Spawning Patterns of Commercially Important Reef Fish (Lutjanidae and Serranidae) in the Tropical Western South Atlantic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Age Estimates of Two Large Misty Grouper, Epinephelus Mystacinus
CORE Metadata, citation and similar papers at core.ac.uk Provided by Aquila Digital Community Gulf and Caribbean Research Volume 21 | Issue 1 2009 Age Estimates of Two Large Misty Grouper, Epinephelus mystacinus (Serranidae) from Bermuda with a Comparison of the Age of Tropical Groupers in the Western Atlantic Brian E. Luckhurst Marine Resources Division, Bermuda John M. Dean University of South Carolina DOI: 10.18785/gcr.2101.09 Follow this and additional works at: http://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Luckhurst, B. E. and J. M. Dean. 2009. Age Estimates of Two Large Misty Grouper, Epinephelus mystacinus (Serranidae) from Bermuda with a Comparison of the Age of Tropical Groupers in the Western Atlantic. Gulf and Caribbean Research 21 (1): 73-77. Retrieved from http://aquila.usm.edu/gcr/vol21/iss1/9 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and CaribbeanGulf Research and Caribbean Vol 21, 73-77,Research 2009 Vol 21, 73-77, 2009 Manuscript receivedManuscript January 7,received 2009; Januaryaccepted 7, February 2009; accepted 6, 2009 February 6, 2009 Gulf and Caribbean Research Vol 21, 73-77, 2009 Manuscript received January 7, 2009; accepted February 6, 2009 SHORT COMMUNICATIONSHORT COMMUNICATION SHORT COMMUNICATION AGE ESTIMATESAGE ESTIMATES OF TWO OF LARGE TWO MISTYLARGE GROUPER, MISTY GROUPER, AGE ESTIMATES OF TWO LARGE MISTY GROUPER, EPINEPHELUSEPINEPHELUS MYSTACINUS MYSTACINUS (SERRANIDAE) (SERRANIDAE) FROM BERMUDA FROM BERMUDA EPINEPHELUS MYSTACINUS (SERRANIDAE) FROM BERMUDA WITH A WITHCOMPARISON A COMPARISON OF THE OFAGE THE OF AGETROPICAL OF TROPICAL WITH A COMPARISON OF THE AGE OF TROPICAL GROUPERSGROUPERS IN THE WESTERNIN THE WESTERN ATLANTIC ATLANTIC GROUPERS IN THE WESTERN ATLANTIC Brian E. -
Diet Composition of Juvenile Black Grouper (Mycteroperca Bonaci) from Coastal Nursery Areas of the Yucatán Peninsula, Mexico
BULLETIN OF MARINE SCIENCE, 77(3): 441–452, 2005 NOTE DIET COMPOSITION OF JUVENILE BLACK GROUPER (MYCTEROPERCA BONACI) FROM COASTAL NURSERY AREAS OF THE YUCATÁN PENINSULA, MEXICO Thierry Brulé, Enrique Puerto-Novelo, Esperanza Pérez-Díaz, and Ximena Renán-Galindo Groupers (Epinephelinae, Epinephelini) are top-level predators that influence the trophic web of coral reef ecosystems (Parrish, 1987; Heemstra and Randall, 1993; Sluka et al., 2001). They are demersal mesocarnivores and stalk and ambush preda- tors that sit and wait for larger moving prey such as fish and mobile invertebrates (Cailliet et al., 1986). Groupers contribute to the ecological balance of complex tropi- cal hard-bottom communities (Sluka et al., 1994), and thus large changes in their populations may significantly alter other community components (Parrish, 1987). The black grouper (Mycteroperca bonaci Poey, 1860) is an important commercial and recreational fin fish resource in the western Atlantic region (Bullock and Smith, 1991; Heemstra and Randall, 1993). The southern Gulf of Mexico grouper fishery is currently considered to be deteriorated and M. bonaci, along with red grouper (Epinephelus morio Valenciennes, 1828) and gag (Mycteroperca microlepis Goode and Bean, 1880), is one of the most heavily exploited fish species in this region (Co- lás-Marrufo et al., 1998; SEMARNAP, 2000). Currently, M. bonaci is considered a threatened species (Morris et al., 2000; IUCN, 2003) and has been classified as vul- nerable in U.S. waters because male biomass in the Atlantic dropped from 20% in 1982 to 6% in 1995 (Musick et al., 2000). The black grouper is usually found on irregular bottoms such as coral reefs, drop- off walls, and rocky ledges, at depths from 10 to 100 m (Roe, 1977; Manooch and Mason, 1987; Bullock and Smith, 1991; Heemstra and Randall, 1993). -
ASSESSMENT of the FISHERY for SNAPPER (Pagrus Auratus) in QUEENSLAND and NEW SOUTH WALES
ASSESSMENT OF THE FISHERY FOR SNAPPER (Pagrus auratus) IN QUEENSLAND AND NEW SOUTH WALES Principal Investigators D. Ferrell and W. Sumpton FRDC 93/074 Final Report, FRDC Project 93/074 Assessment of the Snapper fishery in Qld and NSW 93/074 Assessment of the fishery for snapper (Pagrus auratus) in Queensland and NSW. PRINCIPAL INVESTIGATORS: Wayne Sumpton1 and Doug Ferrell2 ADDRESS: 1. QLD Department of Primary Industries Southern Fisheries Centre PO Box 76 DECEPTION BAY Q 4508 Telephone: 07 3817 9584 Fax: 07 3817 9584 ` 2. NSW Fisheries Research Institute 202 Nicholson Parade Cronulla NSW 2230 Telephone: 02 9527 8514 Fax: 02 9527 8576 OBJECTIVES To estimate the recreational snapper catch in the Moreton Region and evaluate methodologies for estimating offshore recreational effort. To provide fisheries managers with models for assessing the impact on yield of proposed changes to the legislated minimum legal size of snapper. To provide fisheries managers with information on the genetic relationship between snapper populations in south Queensland, Northern New South Wales and east of the Swains Reefs (Southern Great Barrier Reef). To develop methods of estimating relative abundance and year class strength of juvenile snapper. Queensland Department of Primary Industries 2 New South Wales Fisheries Research Institute Final Report, FRDC Project 93/074 Assessment of the Snapper fishery in Qld and NSW NON TECHNICAL SUMMARY Previous work to validate snapper age estimates was supported but this validation is still suspect in northern NSW and Queensland. The reason the validation is called into question is that the clarity of interpretation of otolith edges changed with latitude. -
V a Tion & Management of Reef Fish Sp a Wning Aggrega Tions
handbook CONSERVATION & MANAGEMENT OF REEF FISH SPAWNING AGGREGATIONS A Handbook for the Conservation & Management of Reef Fish Spawning Aggregations © Seapics.com Without the Land and the Sea, and their Bounties, the People and their Traditional Ways would be Poor and without Cultural Identity Fijian Proverb Why a Handbook? 1 What are Spawning Aggregations? 2 How to Identify Spawning Aggregations 2 Species that Aggregate to Spawn 2 Contents Places Where Aggregations Form 9 Concern for Spawning Aggregations 10 Importance for Fish and Fishermen 10 Trends in Exploited Aggregations 12 Managing & Conserving Spawning Aggregations 13 Research and Monitoring 13 Management Options 15 What is SCRFA? 16 How can SCRFA Help? 16 SCRFA Work to Date 17 Useful References 18 SCRFA Board of Directors 20 Since 2000, scientists, fishery managers, conservationists and politicians have become increasingly aware, not only that many commercially important coral reef fish species aggregate to spawn (reproduce) but also that these important reproductive gatherings are particularly susceptible to fishing. In extreme cases, when fishing pressure is high, aggregations can dwindle and even cease to form, sometimes within just a few years. Whether or not they will recover and what the long-term effects on the fish population(s) might be of such declines are not yet known. We do know, however, that healthy aggregations tend to be associated with healthy fisheries. It is, therefore, important to understand and better protect this critical part of the life cycle of aggregating species to ensure that they continue to yield food and support livelihoods. Why a Handbook? As fishing technology improved in the second half of the twentieth century, engines came to replace sails and oars, the cash economy developed rapidly, and human populations and demand for seafood grew, the pressures on reef fishes for food, and especially for money, increased enormously. -
Fish Assemblages Associated with Red Grouper Pits at Pulley Ridge, A
419 Abstract—Red grouper (Epineph- elus morio) modify their habitat by Fish assemblages associated with red grouper excavating sediment to expose rocky pits, providing structurally complex pits at Pulley Ridge, a mesophotic reef in the habitat for many fish species. Sur- Gulf of Mexico veys conducted with remotely op- erated vehicles from 2012 through 2015 were used to characterize fish Stacey L. Harter (contact author)1 assemblages associated with grouper Heather Moe1 pits at Pulley Ridge, a mesophotic 2 coral ecosystem and habitat area John K. Reed of particular concern in the Gulf Andrew W. David1 of Mexico, and to examine whether invasive species of lionfish (Pterois Email address for contact author: [email protected] spp.) have had an effect on these as- semblages. Overall, 208 grouper pits 1 Southeast Fisheries Science Center were examined, and 66 fish species National Marine Fisheries Service, NOAA were associated with them. Fish as- 3500 Delwood Beach Road semblages were compared by using Panama City, Florida 32408 several factors but were considered 2 Harbor Branch Oceanographic Institute to be significantly different only on Florida Atlantic University the basis of the presence or absence 5600 U.S. 1 North of predator species in their pit (no Fort Pierce, Florida 34946 predators, lionfish only, red grou- per only, or both lionfish and red grouper). The data do not indicate a negative effect from lionfish. Abun- dances of most species were higher in grouper pits that had lionfish, and species diversity was higher in grouper pits with a predator (lion- The red grouper (Epinephelus morio) waters (>70 m) of the shelf edge and fish, red grouper, or both). -
Seine River Temperature Project
SEINE RIVER TEMPERATURE PROJECT A multi-year project designed to determine environmental and traditional ecological knowledge indicators for lake sturgeon spawning windows A Five-Year Summary of Work Conducted from 2011 to 2015 March 2016 Prepared by Ryan Haines, Kenora Resource Consultants Inc. for Seine River First Nation In Memory of Myron Johnson As a co-worker and friend…you will be missed. i Executive Summary In 1926, the Sturgeon Falls Generating Station was constructed along the Seine River to create hydroelectric power and this facility is currently operated by H2O Power. One of the major threats to lake sturgeon is the impact of peaking hydroelectric developments on the water levels during the spring spawning season. The purpose of the Seine River Temperature Project is to help define the spring spawn for Seine River sturgeon through surrogate environmental indicators and note any effects of peaking on spawning. In addition, a goal of the project was to determine if the increases in water levels at the Seine River First Nation community are due solely to the flow from the Seine River, or if the dam at the outlet of Rainy Lake affects the water levels resulting in the Seine River functioning as a reservoir. Between 2011 and 2015, Seine River First Nation community technicians studied the spawning timing of lake sturgeon at two important spawning sites in Seine River below the Sturgeon Falls dam to help determine the environmental indicators (temperature, photoperiod, flows) for lake sturgeon spawning. In addition, work was done with Seine River First Nation Elders and knowledge holders in the fall of 2012 to identify Traditional Ecological Knowledge (TEK) indicators for lake sturgeon spawning in Seine River. -
A New Species of Diplectanid (Monogenoidea) from Paranthias Colonus (Perciformes, Serranidae) Off Peru
Parasite 2015, 22,11 Ó M. Knoff et al., published by EDP Sciences, 2015 DOI: 10.1051/parasite/2015011 urn:lsid:zoobank.org:pub:5672579C-3070-4368-8CD0-4EC18D2C01C5 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS A new species of diplectanid (Monogenoidea) from Paranthias colonus (Perciformes, Serranidae) off Peru Marcelo Knoff1, Simone Chinicz Cohen2,*, Melissa Querido Cárdenas2, Jorge M. Cárdenas-Callirgos3, and Delir Corrêa Gomes1 1 Laboratório de Helmintos Parasitos de Vertebrados, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365 Rio de Janeiro, RJ, Brazil 2 Laboratório de Helmintos Parasitos de Peixes, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365 Rio de Janeiro, RJ, Brazil 3 Museo de Historia Natural, Facultad de Ciencias Biológicas, Universidad Ricardo Palma (URP), Av. Benavides 54440, Lima 33, Peru Received 30 October 2014, Accepted 23 February 2015, Published online 9 March 2015 Abstract – Pseudorhabdosynochus jeanloui n. sp. (Monogenoidea, Diplectanidae) is described from specimens collected from the gills of the Pacific creolefish, Paranthias colonus (Perciformes, Serranidae) from a fish market in Chorrillos, Lima, Peru. The new species is differentiated from other members of the genus by the structure of its sclerotized vagina, which has two spherical chambers of similar diameter. This is the first Pseudorhabdosynochus species described from the Pacific coast of America, the third species of the genus reported from South America and the first described from a member of Paranthias. Key words: Pseudorhabdosynochus jeanloui n. sp., Monogenea, Diplectanidae, Paranthias colonus, Fish. Résumé – Une nouvelle espèce de Diplectanidae (Monogenoidea) chez Paranthias colonus (Perciformes, Serranidae) au Pérou. Pseudorhabdosynochus jeanloui n. sp. (Monogenoidea, Diplectanidae) est décrit de spécimens collectés sur les branchies de la badèche du Pacifique, Paranthias colonus (Perciformes, Serranidae) d’un marché aux poissons de Chorrillos à Lima au Pérou. -
Snapper and Grouper: SFP Fisheries Sustainability Overview 2015
Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Patrícia Amorim | Fishery Analyst, Systems Division | [email protected] Megan Westmeyer | Fishery Analyst, Strategy Communications and Analyze Division | [email protected] CITATION Amorim, P. and M. Westmeyer. 2016. Snapper and Grouper: SFP Fisheries Sustainability Overview 2015. Sustainable Fisheries Partnership Foundation. 18 pp. Available from www.fishsource.com. PHOTO CREDITS left: Image courtesy of Pedro Veiga (Pedro Veiga Photography) right: Image courtesy of Pedro Veiga (Pedro Veiga Photography) © Sustainable Fisheries Partnership February 2016 KEYWORDS Developing countries, FAO, fisheries, grouper, improvements, seafood sector, small-scale fisheries, snapper, sustainability www.sustainablefish.org i Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 EXECUTIVE SUMMARY The goal of this report is to provide a brief overview of the current status and trends of the snapper and grouper seafood sector, as well as to identify the main gaps of knowledge and highlight areas where improvements are critical to ensure long-term sustainability. Snapper and grouper are important fishery resources with great commercial value for exporters to major international markets. The fisheries also support the livelihoods and food security of many local, small-scale fishing communities worldwide. It is therefore all the more critical that management of these fisheries improves, thus ensuring this important resource will remain available to provide both food and income. Landings of snapper and grouper have been steadily increasing: in the 1950s, total landings were about 50,000 tonnes, but they had grown to more than 612,000 tonnes by 2013. -
Saltwater Fish Identification Guide
Identification Guide To South Carolina Fishes Inshore Fishes Red Drum (Spottail, redfish, channel bass, puppy drum,) Sciaenops ocellatus May have multiple spots along dorsal surface.. RKW Black Drum Pogonias cromis Broad black vertical bars along body. Barbells on chin. Spotted Seatrout (Winter trout, speckled trout) Cynoscion nebulosus Numerous distinct black spots on dorsal surface. Most commonly encountered in rivers and estuaries. RKW Most commonly encountered just offshore around live bottom and artificial reefs. Weakfish (Summer trout, Gray trout) Cynoscion regalis RKW Silver coloration with no spots. Large eye Silver Seatrout Cynoscion nothus RKW Spot Leiostomus xanthurus Distinct spot on shoulder. RKW Atlantic Croaker (Hardhead) Micropogonias undulatus RKW Silver Perch (Virginia Perch) Bairdiella chrysoura RKW Sheepshead Archosargus probatocephalus Broad black vertical bars along body. RKW Pinfish (Sailors Choice) Lagodon rhomboides Distinct spot. RKW Southern Kingfish (Whiting) Menticirrhus americanus RKW Extended 1st dorsal filament Northern Kingfish SEAMAP- Menticirrhus saxatilis SA:RPW Dusky 1st dorsal-fin tip Black caudal fin tip Gulf Kingfish SEAMAP- Menticirrhus littoralis SA:RPW Southern flounder Paralichthys lethostigma No ocellated spots . RKW Summer flounder Paralichthys dentatus Five ocellated spots in this distinct pattern. B. Floyd Gulf flounder Paralichthys albigutta B. Floyd Three ocellated spots in a triangle pattern. B. Floyd Bluefish Pomatomus saltatrix RKW Inshore Lizardfish Synodus foetens RKW RKW Ladyfish Elops saurus Florida Pompano Trachinotus carolinus RKW Lookdown Selene vomer RKW Spadefish Chaetodipterus faber Juvenile RKW Juvenile spadefish are commonly found in SC estuaries. Adults, which look very similar to the specimen shown above, are common inhabitants of offshore reefs. Cobia Rachycentron canadum Adult D. Hammond Juvenile RKW D. -
Andrew David Dorka Cobián Rojas Felicia Drummond Alain García Rodríguez
CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington ACKNOWLEDGMENTS This research was supported by the NOAA Office of Ocean Exploration and Research under award number NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University (HBOI-FAU), and by the NOAA Pacific Marine Environmental Laboratory under award number NA150AR4320064 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami. This expedition was conducted in support of the Joint Statement between the United States of America and the Republic of Cuba on Cooperation on Environmental Protection (November 24, 2015) and the Memorandum of Understanding between the United States National Oceanic and Atmospheric Administration, the U.S. National Park Service, and Cuba’s National Center for Protected Areas. We give special thanks to Carlos Díaz Maza (Director of the National Center of Protected Areas) and Ulises Fernández Gomez (International Relations Officer, Ministry of Science, Technology and Environment; CITMA) for assistance in securing the necessary permits to conduct the expedition and for their tremendous hospitality and logistical support in Cuba. We thank the Captain and crew of the University of Miami R/V F.G. Walton Smith and ROV operators Lance Horn and Jason White, University of North Carolina at Wilmington (UNCW-CIOERT), Undersea Vehicle Program for their excellent work at sea during the expedition. -
Ensuring Seafood Identity: Grouper Identification by Real-Time Nucleic
Food Control 31 (2013) 337e344 Contents lists available at SciVerse ScienceDirect Food Control journal homepage: www.elsevier.com/locate/foodcont Ensuring seafood identity: Grouper identification by real-time nucleic acid sequence-based amplification (RT-NASBA) Robert M. Ulrich a, David E. John b, Geran W. Barton c, Gary S. Hendrick c, David P. Fries c, John H. Paul a,* a College of Marine Science, MSL 119, University of South Florida, 140 Seventh Ave. South, St. Petersburg, FL 33701, USA b Department of Biological Sciences, University of South Florida St. Petersburg, 140 Seventh Ave. S., St. Petersburg, FL 33701, USA c EcoSystems Technology Group, College of Marine Science, University of South Florida, 140 Seventh Ave. S., St. Petersburg, FL 33701, USA article info abstract Article history: Grouper are one of the most economically important seafood products in the state of Florida and their Received 19 September 2012 popularity as a high-end restaurant dish is increasing across the U.S. There is an increased incidence rate Accepted 3 November 2012 of the purposeful, fraudulent mislabeling of less costly and more readily available fish species as grouper in the U.S., particularly in Florida. This is compounded by commercial quotas on grouper becoming Keywords: increasingly more restrictive, which continues to drive both wholesale and restaurant prices higher each RT-NASBA year. Currently, the U.S. Food and Drug Administration recognize 56 species of fish that can use “grouper” FDA seafood list as an acceptable market name for interstate commerce. This group of fish includes species from ten Grouper fi fi Mislabeling different genera, making accurate taxonomic identi cation dif cult especially if distinguishing features such as skin, head, and tail have been removed. -
Maribyrnong River
Environmental Flow Determination for the Maribyrnong River Final Recommendations Revision C July 2006 Environmental Flow Determination for the Maribyrnong River –Final Recommendations Environmental Flow Determination for the Maribyrnong River FINAL RECOMMENDATIONS L:\work\NRG\PROJECTS\2005\034 Maribyrnong E-flows\02\03 Recommendations Paper\Recommendations RevC.doc Document History: ISSUE REVISION AUTHOR CHECKED APPROVED DESCRIPTION DATE NUMBER Preliminary Draft 30.11.2005 A A Wealands C Arnott C Arnott for Comment Final Draft for 18.01.2006 B A Wealands C Arnott C Arnott Comment Inclusion of 31.01.2006 B1 A Wealands C Arnott C Arnott estuary recommendations 18.07.2006 C A Wealands C Arnott C Arnott Final Report Natural Resources Group Earth Tech Engineering Pty Ltd ABN 61 089 482 888 Head Office 71 Queens Road Melbourne VIC 3004 Tel +61 3 8517 9200 Environmental Flow Determination for the Maribyrnong River –Final Recommendations Contents Contents .................................................................................................................. i Tables....................................................................................................................... i 1 Introduction ................................................................................................... 4 Outline of this Report.............................................................................................5 The Maribyrnong River Catchment .......................................................................6 2 Environmental