Soft Robotics: a Review of Recent Developments of Pneumatic Soft Actuators

Total Page:16

File Type:pdf, Size:1020Kb

Soft Robotics: a Review of Recent Developments of Pneumatic Soft Actuators actuators Review Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators James Walker 1, Thomas Zidek 1, Cory Harbel 1, Sanghyun Yoon 1, F. Sterling Strickland 2, Srinivas Kumar 1 and Minchul Shin 1,* 1 Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA; [email protected] (J.W.); [email protected] (T.Z.); [email protected] (C.H.); [email protected] (S.Y.); [email protected] (S.K.) 2 Department of Manufacturing Engineering at Georgia Southern University, Statesboro, GA 30460, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-912-478-5759 Received: 29 September 2019; Accepted: 11 December 2019; Published: 10 January 2020 Abstract: This paper focuses on the recent development of soft pneumatic actuators for soft robotics over the past few years, concentrating on the following four categories: control systems, material and construction, modeling, and sensors. This review work seeks to provide an accelerated entrance to new researchers in the field to encourage research and innovation. Advances in methods to accurately model soft robotic actuators have been researched, optimizing and making numerous soft robotic designs applicable to medical, manufacturing, and electronics applications. Multi-material 3D printed and fiber optic soft pneumatic actuators have been developed, which will allow for more accurate positioning and tactile feedback for soft robotic systems. Also, a variety of research teams have made improvements to soft robot control systems to utilize soft pneumatic actuators to allow for operations to move more effectively. This review work provides an accessible repository of recent information and comparisons between similar works. Future issues facing soft robotic actuators include portable and flexible power supplies, circuit boards, and drive components. Keywords: soft robotics; soft pneumatic actuators; control systems; sensors; soft materials; modeling 1. Introduction Robots are becoming ubiquitous in modern society. Robots have changed the way humanity manufactures our goods, performs surgery, and transport ourselves along with our possessions. However, the boundary between robots and humans remains hazardous [1] as the modern day hard robot requires a lot of precise control and while they excel at repetitive massive production functions, they struggle to interact with uncertain environments [2]. This is where the new field of soft robotics excels. A soft robot is primarily composed of stretchable, flexible materials, such as silicon rubber. While these softer materials have a lower rigidity when compared to metals used in hard robots, these softer robots have provided more flexibility and adaptability to the workspace creating safer environments, particularly in a human-robot integrated workspace. There have been many exciting developments and research around soft robotics recently, which will be chronicled in this review study. The most important physical aspect of a robot is movement [3]. For soft robots, movement is conducted by using variable length tendons [3], by pneumatic actuations, or even more recently by twist-and-coil actuators [4], as seen in Figure1. Many of the modern actuation methods have been designed to replicate biological movements, such as fish fins or octopus tentacles [5–10]. Actuators 2020, 9, 3; doi:10.3390/act9010003 www.mdpi.com/journal/actuators Actuators 2020, 9, 3 2 of 26 Actuators 2020, 9, 3 2 of 27 Figure 1. 1. VariousVarious soft soft robots robots with with various various actuation actuation methods methods (a) Actuator (a) Actuator with multi-material with multi-material 3D printing 3D printing[11]. (Open [11 Access);]. (Open (b Access);) Soft linear (b) Softactuator linear [12]. actuator (Open [Access);12]. (Open (c) Design Access); for (c )bidirectional Design for bidirectionalbending [13]. bending(Copyright [13 2015,]. (Copyright Elsevier); 2015, (d) Snake-modeled Elsevier); (d) Snake-modeled robot [14] (Copyright robot [14 2012,] (Copyright Taylor & 2012, Francis). Taylor & Francis). Many soft robots use pneumatics or hydraulics to actuate their bodies, but another way actuation has beenbeen implementedimplemented into soft robots isis throughthrough thethe developmentdevelopment ofof electroactiveelectroactive polymerspolymers whichwhich electrically activate soft actuators in order to cause movement [[15–18].15–18]. The flexibleflexible nature of softsoft robotsrobots necessitates the the development development of of stretchable stretchable electronics electronics such such as sensors as sensors and andpower power sources. sources. The Thecompliance compliance and morphology and morphology of soft of robots soft robots prevent prevent the use the of usemany of conventional many conventional sensors sensors seen in seenhard inrobots, hard so robots, there sohas there been has active been research active research into stretchable into stretchable electronic electronic sensors and sensors curvature and curvature sensors. sensors.Elastomer Elastomer sensors allow sensors for allow minima forl minimal impact to impact the actuation to the actuation of the robot of the [19]. robot Along [19]. Along with these with thesesensors, sensors, soft robots soft robots also alsohave have the thecapability capability of ofhosting hosting chemical chemical and and biological biological sensors sensors to sensesense environmental signals which could eventually allow them to be human-centeredhuman-centered tools for the idealideal workspaceworkspace between humans and robotsrobots [[5].5]. Power sources have also been a bigbig pointpoint ofof emphasisemphasis withwith generalgeneral compressors compressors using using a lota lot of electricity,of electricity, alternative alternative methods methods such such as chemical as chemical reaction-based reaction- sourcesbased sources and combustible and combustible fuels have fuels been have looked been atlooked for solutions at for solutions [6,20,21]. [6,20,21]. In turn, manyIn turn, soft many robotics soft designsrobotics havedesigns been have made been using made ‘2.5D’ using designs, ‘2.5D’ limited designs, primarily limited byprimarily 3D printed by 3D capabilities printed capabilities and model complexity,and model orcomplexity, use abstract or approachesuse abstract with approaches the current with software the current available software [22–24 ].available Fabrication [22–24]. has alsoFabrication been an has area also of interest;been an however,area of interest; thanks howe to rapidver, growth thanks into digitalrapid growth design andin digital fabrication design tools, and therefabrication are now tools, many there ways are now to develop many ways soft robotsto develo withp soft diff erentrobots material with different selections material and asselections well as embeddedand as well needed as embedded electronics needed into electronics channels of into the ch materialannels of for the system material use [for11 ,system25–28]. use [11,25–28]. The movements of of soft soft bodies bodies can can be be described described by by an an infinite infinite number number of ofdegrees degrees of freedom. of freedom. Its Itsintrinsic intrinsic deformation deformation such such as asbend, bend, twist, twist, stretch, stretch, compress, compress, buckle, buckle, wrinkle, wrinkle, etc. etc. makes makes the the control of soft robots very challenging [[7].7]. The muscle analogyanalogy of soft organisms is introduced to understand thethe workingworking principle principle of softof soft bodies. bodies. An understandingAn understanding of the principleof the principle of octopus of hasoctopus led to inspirationhas led to forinspiration modeling for and modeling control and [7]. control [7]. Due to itsits absentabsent ofof rigidrigid structure,structure, thethe kinematicskinematics andand dynamicsdynamics ofof soft-roboticsoft-robotic systemssystems are didifferentfferent fromfrom thatthat ofof conventionalconventional systems.systems. Therefore,Therefore, researchers have developed a new static, dynamic, andand kinematic models for soft-robotic system.system. Designers modelmodel thethe kinematics of soft robots using piecewisepiecewise constant curvature (PCC) [[8].8]. In approaches of developingdeveloping methodsmethods toto connectconnect thethe actuation space to the configurationconfiguration space,space, the morphologymorphology of the robot bodybody andand thethe characteristicscharacteristics of the actuation system is studied and and combined. combined. Some Some forward forward kinematics kinematics basis basis approaches approaches are are a ause use of of Bernoulli-Euler Bernoulli-Euler beam beam mechanics mechanics to to predict predict deformation deformation [8], [8], a a relationship between the jointjoint variablesvariables andand thethe curvature arcarc parametersparameters ofof highhigh andand mediummedium pressurepressure robot.robot. Existing solutions of the inverse-kinematics problem are neglecting the consideration of the pose of the end effector [9,29]. This limited computation creates difficulty in avoidance of autonomous obstacles and movement Actuators 2020, 9, 3 3 of 26 the inverse-kinematics problem are neglecting the consideration of the pose of the end effector [9,29]. This limited computation creates difficulty in avoidance of autonomous obstacles and movement under restrained environment. Without consideration of the entire robot body including the end effector, task-space planning
Recommended publications
  • Actuator Product Guide
    About Moog Multi-purpose Actuators and Servoactuators Moog’s multi-purpose actuators and servoactuators can be used for a variety of high performance applications and are standard building blocks used in ruggedized systems. We utilize our expertise in DC electromagnetics, gearing, rate and position loop servo electronics and mechanical design in these assemblies. Moog rotary and linear electromechancial actuators are used in: • Fixed and Rotary Wing Aircrafts • Unmanned Vehicles / Remotely Operated Vehicles • Ground Vehicles • Radar Systems • Remote Weapon Stations • SATCOM Pedestals • EO / IR Sensor Pods • Cockpit Door Locks • Valve / Damper Actuators Capability Moog has been developing specialized high technology and utility electromechanical actuators for over 25 years. Our capability includes in-house design, manufacturing expertise, engineering support and qualification for these products. Product Range Products range from 25 to 2,500 in-lbt for rotary and 100 to 2,000 lbf for linear configurations. We can offer our assemblies with integral servo control electronics. Moog offers a variety of communication interfaces including analog, (+/- 10 VDC for example), RS232 / 422 / 485, R/C PWM and CAN Bus. We design for redundancy as required by the customer. Moog is a FAA certified repair station and can offer hardware in support of AOG services. FAA / EASA Approved Repair Station Location, Springfield, PA FAA Repair Station: L17R251Y 750 West Sproul Road EASA (JAA): 145.5497 Springfield, PA 19064-4084 USA Cage Code: 1K426 Tel: +1-610-328-4000 Fax: +1-610-605-6216 FAA / EASA Approved Repair Station Location, Blacksburg, VA FAA Repair Station: 21MR057C 1213 North Main Street Cage Code: 99932 Blacksburg VA 24060-3127 USA Tel: +1-540-552-3011 Fax: +1-540-557-6719 2 Moog • www.moog.com Rotary Actuators Rotary Actuators Rotary servoactuators utilize brush and brushless type DC motors using both neodymium and rare earth magnets.
    [Show full text]
  • Modern Design and Control of Automatic Transmission and The
    Review Paper doi:10.5937/jaes13-7727 Paper number: 13(2015)1, 313, 51 - 59 MODERN DESIGN AND CONTROL OF AUTOMATIC TRANSMISSION AND THE PROSPECTS OF DEVELOPMENT Dejan Matijević The School of Electrical and Computer Engineering of Applied Studies, Belgrade, Serbia Ivan Ivanković* University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia Dr Vladimir Popović University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia The paper provides an overview of modern technical solutions of automatic transmissions in auto- motive industry with their influence on sustainable development. The objective of the first section is a structural view of specific constructions and control systems of presently used automatic transmis- sions, with emphasis on mechatronics implementation. The second section is based on perspectives of development, by integrating some branches of soft computing, such as fuzzy logic and artificial neural networks in order to create an optimal control algorithm for obtaining a contribution to fuel economy, exhaust emission, comfort and vehicle performance. Key words: Automatic transmission, Mechatronics, Automotive industry, Soft Computing INTRODUCTION which is depended by coefficient of friction and normal load on the drive axle. Lower limitation Almost all automobiles in use today are driven by is defined by maximal speed that vehicle can internal combustion engines, which are charac- reach. Shaded areas between traction forces terized by many advantages, such as relatively through gears are power losses. To decrease good efficiency, relatively compact energy stor- power losses and to be as closely as possible age and high power – to – weight ratio [07]. to the ideal traction hyperbola, the gearbox with But, fundamental disadvantages are: enough gear ratios is needed.
    [Show full text]
  • An Overview of Novel Actuators for Soft Robotics
    actuators Review An Overview of Novel Actuators for Soft Robotics Pinar Boyraz 1,2,* ID , Gundula Runge 3 and Annika Raatz 3 1 Mechanics and Maritime Sciences Department, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 Mechanical Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey 3 Institut fur Montagetechnik (match), Leibniz Universität Hannover, 30823 Garbsen, Hannover, Germany; [email protected] (G.R.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +46-730-49-8780 Received: 10 June 2018; Accepted: 9 August 2018; Published: 16 August 2018 Abstract: In this systematic survey, an overview of non-conventional actuators particularly used in soft-robotics is presented. The review is performed by using well-defined performance criteria with a direction to identify the exemplary and potential applications. In addition to this, initial guidelines to compare the performance and applicability of these novel actuators are provided. The meta-analysis is restricted to five main types of actuators: shape memory alloys (SMAs), fluidic elastomer actuators (FEAs), shape morphing polymers (SMPs), dielectric electro-activated polymers (DEAPs), and magnetic/electro-magnetic actuators (E/MAs). In exploring and comparing the capabilities of these actuators, the focus was on eight different aspects: compliance, topology-geometry, scalability-complexity, energy efficiency, operation range, modality, controllability, and technological readiness level (TRL). The overview presented here provides a state-of-the-art summary of the advancements and can help researchers to select the most convenient soft actuators using the comprehensive comparison of the suggested quantitative and qualitative criteria. Keywords: soft-robotics; actuator performance; SMA; SMP; FEA; DEAP; E/MA 1.
    [Show full text]
  • Exlar Electric Test and Simulation Actuator Systems
    Delivering more accurate and trouble-free test actuators. Exlar Electric Test and Simulation Actuator Systems Courtesy of Steven Engineering, Inc. - 230 Ryan Way, South San Francisco, CA 94080-5370 - Main Office: (650) 588-9200 - Outside Local Area: (800) 258-9200 - www.stevenengineering.com entertainment simulators, Exlar actutors are Paradigm Shift ergonomic endurance directly controlled in Mechanical test equipment, geo- by the system’s logical test equipment, electric servo Testing System wear testing, and even amplifi er. No Technology aircraft structural testing intermediary such and dynamic simulation. as oil or air is required to create Historically, manufacturers and motion. System users of mechanical test ap- The Benefi ts compliance result- paratus and motion simulators ing from use of have accepted the inaccuracies, of All-Electric fl uid power is a inconvenience and high mainte- Test Actuator major contributor nance costs of hydraulic actua- to inaccuracy of tion. However, today’s simula- Systems tors and test stands are often hydraulic actua- Exlar’s patented roller used in environments where tor systems. The screw linear actuator contamination from oil leaks is higher stiffness of technology allows users to not permissable and greater ac- a planetary perform the analysis and testing curacy is required. Exlar offers roller screw-based actuator pro- needed to verify products’ de- a full range of all-electric test vides greater system response actuators and position controls signs without the high cost of in- and stability assuring precise which provide the dynamic per- stallation, constant maintenance, and crisp control, and stiffness formance and long life required environmental issues, and en- is not stroke-sensitive.
    [Show full text]
  • Actuator Components • Actuators – Hydraulics – Pneumatics – Electric Motors • Gearing • Bearings • Seals
    Actuator Components • Actuators – Hydraulics – Pneumatics – Electric Motors • Gearing • Bearings • Seals U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 1 Fundamental Elements of Robotics Environment Planning Sensing and Actuation Reasoning U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 2 Prime Mover Taxonomy • Electrical – Direct Current – Alternating Current • Non-Electrical – Hydraulics – Pneumatics – Chemical – Thermal – Stored Energy U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 3 Hydraulics and Pneumatics U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 4 Pneumatic Actuator Cutaway U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 5 Hydraulic System Schematic U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 6 Hydraulic Spool Valve Schematic U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 7 Brushed DC Motor Schematic U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 8 DC Brushed Motor Schematic U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 9 Brushed DC Motor Commutator U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 10 Brushless DC Motor U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary
    [Show full text]
  • PI Linear Actuator Catalog
    Linear Actuators for Precision Motion Control,/--5 Solutions featuring Novel Piezoelectric Motors and Classical Motors Latest PI Catalogs: www.pi.ws Latest PI Catalogs: www.pi.ws Precision Linear Actuators Overview Motion Control with Piezoelectric / Servo / Stepper Motors PI is the leading manufacturer of ultra-high-precision actua- tors for nanopositioning and micropositioning applications in industries such as Semi- conductors; Biotechnology and Medicine; Lasers, Optics, Micros- copy; Aerospace Engineering; Precision Machining; Astronomy and Microsystems Technology. Section a Section b Section c Motorized Screw Type Actuators PILine® Ceramic Ultrasonic Piezo NEXACT® Compact Piezo ࡯ DC & Stepper Motors Motor Actuators Stepping Motor Actuators ࡯ Forces to 400 N ࡯ High-Speed Piezomotors and ࡯ PiezoWalk® Drive ࡯ Travel to 50 mm Drives ࡯ Compact Dimensions ࡯ Resolution to 50 nm ࡯ Velocity to 800 mm/s ࡯ Forces to 10 N ࡯ Compact Dimensions ࡯ <0.1 nm Resolution ࡯ Travel to 150 mm (Basically ࡯ Self-Locking at Rest Unlimited) ࡯ Travel to 25 mm (Basically ࡯ Forces to 7 N Unlimited) ࡯ Self-Locking at Rest ࡯ Velocity to 10 mm/s ࡯ Resolution to 20 nm ࡯ Non-Magnetic, Vacuum ࡯ Non-Magnetic, Vacuum Compatible Compatible Section c Section d Section e Section f NEXLINE® High-Force Piezo Flexure-Guided Piezo Piezo Stack Actuators Motion Controllers (Examples) Stepping Motor Actuators Actuators ࡯ PICMA® Multilayer and ࡯ Controllers for Servo Motors ࡯ PiezoWalk® Drive ࡯ PICMA® Piezoceramic PICA™ Stack Actuators and Stepper Motors ࡯ Non-Magnetic, Vacuum Multilayer
    [Show full text]
  • Electric Linear Actuators
    LINEAR ACTUATORS Rolaram www.powerjacks.com LINEAR ACTUATORS | Rolaram www.powerjacks.com 2 LINEAR ACTUATORS | Rolaram Contents Linear Actuators (Electro-Mechanical) 1 Overview of Rolaram® Linear Actuator Range ................................................................4 2 Working Applications for Rolaram® Actuators ................................................................6 3 Product Code for Rolaram® Actuators ............................................................................7 4 Rolaram® Linear Actuator Range ....................................................................................8 5 How to Select a Rolaram® Actuator ..............................................................................10 6 Rolaram® Performance Data .........................................................................................11 7 Rolaram® Linear Actuator Dimensions .........................................................................17 8 Rolaram® Accessories and Options ...............................................................................21 9 Special Rolaram® Designs and Applications .................................................................22 3 www.powerjacks.com LINEAR ACTUATORS | Rolaram 1. Overview of Rolaram® Linear Actuator Range What is a Rolaram® Linear Actuator? Rolaram® is an electro-mechanical linear actuator, which consists of either a Spiracon™ planetary roller screw or a ball screw, driven by an electric motor, through a reduction gearbox. The lead screw converts rotary motion to
    [Show full text]
  • 2150062 Actuator Operating Manual Revision 4.7 Revision Date 4/27/2016
    2752 Capitol Drive Suite 103 Sun Prairie, WI 53590 2150062 Actuator Operating Manual Revision 4.7 Revision Date 4/27/2016 ACTUATOR OPERATING MANUAL This manual provides installation, operation, and maintenance instructions for linear and rotary actuators. DO NOT OPEN YOUR ACTUATOR OPENING THE ACTUATOR WILL VOID WARRANTY AND UNITS NEED TO BE SEALED WITH A VACUUM CHAMBER 2752 Capitol Drive Suite 103 Sun Prairie, WI 53590 2150062 Actuator Operating Manual Revision 4.7 Revision Date 4/27/2016 Warranty 2G Engineering warrants that its product(s) shall be made in accordance with buyer’s specifications which have been accepted in writing by 2G Engineering and shall be free from defects in material and workmanship for 1 Year after purchase. This warranty is provided to the original purchaser and in the case of original equipment manufacturers, to their original customer, and may not be transferred to any other person or entity. In no event shall 2G Engineering be liable or have any responsibility under such warranty if the products have been improperly stored, installed, used, or maintained, or if Buyer has permitted any modifications, adjustments, and/or repairs to such product(s) without 2G Engineering’s prior written consent. The warranty is only valid if purchaser has paid all amounts due to 2G Engineering for the product and 2G Engineering has received written notice of the claim within 1 Year after purchase of the product. The above warranty is the sole warranty provided by 2G Engineering. No other warranties, expressed or implied, are included in the purchase of the product(s) and 2G Engineering expressly disclaims all such other warranties, including without limitation, implied warranties of merchantability and fitness for a particular purpose.
    [Show full text]
  • Electromechanical Rod Actuators DNCE Lead Screw Or Ball Screw Driven
    Electromechanical Rod Actuators DNCE Lead Screw or Ball Screw Driven Motor and mounting attachments ordered separately Reliable, Modular Solution for Intelligent Control The DNCE electromechanical rod Modularity, Ease of Use Application Driven Mechanism actuator is a screw driven linear • The DNCE can be supplied with The type of application actuator with a nonrotating round an MTR-DCI intelligent motor determines which is the best piston rod. For conversions to unit, a MTR-AC servo motor, a drive mechanism: electromechanical automation, MTR-ST stepper motor, or • Lead screw for format setting the DNCE profile is compatible adapted to third-party motors on printing machines, with Festo DNC and other • Suitable motor mounting kits – packaging machines, and in pneumatic cylinders based on for axial (A) as well as for feed systems ISO standard 6431. DNCE accepts reverse parallel (U) motor • Ball screw for dynamic intelligent position controls, configuration push-pull applications such as allowing for increased flexibility • The limit switches for volumetric filling, CD stacking, and efficiency in the production integrated sensing fit flush in and part insertion process. the profile slot, providing protection without the need for Compatible Accessories protruding attachments All mounting attachments, guide • Readily available mounting units and piston rod accessories attachments make it easy to are compatible with pneumatic install DNC cylinders, which means no • Lubricated for life for need for costly in-house maintenance-free operation adaptations. DNCE.PSI.US For more information: www.festo.com/us/dnce Product Short Information Electromechanical Rod Actuators DNCE Lead Screw or Ball Screw Driven Technical Data Lead Screw Driven Ball Screw Driven Frame Sizes 32 40 63 32 40 63 Standard strokes* [mm] 100 100 100 100 100 100 200 200 200 200 200 200 300 300 300 300 300 300 400 400 400 400 400 400 600 600 600 600 800 800 Metric screw leads [mm] 1.5 2.5 4 3 5 10 10 12.7 20 Inch screw leads [in] 0.5 Repeatability [mm] ±0.07 ±0.02 Max.
    [Show full text]
  • LEAD SCREW LINEAR ACTUATORS Profile Rail Linear Actuators
    LEAD SCREW LINEAR ACTUATORS Profile Rail Linear Actuators ITAR helixlinear.com Helix Linear Technologies, Inc., Beachwood, Ohio COMPANY CULTURE Helix is a global supplier to the Medical Device, Life Science, Our culture is based on a team of smart, happy and competi- Security, Semiconductor, Aerospace, Electromechanical and tive professionals focused on manufacturing innovative products Defense industries. Helix leads the linear motion industry centered on delivering precise electromechanical linear motion by manufacturing the highest quality linear actuation solutions solutions. We are in the people business, as well as the prod- in the world. We focus entirely on manufacturing electro- uct business. People make and sell our products and a team of mechanical actuation systems that help our customer be more smart, happy and competitive people make a company healthy. productive and profitable. Our execution of innovative product designs solves real problems for our customers and builds a OPERATIONS foundation for long term success. Our company is built to deliver high-quality products and engineering support to solve the most demanding linear motion HISTORY applications in any industry. We deliver components and sub- Helix was founded in 2011 to manufacture high-quality lead system solutions to high volume OEMs and custom machine screws for the growing electromechanical actuation industry. builders to help secure their success. Helix’s rapid growth has included the addition of linear actuator solutions to deliver integrated and turnkey
    [Show full text]
  • Stepper Motor Linear Actuators Pre-Engineered Lead Screw Assemblies and Actuators for Precision Applications
    Stepper Motor Linear Actuators Pre-engineered lead screw assemblies and actuators for precision applications www.thomsonlinear.com Stepper Motor Linear Actuator Assemblies Combining cutting-edge motor and lead screw technologies Thomson offers three basic configurations – rotating screw (MLS), rotating nut (MLN) and actuator (MLA). The open architecture rotating screw and rotating nut motorized lead screws suit applications where external guidance is present or a high level of design flexibility is required, while the closed assembly of the motorized lead screw actuator is ideal to further simplify the design process and remove requirements for external guidance. Technology Overview Rotating screw assemblies actuate by having the motor rotate a lead screw and translate a load that is attached to the lead nut. Rotating nut assemblies actuate by rotating a nut within the motor body. Motion is achieved by constraining the motor and translating a load attached to the lead screw or constraining the lead screw and translating a load attached to the motor. Rotating Screw Configuration MLS The rotating screw design, which is ideal for rapid prototyping, features our patented Taper-Lock design to connect the lead screw to the motor shaft. It is best suited for applications where high levels of maintenance are anticipated, frequent disassembly/reassembly is required, or easy removal of the lead screw is necessary. Customers also can consider field serviceability for this configuration. Rotating Nut Configuration MLN The rotating nut design features our patented integration of a lead nut into the motor rotor to maximize screw diameter, which increases load capacity. It is ideally suited for applications where no visible rotation is desired or where it is necessary to translate a load on either side of the motor.
    [Show full text]
  • Ep 0324553 B1
    Europaisches Patentamt A European Patent Office Office europeen des brevets (Ti) Publication number: 0 324 553 S1 EUROPEAN PATENT SPECIFICATION @ Date of publication of patent specification : S) mtci.6: F16D 25/14 03.07.91 Bulletin 91/27 @ Application number: 89300118.0 Date of filing : 06.01.89 Clutch actuator system for automatic/semi-automatic mechanical transmission system. @) Priority: 13.01.88 GB 8800741 Proprietor : EATON CORPORATION Eaton Center, 1111 Superior Avenue Cleveland Ohio 44114 (US) © Date of publication of application : 19.07.89 Bulletin 89/29 Inventor: Cottam, Michael John 54 Glen Park Drive Hesketh Bank Lanes PR4 @) Publication of the grant of the patent : Near Preston 6TA (GB) 03.07.91 Bulletin 91/27 Inventor : Nellums, Richard Alexander 46 Long Copse Chorley Lanes. PR7 1TH (GB) @) Designated Contracting States : DE ES FR GB IT SE Representative : Douglas, John Andrew Eaton House Staines Road Hounslow Middlesex TW4 5DX (GB) References cited : EP-A- 0 158 004 EP-A- 0 231 465 EP-A- 0 239 471 DE-A- 3 010 503 DE-A- 3 246 362 0Q CO in m CO Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Q_ Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been LU filed until the opposition fee has been paid (Art. 99(1) European patent convention). Jouve, 18, rue Saint-Denis, 75001 PARIS 1 EP 0 324 553 B1 Description invention never allows manual override of an automa- tic control of a clutch (by the central control which BACKGROUND OF THE INVENTION actuates a transmission).
    [Show full text]