Greenhouse Gas Profiling by Infrared- Laser and Microwave Occultation: Atmospheric Influences and Retrieval Algorithm in Clear and Cloudy Air
Total Page:16
File Type:pdf, Size:1020Kb
Wegener Center for Climate and Global Change University of Graz Scientific Report No. 63-2014 Greenhouse gas profiling by infrared- laser and microwave occultation: Atmospheric influences and retrieval algorithm in clear and cloudy air Veronika Proschek December 2014 Financially supported by The Wegener Center for Climate and Global Change combines as an interdisciplinary, internationally oriented research institute the competences of the University of Graz in the research area “Climate, Environmental and Global Change”. It brings together, in a dedicated building close to the University central campus, research teams and scientists from fields such as geo- and climate physics, meteorology, economics, geography, and regional sciences. At the same time close links exist and are further developed with many cooperation partners, both nationally and internationally. The research interests extend from monitoring, analysis, modeling and prediction of climate and environmental change via climate impact research to the analysis of the human dimensions of these changes, i.e., the role of humans in causing and being effected by climate and environmental change as well as in adaptation and mitigation. (more information at www.wegcenter.at) The present report is the result of a dissertation work completed in April 2014. The work was funded by the European Space Agency (ESA) under ESA-ESTEC Contract No. 21507/08/NL/HE (ACTLIMB project) and the Austrian Space Applications Programme (ASAP) / Austrian Research Promotion Agency (FFG) under FFG-ALR Contract No. 819706 (ACCU-Clouds project). Alfred Wegener (1880-1930), after whom the Wegener Center is named, was founding holder of the University of Graz Geophysics Chair (1924-1930). In his work in the fields of geophysics, meteorology, and climatology he was a brilliant scientist and scholar, thinking and acting in an interdisciplinary way, far ahead of his time with this style. The way of his ground-breaking research on continental drift is a shining role model—his sketch on the relations of continents based on traces of an ice age about 300 million years ago (left) as basis for the Wegener Center Logo is thus a continuous encouragement to explore equally innovative ways: paths emerge in that we walk them (Motto of the Wegener Center). Wegener Center Verlag · Graz, Austria © 2014 All Rights Reserved. Selected use of individual figures, tables or parts of text is permitted for non-commercial purposes, provided this report is correctly and clearly cited as the source. Publisher contact for any interests beyond such use: [email protected]. ISBN 978-3-9503918-0-0 December 2014 Contact: DI Dr. Veronika Proschek [email protected] Wegener Center for Climate and Global Change University of Graz Brandhofgasse 5 A-8010 Graz, Austria www.wegcenter.at Wegener Center for Climate and Global Change Institute for Geophysics, Astrophysics, and Meteorology University of Graz Dissertation zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften Greenhouse gas profiling by infrared- laser and microwave occultation: Atmospheric influences and retrieval algorithm in clear and cloudy air Veronika Proschek April 2014 Editiert: Dezember 2014 Betreuer: Univ.-Prof. Mag. Dr. Gottfried Kirchengast Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, A-8010 Graz, Austria Inst. for Geophysics, Astrophysics, and Meteorology/Inst. of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria This thesis was submitted in April 2014 and modified in December 2014. Chapter four was edited to the final, published paper version. Abstract he ACCURATE—Climate Benchmark Profiling of Greenhouse Gases and Thermo- T dynamic Variables and Wind from Space satellite mission concept is a synergistic combination of the Low Earth Orbit microwave occultation (LMO) and Low Earth Orbit infrared-laser occultation (LIO) technique together termed Low Earth Orbit microwave and infrared-laser occultation (LMIO). It enables the measurement of physical and chemical profiles in the upper troposphere–lower stratosphere (UTLS) with high vertical resolution and in a long-term stable, global, consistent and self-calibrating way. This thesis contributes to the feasibility study of the LMIO mission concept. Firstly, an assessment of atmospheric influences on Infrared Laser (IRL) signals perform- ing a limb-scan of the UTLS region was done. Thoroughly defined IRL on-absorption and off-channels are found to be ideal candidates for the LIO technique. Atmospheric broad- band effects are highly correlated for channel pairs so that the differential transmission principle accurately corrects them. Secondly, an LMIO retrieval algorithm was developed to retrieve a set of greenhouse gases (GHGs) in clear-air conditions, including defocusing loss, aerosol extinction and Rayleigh scattering. A consecutive retrieval order of the forward-simulated IRL signals enables to retrieve unbiased volume mixing ratio profiles of GHGs with r.m.s. errors smaller than 1 % to 3 %. Thirdly, a LMIO retrieval was developed to cover cloudy-air conditions. IRL signals are strongly affected by cloud extinction, reducing the tropospheric penetration depth of occultation events. Intermittent cloud layers or thin cirrus, perturbing the IRL transmission profile, can be bridged and increase the penetration depth and thus the number of occultation events for climate benchmark observations. The results show promising prospects for climate benchmark contributions with unpre- cedented accuracy for monitoring the physical and chemical state of the UTLS. iii Zusammenfassung as Satellitenmissions-Konzept ACCURATE—Climate Benchmark Profiling of Green- D house Gases and Thermodynamic Variables and Wind from Space ist eine Synergie der Mikrowellen-Okkultation (LMO) und der Infrarotlaser-Okkultation (LIO), vereinigt zu der Mikrowellen- und Infrarotlaser-Okkultation für Satelliten (LMIO). Es ermöglicht die Messung physikalischer und chemischer Profile in der oberen Tropo- und unteren Stra- tosphäre (UTLS) mit hoher vertikaler Auflösung, Langzeit-Stabilität, globaler Abdeckung und funktioniert selbst-kalibrierend. Diese Arbeit trägt zu Machbarkeitsstudien zum LMIO Konzept bei. Erstens: zur Erfassung der atmosphärischen Einflüsse auf das Infrarotlaser (IRL) Signal während des Limb-Scan in der UTLS. Sorgfältig gewählte IRL-absorbierende und nicht- absorbierende Kanäle sind ideale Kandidaten für die LIO Technik. Signalpaare weisen hohe Korrelation bei atmosphärischen Breitbandeffekten auf, die durch Signal-Subtraktion korrigiert werden. Zweitens: ein LMIO Retrieval Algorithmus zur Gewinnung von Treibhausgaskonzen- trationen GHGs, welcher Defokusierungs-Verluste, Aerosol-Extinktion und Rayleigh- Streuung beinhaltet, wurde entwickelt. Eine Abfolge von vorwärts simulierten IRL Signalen ermöglicht eine Retrievalgenauigkeit für GHGs frei von systematischen Fehlern und Restfehlern kleiner als 1 % bis 3 %. Drittens: ein LMIO Retrieval wurde entwickelt, um auch Wolkeneffekte mit abzudecken. IRL Signale sind stark beeinflusst von Wolken und reduzieren somit die troposphärische Eindringtiefe für Okkultationen. Wolkenschichten oder dünne Zirren, welche das IRL- Transmissionsprofil stören, werden überbrückt und erhöhen somit die Eindringtiefe und daher die Anzahl der Okkultationen für Klima-Benchmark-Beobachtungen. Die Ergebnisse zeigen vielversprechende Aussichten für Klimamessungen mit noch nie dagewesener Genauigkeit zum Beobachten des physikalischen und chemischen Zustandes der Erdatmosphäre. v Acknowledgments “Everyone thinks of changing the world, but no one thinks of changing himself.” (Leo Tolstoy) n the working of a thesis one gets a deep inside of the specific work the topic of the I thesis is dealing with. Although, during this time I got the chance to work not only in a computational way—although the thesis is solely based on the simulative part—but also as part of a team that performed the first experimental proof of an infrared-laser link for greenhouse gas measurements, applying the differential transmission principle, widening the view of scientific objectives. Therefore, I want to thank my supervisor Univ.-Prof. Dr. Gottfried Kirchengast for these opportunities. Under his guidance I got the chance to participate in a broadened sense in an innovative mission development. Thank you for the time and patience answering any scientific questions to me, and supporting all the paper and report preparations along the road. I also want to thank Susanne Schweitzer, co-member of the Wegener Center’s AC- CURATE team, for particularly being very accurate when co-editing work and helping introduce me into the LEO–LEO microwave and infrared-laser occultation (LMIO) mis- sion with its issues and tasks. A Thank you goes as well to Claudia Emde from the Ludwig Maximilian University, Munich. She co-guided me particularly during the research stay at her institute regarding cloud simulation issues. For financial support I want to thank the European Space Agency (ESA), and technical officer Armin Löscher, and the Austrian Space Applications Programme (ASAP) for enabling the feasibility studies of ACCURATE which also funded my work. It would have been very difficult to work on the thesis without the help of Johannes Fritzer, to whome I am grateful for the extended support concerning EGOPS or xEGOPS software issues and module development. I am also very thankful to Michael Pock, who gave me an extraordinary insight into programming with the patience and time to explain and answer