Reptile Family Tree

Total Page:16

File Type:pdf, Size:1020Kb

Reptile Family Tree Thelodus <50 Squatina Rhincodon Chlamydoselachus 100 72 91 Isurus Sphyrna 55 98 Clarias <50 Reptile Family Tree - Peters 2019 1583 taxa, 235 characters 88 Hoplosternum 99 Rhinobatos 81 Ictalurus Manta Entelognathus 74 * red taxa have too few traits to include on this list, but were tested with small subsets 58 95 Qilinyu 97 Cladoselache Chondrosteus <50 Menaspis 100 Dicksonosteus Pseudoscaphirhynchus 66 100 94 Romundina 64 Bothriolepis 59 Heterodontus 100 Coccosteus 65 Belantsea 85 Mcnamaraspis 69 Chimaera Dunkleosteus 100 Iniopteryx Falcatus Stensioella 94 99 Kenichthys 99 Guiyu Psarolepis 64 Youngolepis Powichthys 87 Pteronisculus 64 96 99 Polypterus Mimipiscis 98 Erpetoichthys 69 Uranolophus 60 Cheirolepis 90 59 Dipnorhynchus 100 Malacosteus 68 Chauliodus 100 Howidipterus 63 100 Lepidogalaxias 94 Strunius 60 Trachinocephalus <50 Onychodus Chiasmodon 89 Barameda 65 100 Gymnothorax Brachyacanthus 62 99 Eurypharynx 90 Ischnacanthus Doliodus 63 Allenypterus Cheirodus 95 Quebecius <50 71 Holoptychius Pholidophorus <50 Robustichthys Archosauromorpha 100 Miguashia 87 <50 Lepidotes Latimeria 3 100 Eldeceeon 1990.7.1 69 Semionotus 99 Diplovertebron Gogonasus Eldeceeon holotype Romeriscus 84 79 91 Coccocephalichthys 61 Cabonnichthys Saurichthys 91 Bystrowiella 97 Osteolepis 62 100 98 Solenodonsaurus 73 Eusthenopteron Thunnus 85 88 52 Polydactylus 94 Westlothiana Chroniosaurus PIN3585/124 Tinirau <50 Casineria 100 100 Panderichthys Heteronectes 100 Chroniosaurus <50 84 Brouffia 88 100 Koilops 52 78 Psettodes Chroniosuchus Coelostegus Tiktaalik Hippoglossus 93 77 97 92 Paleothyris Spathicephalus 91 51 Xiphactinus 78 Hylonomus Dvinosaurus Notopterus 66 Anthracodromeus 51 Perca 100 Trypanognathus 82 Cyprinus Protorothyris MCZ1532 Laidleria 99 Protorothyris CM 8617 95 86 Isodectes 82 62 Megalops 85 87 98 94 Acroplous Serrasalmus Protorothyris MCZ 2149 54 99 Batrachosuchus 98 Dapedium Vaughnictis Siderops Osteoglossum 80 94 81 100 Gerrothorax 99 Thoracopterus Plagiosuchus 70 Engraulis 62 92 Deltaherpeton 78 Amia 73 Anarhichas 66 Elliotsmithia Antarctanax Esox Coryphaena Pholidogaster <50 Apsisaurus Cabarzia 100 88 Sphyraena 91 Colosteus 75 Milosaurus Remora 86 Aerosaurus Aytonerpeton 79 <50 Aphanopus 67 90 Varanops Greererpeton Lampris Varanodon <50 57 Xiphias 83 Ossinodus 97 85 Varanosaurus FMNH PR 1760 Megazostrodon Tinodon MGUH-VP-8160 Tylosurus 84 Varanosaurus BSPHM 1901 XV20 100 <50 82 93 Sinodelphys Acanthostega 71 Exocoetus Archaeothyris 100 89 99 Juramaia Shuotherium Ichthyostega 85 Anableps Ophiacodon 75 82 70 81 Lepisosteus Chaoyangodens Ausktribosphenos Proterogyrinus 82 Pantelosaurus 68 100 Eoherpeton 71 Gasterosteus Brasilitherium Amphitherium 91 Regalecus 97 Haptodus 97 95 Kuehneotherium 100 Neopteroplax 99 Docodon 63 80 73 Gnathonemus 82 Secodontosaurus Lactodens Anthracosaurus 76 71 Hippocampus 100 Dimetrodon 79 93 Cifelliodon Dryolestes 97 Sphenacodon 95 Tachyglossus 92 Baphetes 66 Prionotus Megalocephalus Ianthodon 88 Akidolestes Dactylopterus 80 85 96 100 Pederpes Edaphosaurus Ornithorhynchus 97 Diodon 99 95 Whatcheeria Plectocretacicus 82 Ianthasaurus <50 99 Ventastega Seriola rivoliana Glaucosaurus Ukhaatherium 93 Patagosmilus Mola Crassigyrinus <50 87 Cutleria 94 Hadrocodium <50 94 Balistes 87 88 Morganucodon 87 Sclerothorax NMK-S 118A Hipposaurus 72 Periophthalmus Stenocybus Eomaia Volaticotherium Iberospondylus 58 80 85 Seriola zonata 62 <50 Agilodocodon 88 Peltobatrachus 79 96 Dicrolene 97 IVPP V18117 77 Acristatherium Sclerocephalus smns90055 71 Anguilla 62 71 Kenyasaurus 59 Cronopio 65 96 Didelphis 100 Laosuchus 86 Antennarius 82 Galechirus Nigerpeton Ambolestes 51 99 94 Lophius 100 52 Suminia Saharastega 89 85 Glironia 99 Electrophorus Venjukovia 55 95 Cochleosaurus Gymnotus 83 Marmosops 80 Eodicynodon Marmosa 78 Chenoprosopus 94 83 Asioryctes 100 79 Zatrachys Dicynodon 100 Asioryctes long rostrum 65 Eryops Biarmosuchus 78 <50 Perameles 98 87 Edops Titanophoneus Macrotis Archegosaurus 100 Procynosuchus 59 Dasycercus 65 Rhineceps 77 Myrmecobius 78 100 Thrinaxodon 84 74 Parotosuchus 75 Anebodon Prozostrodon Docofossor 72 Mastodonsaurus Sclerothorax HLD-V608 100 Dromiciops 97 69 83 Probainognathus Notoryctes Wantzosaurus 85 <50 84 Potorous 54 <50 Trematosaurus long rostrum 99 86 Chiniquodon Pseudocheirus 82 Neldasaurus Castorocauda Dasyuroides Trematosaurus 77 87 98 Haldanodon Metoposaurus 97 Paedotherium 96 Pseudotherium 100 Groeberia Trimerorhachis 71 Pachygenelus Vintana Dendrerpeton Therioherpeton Priacodon 85 Balbaroo 88 76 Sinoconodon Trioracodon 86 Phalanger 87 Perryella Heleosaurus 81 Tersomius 81 9 4 Brasilodon 81 92 Dactylopsia 96 99 Mycterosaurus FMNH UC169 98 Haramiyavia 72 Petaurus 97 82 Dissorophus 81 Nikkasaurus Thylacoleo Cacops 89 Microdocodon 65 <50 Broiliellus Mesenosaurus PIN 3706/4 Oligokyphus 94 Mesenosaurus PIN 3717/1 88 100 Kayentatherium 97 Fedexia 94 87 <50 Phascolarctos Ecolsonia Mesenosaurus PIN 158/1 Tritylodon Vombatus 97 <50 98 Chaliminia 64 74 89 Tambachia 79 Niaftasuchus <50 Riograndia Pyrotherium 84 Acheloma 74 57 Platyhistrix <50 Diprotodon 100 Spinolestes Propalorchestes Anningia Jeholodens 81 100 Georgenthalia 88 96 <50 Palorchestes Micromelerpeton 89 Archaeovenator 76 Yanoconodon 96 Interatherium Doleserpeton 95 Orovenator 90 Maotherium 98 71 Asaphestera Gobiconodon 77 Hegetotherium 98 Apateon 83 Pyozia 80 100 92 Gerobatrachus Utaherpeton 52 Liaoconodon 84 Mesotherium 76 Tuditanus 100 Broomia Repenomamus robustus 98 Andrias 88 60 <50 100 Euygenium Necturus Llistrofus 89 Milleropsis BPI-720 Repenomamus giganticus Toxodon 80 Rana Batropetes 98 Erpetonyx <50 100 55 Procoptodon Karaurus 99 Rhynchonkos 54 100 Micraroter Monodelphis Nambaroo Celtedens 97 87 Ascendonanus MNC-TA0924 Chironectes 91 Euryodus primus 80 Proargyrolagus Dendrolagus Eudibamus Huerfanodon 67 97 100 Macropus <50 Kirktonecta Aphelosaurus 61 92 Vincelestes Scincosaurus 100 99 83 Conoryctes 77 92 Petrolacosaurus Pantylus 87 Araeoscelis 83 99 Schowalteria 69 Balanerpeton 91 Stegostretus Thylacosmilus 91 Caerorhachis 94 Spinoaequalis Batrachiderpeton Galesphyrus 99 Amphibamus 94 86 Dasyurus Platyrhinops 100 Keraterpeton 94 Youngina BPI 3859 Sinopa Cimolestes 82 Diceratosaurus 85 Acerosodontosaurus 74 77 80 100 <50 Diplocaulus 100 Sarcophilus Utegenia 2 78 72 85 Thadeosaurus Ernanodon Utegenia 1 Diploceraspis 100 Tangasaurus 98 Sauropleura Hovasaurus 66 Thylacinus 95 Ariekanerprton 83 99 Ptyonius 90 Claudiosaurus 89 Thylophorops Kotlassia 73 Adelosaurus not Amphicyon 91 Seymouria Acherontiscus 61 95 100 Rileymillerus 100 98 Atopodentatus Discosauriscus Sinosaurosphargis 75 Deltatheridium 75 69 76 98 Phlegethontia CGH129 100 Austraolhyaena 63 Makowskia 77 Largocephalosaurus 91 Phlegethontia AMNH6966 72 84 Oxyaena Seymouria.tadpole 92 Omphalosaurus Arctocyon 100 Lethiscus 98 Oestocephalus 100 54 Deltatherium Eusauropleura Anarosaurus Caluromys 100 Mayulestes 86 Tulerpeton <50 Microbrachis Diandongosaurus <50 80 Masrasector 86 77 80 Eucritta <50 Adelospondylus Palatodonta Hyaenodon Borhyaena 86 Pappochelys 82 Stegops Adelogyrinus 98 Vulpavus Callistoe Gephyrostegeus bohemicus 96 Chinlestegophis Palacrodon Didelphodon 78 98 85 <50 Majiashanosaurus 97 Protictis Brachydectes 97 87 93 Lysorophus Paraplacodus 91 Nandinia 99 <50 Eocaecilia Pachypleurosaurus Placodus inexpectatus 99 Talpa 72 99 99 96 Dermophis 97 100 Qianxisaurus 83 Placodus gigas Prohesperocyon 91 99 Cartorhynchus 98 Henodus 97 Eupleres Reptilia 94 Sclerocormus 100 Placochelys 99 Cryptoprocta 99 Puijila 100 100 Keichousaurus Cyamodus 72 Neotherium Dianmeisaurus 93 Herpestes 84 100 Procyon 80 99 Ursus arctos 97 Dawazisaurus 71 Ursus maritimus Silvanerpeton Hanosaurus 95 Ailurus 60 100 88 76 Lariosaurus Ailuropoda 95 Gulo 98 Bobosaurus Mustela Arctodus Corosaurus 71 53 Cymatosaurus 87 Kerberos 100 Lepidosaurmorpha <50 87 Patriofelis 80 Sachicasaurus 90 Urumqia Nothosaurus Sarkastodon <50 57 Bruktererpeton Wangosaurus Machaeroides 63 97 82 100 Simosaurus 87 Thuringothyris MNG 7729 89 Paludidraco 100 Ectoganus 62 82 Thuringothyris MNG 10183 79 84 Hauffiosaurus 66 Stylinodon Amphicynodon 98 Anningsaura 81 93 Psittacotherium Acostasaurus Pistosaurus 75 Megistotherium Saurorictus 64 90 Thalassiodracon 93 99 99 75 Yunguisaurus Palaeosinopa 70 Cephalerpeton 91 Opisthodontosaurus <50 Rhomaleosaurus 98 Phoca 80 98 Odobenus Reiszorhinus 92 Vinialesaurus 75 Concordia KUVP 8702a 100 Tricleidus 95 Miacis 96 Concordia KUVP 96/95 59 <50 Plesiosaurus Hyopsodus 81 Romeria primus 61 Psilotrachelosaurus 51 Libonectes 75 Enaliarctos Romeria texana PIMUZ AIII 0192 97 Albertocnectes 99 Desmatophoca 74 69 77 Protocaptorhinus 96 SMF R 4710 50 Styxosaurus 74 Pithanotaria 66 Stereosternum Simolestes Zalophus Paracaptorhinus 96 99 86 76 99 Brazilosaurus holotype 96 Eocaptorhinus 79 Mesosaurus 72 81 Trinacromerum Speothos 99 Captorhinus YAGM V1401 85 Dolichorhynchops 82 97 Proteles Peloneustes Labidosaurus 95 93 Canis Serpianosaurus 98 Megacephalosaurus 98 Amphicyon major Concavispina 87 94 Brachauchenius 84 Hesperocyon 83 98 Xinpusaurus kohi 92 Stenorhynchus 100 Limnoscelis 77 78 Panthera Xinpusaurus suni 97 Pliosaurus kevani 94 Crocuta Orobates 90 Feeserpeton Kronosaurus Palaechthon 83 <50 Thalattosaurus Cynocephalus 89 Amphicyon galushi 79 Tseajaia 50 Australothyris Wachtlerosaurus 80 98 87 Amphicyon idoneus Tetraceratops Eocasea 100 79 99 Zhangheotherium 73 100 Endennasaurus Delorhynchus Clarazia 99 Metachcheiromys Milleretta RC14 85 Microleter 98 73 Manis Milleretta RC70 91 Acleistorhinus Askeptosaurus Chriacus 72 97 83 73 100 Eunotosaurus 68 Anshunsaurus Onychonycteris 100
Recommended publications
  • Carpenter 1999 EL PLESIOSAURIO DE VILLA DE LEYVA (BOYACÁ, COLOMBIA)
    Boletín de Geología Vol. 23, No. 38, Enero-Junio de 2001 Callawayasaurus colombiensis (Welles) Carpenter 1999 EL PLESIOSAURIO DE VILLA DE LEYVA (BOYACÁ, COLOMBIA). ¿UN NUEVO ESPÉCIMEN? Jerez Jaimes, J. H1.; Narváez Parra, E. X1. RESUMEN En los depósitos del Cretácico (Aptiano) de Villa de Leyva se han reportado dos especies de plesiosaurios, un pliosaurio Kronosaurus boyacensis Hampe 1992, y un plesiosaurio Callawayasaurus colombiensis (Welles) Carpenter, 1999 (= Alzadasaurus colombiensis Welles, 1962). Se realiza la determinación de un espécimen de elasmosaurio encontrado por los pobladores de la zona rural de Villa de Leyva en 1999 con base en material fotográfico del mismo, siendo muy probable que corresponda a la especie Callawayasaurus colombiensis (Welles) Carpenter, 1999. Palabras Claves: Cretácico, Plesiosaurios, Villa de Leyva. ABSTRACT In the deposits of the Cretaceous (Aptian) of Villa de Leyva two plesiosaurs species have been reported, a pliosaur Kronosaurus boyacensis Hampe 1992, and a plesiosaur Callawayasaurus colombiensis (Welles) Carpenter, 1999 (= Alzadasaurus colombiensis Welles, 1962). We carried out the determination of elasmosaur specimen found by the inhabitants of the rural area of Villa de Leyva in 1999, on the basis of photographic material of it. Probably it corresponds to the Callawayasaurus colombiensis specie (Welles) Carpenter, 1999. Key Words: Cretaceous, Plesiosaurs, Villa de Leyva. 1Biólogos, Calle 10A # 24-68 Bucaramanga, Santander (Colombia). Correo electrónico: [email protected] Callawayasaurus
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • A Revision of the Classification of the Plesiosauria with a Synopsis of the Stratigraphical and Geographical Distribution Of
    LUNDS UNIVERSITETS ARSSKRIFT. N. F. Avd. 2. Bd 59. Nr l. KUNGL. FYSIOGRAFISKA SÅLLSKAPETS HANDLINGAR, N. F. Bd 74. Nr 1. A REVISION OF THE CLASSIFICATION OF THE PLESIOSAURIA WITH A SYNOPSIS OF THE STRATIGRAPHICAL AND GEOGRAPHICAL DISTRIBUTION OF THE GROUP BY PER OVE PERSSON LUND C. W. K. GLEER UP Read before the Royal Physiographic Society, February 13, 1963. LUND HÅKAN OHLSSONS BOKTRYCKERI l 9 6 3 l. Introduction The sub-order Plesiosauria is one of the best known of the Mesozoic Reptile groups, but, as emphasized by KuHN (1961, p. 75) and other authors, its classification is still not satisfactory, and needs a thorough revision. The present paper is an attempt at such a revision, and includes also a tabular synopsis of the stratigraphical and geo­ graphical distribution of the group. Some of the species are discussed in the text (pp. 17-22). The synopsis is completed with seven maps (figs. 2-8, pp. 10-16), a selective synonym list (pp. 41-42), and a list of rejected species (pp. 42-43). Some forms which have been erroneously referred to the Plesiosauria are also briefly mentioned ("Non-Plesiosaurians", p. 43). - The numerals in braekets after the generic and specific names in the text refer to the tabular synopsis, in which the different forms are numbered in successional order. The author has exaroined all material available from Sweden, Australia and Spitzbergen (PERSSON 1954, 1959, 1960, 1962, 1962a); the major part of the material from the British Isles, France, Belgium and Luxembourg; some of the German spec­ imens; certain specimens from New Zealand, now in the British Museum (see LYDEK­ KER 1889, pp.
    [Show full text]
  • How Plesiosaurs Swam: New Insights Into Their Underwater Flight Using “Ava”, a Virtual Pliosaur
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2019 doi:10.20944/preprints201910.0094.v1 How Plesiosaurs Swam: New Insights into Their Underwater Flight Using “Ava”, a Virtual Pliosaur Max Hawthorne1,*, Mark A. S. McMenamin 2, Paul de la Salle3 1Far From The Tree Press, LLC, 4657 York Rd., #952, Buckingham, PA, 18912, United States 2Department of Geology and Geography, Mount Holyoke College, South Hadley, Massachusetts, United States 3Swindon, England *Correspondence: [email protected]; Tel.: 267-337-7545 Abstract Analysis of plesiosaur swim dynamics by means Further study attempted to justify the use of all four flippers of a digital 3D armature (wireframe “skeleton”) of a simultaneously via the use of paddle-generated vortices, pliosauromorph (“Ava”) demonstrates that: 1, plesiosaurs which require specific timing to achieve optimal additional used all four flippers for primary propulsion; 2, plesiosaurs thrust. These attempts have largely relied on anatomical utilized all four flippers simultaneously; 3, respective pairs studies of strata-compressed plesiosaur skeletons, and/or of flippers of Plesiosauridae, front and rear, traveled through preconceived notions as pertains to the paddles’ inherent distinctive, separate planes of motion, and; 4, the ability to ranges of motion [8, 10-12]. What has not been considered utilize all four paddles simultaneously allowed these largely are the opposing angles of the pectoral and pelvic girdles, predatory marine reptiles to achieve a significant increase in which strongly indicate varied-yet-complementing relations acceleration and speed, which, in turn, contributed to their between the front and rear sets of paddles, both in repose and sustained dominance during the Mesozoic.
    [Show full text]
  • The Nonavian Theropod Quadrate II: Systematic Usefulness, Major Trends and Cladistic and Phylogenetic Morphometrics Analyses
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272162807 The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Article · January 2014 DOI: 10.7287/peerj.preprints.380v2 CITATION READS 1 90 3 authors: Christophe Hendrickx Ricardo Araujo University of the Witwatersrand Technical University of Lisbon 37 PUBLICATIONS 210 CITATIONS 89 PUBLICATIONS 324 CITATIONS SEE PROFILE SEE PROFILE Octávio Mateus University NOVA of Lisbon 224 PUBLICATIONS 2,205 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Nature and Time on Earth - Project for a course and a book for virtual visits to past environments in learning programmes for university students (coordinators Edoardo Martinetto, Emanuel Tschopp, Robert A. Gastaldo) View project Ten Sleep Wyoming Jurassic dinosaurs View project All content following this page was uploaded by Octávio Mateus on 12 February 2015. The user has requested enhancement of the downloaded file. The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Christophe Hendrickx1,2 1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal. 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. s t [email protected] n i r P e 2,3,4,5 r Ricardo Araújo P 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. 3 Huffington Department of Earth Sciences, Southern Methodist University, PO Box 750395, 75275-0395, Dallas, Texas, USA.
    [Show full text]
  • Mosasaurs Continuing from Last Time…
    Pliosaurs and Mosasaurs Continuing From Last Time… • Pliosauridae: the big marine predators of the Jurassic Pliosauridae • Some of the largest marine predators of all time, these middle Jurassic sauropterygians include such giants as Kronosaurus, Liopleurodon, Macroplata, Peloneustes, Pliosaurus, and Brachauchenius Pliosaur Mophology • While the number of cervical vertebrae is less than in plesiosaurs, there is still variation: Macroplata (29) vs. Kronosaurus (13) Pliosaur Morphology • Larger pliosaurs adopted a more streamlined body shape, like modern whales, with a large skull and compact neck, and generally the hind limbs were larger than the front, while plesiosaurs had larger forelimbs Pliosaur Morphology • Powerful limb girdles and large (banana sized) conical teeth helped pliosaurs eat larger, quicker prey than the piscivorous plesiosaurs Liopleurodon • NOT 25 m long in general (average of 40 feet), though perhaps certain individuals could reach that size, making Liopleurodon ferox the largest carnivore to ever live • Recent skull studies indicate that Liopleurodon could sample water in stereo through nostrils, locating scents much as we locate sound Cretaceous Seas • Breakup of Gondwana causes large undersea mountain chains to form, raising sea levels everywhere • Shallow seas encourage growth of corals, which increases calcium abundance and chalk formation • Warm seas and a gentle thermal gradient yield a hospitable environment to rays, sharks, teleosts, and the first radiation of siliceous diatoms Kronosaurus • Early Cretaceous
    [Show full text]
  • Late Cretaceous) of Morocco : Palaeobiological and Behavioral Implications Remi Allemand
    Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications Remi Allemand To cite this version: Remi Allemand. Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications. Paleontology. Museum national d’histoire naturelle - MNHN PARIS, 2017. English. NNT : 2017MNHN0015. tel-02375321 HAL Id: tel-02375321 https://tel.archives-ouvertes.fr/tel-02375321 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2017 N° attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Spécialité : Paléontologie Présentée et soutenue publiquement par Rémi ALLEMAND Le 21 novembre 2017 Etude microtomographique de l’endocrâne de reptiles marins (Plesiosauria et Mosasauroidea) du Turonien (Crétacé supérieur) du Maroc : implications paléobiologiques et comportementales Sous la direction de : Mme BARDET Nathalie, Directrice de Recherche CNRS et les co-directions de : Mme VINCENT Peggy, Chargée de Recherche CNRS et Mme HOUSSAYE Alexandra, Chargée de Recherche CNRS Composition du jury : M.
    [Show full text]
  • Reptiles Fósiles De Colombia Un Aporte Al Conocimiento Y a La Enseñanza Del Patrimonio Paleontológico Del País
    Reptiles Fósiles de Colombia Un aporte al conocimiento y a la enseñanza del patrimonio paleontológico del país Luis Gonzalo Ortiz-Pabón Universidad Pedagógica Nacional Facultad de Ciencia y tecnología Departamento de biología Bogotá D.C. 2020 Reptiles Fósiles de Colombia Un aporte al conocimiento y a la enseñanza del patrimonio paleontológico del país Luis Gonzalo Ortiz-Pabón Trabajo presentado como requisito para optar por el título de: Licenciado en Biología Directora: Heidy Paola Jiménez Medina MSc. Línea de Investigación: Educación en Ciencias y formación Ambiental Grupo de Investigación: Educación en Ciencias, Ambiente y Diversidad Universidad Pedagógica Nacional Facultad de Ciencia y tecnología Departamento de biología Bogotá D.C. 2020 Dedicatoria A mi mami, quien ha estado acompañándome y apoyándome en muchos de los momentos definitivos de mi vida, además de la deuda que tengo con ella desde 2008. “La ciencia no es una persecución despiadada de información objetiva. Es una actividad humana creativa, sus genios actúan más como artistas que como procesadores de información” Stephen J. Gould Agradecimientos En primera instancia agradezco a todos los maestros y maestras que fueron parte esencial de mi formación académica. Agradecimiento especial al Ilustrador y colega Marco Salazar por su aporte gráfico a la construcción del libro Reptiles Fósiles de Colombia, a Oscar Hernández y a Galdra Films por su valioso aporte en la diagramación y edición del libro, a Heidy Jiménez quien fue mi directora y guía en el desarrollo de este trabajo y a Vanessa Robles, quien estuvo acompañando la revisión del libro y este escrito, además del apoyo emocional brindado en todo momento.
    [Show full text]
  • The Dinosaur Field Guide Supplement
    The Dinosaur Field Guide Supplement September 2010 – December 2014 By, Zachary Perry (ZoPteryx) Page 1 Disclaimer: This supplement is intended to be a companion for Gregory S. Paul’s impressive work The Princeton Field Guide to Dinosaurs, and as such, exhibits some similarities in format, text, and taxonomy. This was done solely for reasons of aesthetics and consistency between his book and this supplement. The text and art are not necessarily reflections of the ideals and/or theories of Gregory S. Paul. The author of this supplement was limited to using information that was freely available from public sources, and so more information may be known about a given species then is written or illustrated here. Should this information become freely available, it will be included in future supplements. For genera that have been split from preexisting genera, or when new information about a genus has been discovered, only minimal text is included along with the page number of the corresponding entry in The Princeton Field Guide to Dinosaurs. Genera described solely from inadequate remains (teeth, claws, bone fragments, etc.) are not included, unless the remains are highly distinct and cannot clearly be placed into any other known genera; this includes some genera that were not included in Gregory S. Paul’s work, despite being discovered prior to its publication. All artists are given full credit for their work in the form of their last name, or lacking this, their username, below their work. Modifications have been made to some skeletal restorations for aesthetic reasons, but none affecting the skeleton itself.
    [Show full text]
  • A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia: Sauropterygia) F
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 12-2001 A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia: Sauropterygia) F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Aquaculture and Fisheries Commons, and the Other Animal Sciences Commons Recommended Citation Frank Robin O’Keefe (2001). A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). ). Acta Zoologica Fennica 213: 1-63. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Acta Zool. Fennica 213: 1–63 ISBN 951-9481-58-3 ISSN 0001-7299 Helsinki 11 December 2001 © Finnish Zoological and Botanical Publishing Board 2001 A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia) Frank Robin O’Keefe Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568, U.S.A Received 13 February 2001, accepted 17 September 2001 O’Keefe F. R. 2001: A cladistic analysis and taxonomic revision of the Plesio- sauria (Reptilia: Sauropterygia). — Acta Zool. Fennica 213: 1–63. The Plesiosauria (Reptilia: Sauropterygia) is a group of Mesozoic marine reptiles known from abundant material, with specimens described from all continents. The group originated very near the Triassic–Jurassic boundary and persisted to the end- Cretaceous mass extinction. This study describes the results of a specimen-based cladistic study of the Plesiosauria, based on examination of 34 taxa scored for 166 morphological characters.
    [Show full text]
  • The Macroevolutionary Landscape of Short-Necked Plesiosaurians Collapsed to a Unimodal Distribution
    www.nature.com/scientificreports OPEN The macroevolutionary landscape of short‑necked plesiosaurians Valentin Fischer1*, Jamie A. MacLaren1, Laura C. Soul2, Rebecca F. Bennion1,3, Patrick S. Druckenmiller4 & Roger B. J. Benson5 Throughout their evolution, tetrapods have repeatedly colonised a series of ecological niches in marine ecosystems, producing textbook examples of convergent evolution. However, this evolutionary phenomenon has typically been assessed qualitatively and in broad‑brush frameworks that imply simplistic macroevolutionary landscapes. We establish a protocol to visualize the density of trait space occupancy and thoroughly test for the existence of macroevolutionary landscapes. We apply this protocol to a new phenotypic dataset describing the morphology of short‑necked plesiosaurians, a major component of the Mesozoic marine food webs (ca. 201 to 66 Mya). Plesiosaurians evolved this body plan multiple times during their 135-million-year history, making them an ideal test case for the existence of macroevolutionary landscapes. We fnd ample evidence for a bimodal craniodental macroevolutionary landscape separating latirostrines from longirostrine taxa, providing the frst phylogenetically-explicit quantitative assessment of trophic diversity in extinct marine reptiles. This bimodal pattern was established as early as the Middle Jurassic and was maintained in evolutionary patterns of short‑necked plesiosaurians until a Late Cretaceous (Turonian) collapse to a unimodal landscape comprising longirostrine forms with novel morphologies. This study highlights the potential of severe environmental perturbations to profoundly alter the macroevolutionary dynamics of animals occupying the top of food chains. Amniotes are ’land vertebrates’, but have nevertheless undergone at least 69 independent evolutionary transi- tions from land into aquatic environments 1. Sea-going (marine) amniotes are textbook examples of inter- and intraclade convergent evolution, with repeated acquisitions of short, hydrodynamic body plans 2–9.
    [Show full text]
  • Journal of Zoological and Bioscience Research -Volume 4, Issue 2, Page No: 7-13 Copyright CC BY-NC-ND 4.0 Available Online At
    Journal of Zoological and Bioscience Research -Volume 4, Issue 2, Page No: 7-13 Copyright CC BY-NC-ND 4.0 Available Online at: www.journalzbr.com ISSN No: 2349-2856 Teihivenator gen. nov., A new generic name for the Tyrannosauroid Dinosaur "Laelaps" Macropus (Cope, 1868; preoccupied by Koch, 1836) Chan-gyu Yun 1,2 1Vertebrate Paleontological Institute of Incheon, Incheon 21974, Republic of Korea 2Biological Sciences, Inha University, Incheon 22212, Republic of Korea DOI: 10.24896/jzbr.2017422 ABSTRACT Once referred to the ornithomimosaur 'Coelosaurus' antiquus, 'Laelaps' macropusspecimens from the Navesink Formation (Late Campanian-Early Maastrichtian, Late Cretaceous) of New Jersey, USA was separated as a new species of 'Laelaps' by paleontologist Edward Drinker Cope in 1868. While it was revealed later that 'Laelaps' is preoccupied by laelapidae mite Laelaps agilis and renamed as Dryptosaurus, the taxonomic history of 'Laelaps' macropuswas controversial and sometimes considered as dubious. Here I show 'Laelaps' macropusas a valid taxon of tyrannosauroid based on comparisons with other taxa; there are considerable differences between 'Laelaps' macropusand Dryptosaurus aquilunguis. Therefore, a new generic name for 'Laelaps' macropus,Teihivenatorgen. nov. is erected here. Key words : Dinosauria; Theropoda; Tyrannosauroidea; Teihivenator ; Dryptosaurus HOW TO CITE THIS ARTICLE: Chan-gyu Yun, Teihivenator gen. nov., a new generic name for the tyrannosauroid dinosaur "Laelaps" macropus (Cope, 1868; preoccupied by Koch, 1836). J Zool Biosci Res, 2017, 4 (2): 7-13 , DOI: 10.24896/jzbr.2017422 Corresponding author : Chan-gyu Yun and abundance of marine deposits [28]. So, it is an e-mail *[email protected] undoubted fact that any new discoveries from this Received: 02/02/2017 area would be important for understanding Accepted: 15/05/2017 dinosaur evolution or diversity from this forgotten continent.
    [Show full text]