu¨lsmannb aInstitute for Biology II, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany bFree University of Berlin, Institute of Biology/Zoology, Working group Protozoology, Ko¨nigin-Luise-Straße 1-3, 14195 Berlin, Germany Received 7 September 2004; accepted 21 November 2006 Abstract Protists constitute a paraphyletic taxon since the latter is based on the plesiomorphic character of unicellularity and does not contain all descendants of the stem species. Multicellularity evolved several times independently in metazoans, higher fungi, heterokonts, red and green algae. Various hypotheses have been developed on the evolution and nature of the eukaryotic cell, considering the accumulating data on the chimeric nature of the eukaryote genome. Subsequent evolution of the protists was further complicated by primary, secondary, and even tertiary intertaxonic recombinations. However, multi-gene sequence comparisons and structural data point to a managable number of such events. Several putative monophyletic lineages and a gross picture of eukaryote phylogeny are emerging on the basis of those data. The Chromalveolata comprise Chromista and Alveolata (Dinoflagellata, Apicomplexa, Ciliophora, Perkinsozoa, and Haplospora). Major lineages of the former ‘amoebae’ group within the Heterolobosa, Cercozoa, and Amoebozoa. Cercozoa, including filose testate amoebae, chlorarachnids, and plasmodiophoreans seem to be affiliated with foraminiferans. Amoebozoa consistently form the sister group of the Opisthokonta (including fungi, and with choanoflagellates as sister group of metazoans). A clade of ‘plants’ comprises glaucocystophytes, red algae, green algae, and land vascular plants. The controversial debate on the root of the eukaryote tree has been accelerated by the interpretation of gene fusions as apomorphic characters.
    [Show full text]
  • Evolution: Revisiting the Root of the Eukaryote Tree
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Dispatch R165 cytokinesis and are enhanced by Rho 18. Yamada, T., Hikida, M., and Kurosaki, T. (2006). and RGA-4 in the germ line and in the early and suppressed by Rac. J. Cell Biol. 166, Regulation of cytokinesis by mgcRacGAP in B embryo of C. elegans. Development 134, 61–71. lymphocytes is independent of GAP activity. 3495–3505. 16. Severson, A.F., Baillie, D.L., and Bowerman, B. Exp. Cell Res. 312, 3517–3525. (2002). A formin homology protein and a 19. Schonegg, S., Constantinescu, A.T., Hoege, C., profilin are required for cytokinesis and and Hyman, A.A. (2007). The Rho GTPase- Department of Molecular Genetics and Cell Arp2/3-independent assembly of cortical activating proteins RGA-3 and RGA-4 are Biology, University of Chicago, Chicago, microfilaments in C. elegans. Curr. Biol. 12, required to set the initial size of PAR domains IL 60637, USA. 2066–2075. in Caenorhabditis elegans one-cell E-mail: [email protected] 17. Zhang, W., and Robinson, D.N. (2005). Balance embryos. Proc. Natl. Acad. Sci. USA of actively generated contractile and resistive 104, 14976–14981. forces controls cytokinesis dynamics. Proc. 20. Schmutz, C., Stevens, J., and Spang, A. (2007). Natl. Acad. Sci. USA 102, 7186–7191. Functions of the novel RhoGAP proteins RGA-3 DOI: 10.1016/j.cub.2008.12.028 Evolution: Revisiting the Root of the been controversial since they were first proposed [6]. Now, with the Eukaryote Tree rapid accumulation of genome-scale data for diverse protist species, a flurry of phylogenomic analyses A recent phylogenomic investigation shows that the enigmatic flagellate [7–9] are putting these hypotheses Breviata is a distinct anaerobic lineage within the eukaryote super-group to the test.
    [Show full text]
  • Phylogenomics Invokes the Clade Housing Cryptista, Archaeplastida, and Microheliella Maris
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.29.458128; this version posted August 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenomics invokes the clade housing Cryptista, 2 Archaeplastida, and Microheliella maris. 3 4 Euki Yazaki1, †, *, Akinori Yabuki2, †, *, Ayaka Imaizumi3, Keitaro Kume4, Tetsuo Hashimoto5,6, 5 and Yuji Inagaki6,7 6 7 1: RIKEN iTHEMS, Wako, Saitama 351-0198, Japan 8 2: Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 236-0001, 9 Japan 10 3: College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan. 11 4: Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan 12 5: Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305- 13 8572, Japan 14 6: Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 15 Ibaraki, 305-8572, Japan 16 7: Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, 17 Japan 18 19 †EY and AY equally contributed to this work. 20 *Correspondence addressed to Euki Yazaki: [email protected] and Akinori Yabuki: 21 [email protected] 22 23 Running title: The clade housing Cryptista, Archaeplastida, and Microheliella maris. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.29.458128; this version posted August 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]