The Detection and Quantification of Aquatic Reptilian Environmental DNA Clare Isabel Ming-Ch'eng Adams Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

The Detection and Quantification of Aquatic Reptilian Environmental DNA Clare Isabel Ming-Ch'eng Adams Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 The detection and quantification of aquatic reptilian environmental DNA Clare Isabel Ming-Ch'eng Adams Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, Genetics Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Adams, Clare Isabel Ming-Ch'eng, "The detection and quantification of aquatic reptilian environmental DNA" (2017). Graduate Theses and Dissertations. 15481. https://lib.dr.iastate.edu/etd/15481 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The detection and quantification of aquatic reptilian environmental DNA by Clare Isabel Ming-ch’eng Adams A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Fredric Janzen, Major Professor Julie Blanchong John Nason Kevin Roe Michelle Soupir Iowa State University Ames, Iowa 2017 Copyright © Clare Isabel Ming-ch’eng Adams, 2017. All rights reserved. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ......................................................................................... iv ABSTRACT ............................................................................................................... vi CHAPTER 1. INTRODUCTION .......................................................................... 1 CHAPTER 2. COMPARISON OF PAINTED TURTLE (CHRYSEMYS PICTA) ENVIRONMENTAL DNA EXTRACTION TECHNIQUES IN A LENTIC POND SYSTEM ......................................................................................................... 17 Introduction ......................................................................................................... 18 Materials and Methods ......................................................................................... 21 Results ......................................................................................................... 25 Discussion ......................................................................................................... 27 CHAPTER 3. ESTIMATING AQUATIC REPTILE DENSITY UNDER FIELD CONDITIONS USING ENVIRONMENTAL DNA................................................. 49 Introduction ......................................................................................................... 50 Materials and Methods ......................................................................................... 52 Results ......................................................................................................... 57 Discussion ......................................................................................................... 60 CHAPTER 4. SUMMARY AND CONCLUSIONS ............................................. 88 iii ACKNOWLEDGMENTS I would like to thank my major professor, Fredric Janzen, and my committee members, Julie Blanchong, John Nason, Kevin Roe, and Michelle Soupir for their guidance and support throughout the course of this research. Fred, I thank you for giving me the chance and support to become a scientist. I hope to one day view science as you do and develop the skills to see the “big picture” in turtle research, ecology, evolutionary biology, and life. Secondly, I want to thank Julie for being my Preparing Future Faculty mentor and taking the time to sit down and painstakingly work on writing with me. Without your generosity I wouldn’t be where I am now. Lastly, I want to thank Dr. Reg for being my diversity mentor. I arrived here not knowing how to navigate this space and you are the reason I am still here and able to complete my degree. I will miss our chats and your one- liners that helped me get through the day, week, and years. In addition, I would also like to thank the Janzen Lab. Luke, you are way too kind to me and overly generous with your time. These projects would not be where they are currently without your input, guidance, and help. Rebecca, thank you for looking out for me in the lab. I appreciate that you took me under your wing and helped me navigate the Janzone. Morgan, you are the best undergrad I have ever had. I cannot wait to see how you grow. I would be nowhere without my friends, especially Andrew and Jermaine. Andrew, thanks for putting up with me for a whole entire year and being an ever-supportive friend. I miss our late-night chats about life overlooking the “skyline” of Ames. Jermaine, words cannot describe how much you mean to me. Thanks for always having my back, yo. You are my emotional lighthouse in the dark. Tori, Monica, Amy G, Hilary – It has been fantastic getting to know iv you and I wish you the best. I wish our time together had been longer, but on to the next great adventure. Thank you Jack Gallup, the department faculty, and staff for making time and space for me at Iowa State University. Jack, I wish we had met sooner. Additionally, I want to thank my mom and dad for supporting me all the way, especially when times have been tough. Your ability to adapt to my needs is amazing and I am super thankful I got you as my parents. Zach, Kiran, Bradley, thank you for being my oasis whenever I went back to the East Coast. I miss you so much. I also want to offer my appreciation to turtles, without whom, this thesis would not have been possible. Too often we forget that how we treat nature, in your case – turtles, is a reflection upon humanity itself. Turtles are the best! v ABSTRACT Monitoring individuals of a population is aided by sampling techniques for determining organism presence. However, invasive sampling methods may harm target and non-target individuals, not capture a fully representative population demographic, or may be difficult to use due to secretive and seasonally active species. Recent developments in non- invasive technology propose environmental DNA (eDNA) as a solution to mitigate some of these challenges. Environmental DNA is DNA captured from target organisms that is extracted from environmental samples such as water, soil, or air. Although this technique has been widely explored for fish and amphibian species, it is used less often for aquatic reptiles. This thesis attempts to create an eDNA methodology for an imperiled reptilian taxa, turtles, for future monitoring use. We set up four experimental ponds with varying numbers of turtles (0, 11, 23, 38) and sampled once every three days throughout the spring field season to determine effects of painted turtle (Chrysemys picta) density and time on eDNA technique utility. The first chapter compares two common eDNA methodologies, filtration and sodium acetate precipitation in a Midwestern lentic semi-natural environment. The second chapter uses the more efficient filtration to quantify eDNA based upon turtle abundance in the same environment. We conclude that eDNA may not currently be an effective monitoring method for aquatic turtles. Overall, filtration was a more effective approach to capturing turtle eDNA than sodium acetate precipitation but visual surveys of turtles in our experimental setup led to an even higher rate of detection. Despite developing a sensitive qPCR protocol, we were unable to amplify turtle eDNA sufficiently to distinguish it from the negative control. We vi nonetheless identified a rank-order trend positively correlated with turtle density despite not obtaining large amounts of species-specific turtle eDNA. Furthermore, we found that total eDNA concentration did not follow a linear pattern throughout the field season. While we cannot recommend eDNA for aquatic turtles at this time, we believe this method could be refined with further technological advances such as better inhibition removers. 1 CHAPTER 1 INTRODUCTION Population ecology addresses the dynamics of how a group of individuals in the same species interacts with other biotic and environmental factors (Wells and Richmond, 1995). Part of population ecology attempts to describe how groups of individuals in a certain species vary demographically – such as in abundance or density (Hutchinson, 1991; Turchin, 1999). The factors that shape population numbers may be environmental or density dependent (MacArthur, 1958). For example, extreme environmental events such as a heat wave may cause population decline, whereas rate of growth depends on previous population abundance (Kendall, 1949; Garrabou et al., 2009). The need to predict changes drives the importance in studying these factors; too much growth or decline in numbers of individuals within a population can disrupt an ecosystem or forewarn extinction (Brown et al., 1995; Brooks et al., 2002). Yet, to make the most accurate predictions, ecologists must have some knowledge of a species’ presence and abundance. One factor in population growth and decline is population abundance itself. Besides density-independent environmental events, populations depend upon reproductively mature adults to prosper (Frankham, 1995). Temporary decline in population abundance can result in demographic changes causing Allee effects or population
Recommended publications
  • Hemichromis Bimaculatus (African Jewelfish)
    African Jewelfish (Hemichromis bimaculatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: Zhyla. Licensed under CC BY-SA 3.0. Available: https://commons.wikimedia.org/wiki/File:Hemichromis_bimaculatus1.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Africa: widely distributed in West Africa, where it is known from most hydrographic basins [Teugels and Thys van den Audenaerde 2003], associated with forested biotopes [Daget and Teugels 1991, Lamboj 2004]. Also reported from coastal basins of Cameroon, Democratic Republic of the Congo and Nile basin [Teugels and Thys van den Audenaerde 1992], but at least its presence in Cameroon is unconfirmed in [Stiassny et al. 2008]. [Lamboj 2004] limits this species to Guinea, Sierra Leone and Liberia.” 1 From Azeroual and Lalèyè (2010): “This species is widely distributed throughout western Africa, but has also been recorded from Algeria to Egypt.” “Northern Africa: Within this region this species is very rare. It used to be caught from the coastal lagoons, especially Lake Mariut (Egypt) and Algeria. Its [sic] found in Tunisia in the wadis of Kebili in the south of Tunisia and in wadis near Chott Melrhir in eastern Algeria (Kraiem, pers. comm.), and Egypt (Wadi El Rayan Lakes).” “Western Africa: It is known from most hydrographic basins in western Africa.” Status in the United States It is not certain if this species is present in the United States, or if records pertain to H. letourneuxi. From NatureServe (2018): “Introduced and established in Dade County, Florida, […] (Nelson 1983).” From Nico et al.
    [Show full text]
  • Croaking Gourami, Trichopsis Vittata (Cuvier, 1831), in Florida, USA
    BioInvasions Records (2013) Volume 2, Issue 3: 247–251 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.3.12 © 2013 The Author(s). Journal compilation © 2013 REABIC Rapid Communication Croaking gourami, Trichopsis vittata (Cuvier, 1831), in Florida, USA Pamela J. Schofield 1* and Darren J. Pecora2 1 US Geological Survey, Southeast Ecological Science Center, 7920 NW 71st Street, Gainesville, FL 32653, USA 2 US Fish and Wildlife Service, Arthur R. Marshall Loxahatchee National Wildlife Refuge, 10216 Lee Road, Boynton Beach, FL 33473, USA E-mail: [email protected] (PJS), [email protected] (DJP) *Corresponding author Received: 8 February 2013 / Accepted: 30 May 2013 / Published online: 1 July 2013 Handling editor: Kit Magellan Abstract The croaking gourami, Trichopsis vittata, is documented from wetland habitats in southern Florida. This species was previously recorded from the same area over 15 years ago, but was considered extirpated. The rediscovery of a reproducing population of this species highlights the dearth of information available regarding the dozens of non-native fishes in Florida, as well as the need for additional research and monitoring. Key words: canal; croaking gourami; cypress swamp; Florida; Loxahatchee; Osphronemidae; Trichopsis vittata was previously considered extirpated (Shafland Introduction et al. 2008a, b), but is now known to be reproducing in a localised area. Dozens of non-native fishes have been introduced into Florida’s inland waterways, via accidental escape, pet releases, or intentional introduction
    [Show full text]
  • African Jewelfish ( Hemichromis Letourneuxi )
    African Jewelfish ( Hemichromis letourneuxi ) Order: Perciformes - Family: Cichlidae - Subfamily: Pseudocrenilabrinae - Tribe: Hemichromini Also known as: Saraba or Nile Jewell Fish Synonyms: Hemichromis rolandi, Hemichromis saharae, Hemichromis bimaculatus saharae, Hemichromis letourneauxi. Type: Freshwater, brackish; benthopelagic; - African Cichlid_Sauvage, 1880 Overview: Described as Hemichromis letourneuxi (Sauvage 1880), but commonly misspelled as H. letourneauxi. Loiselle (1979) revised the genus and provided diagno- ses, photographs, and synonyms for the species. An updated key to the genus was given in Loiselle (1992). Color photographs were provided by Linke and Staeck (1994). Until recently, all published references to introduced populations of this species taken in Florida were incorrectly identified or listed as Hemichromis bimaculatus (Smith-Vaniz, personal communication). Description: Physical Characteristics: Color Form: Max. Size: Approximate size 12-15 см Size 10-12 cm (3.9-4.7") Sexual dimorphism: Diet: Carnivore, Pellet Foods, Flake Foods, Live Foods Lifespan: 5-8 years Reproduction & Spawning: Behavior: . Habitat: Savannah associated species which prospers in a range of lentic habitats that include brackish water lagoons, large lakes and riverine flood plains (Ref. 5644). Occurs near vegetation beds and fringes. Feeds on Caridina and insects. Substrate spawner, ripe and spent fish are common early in the flood season. Origin / Distribution: The African Jewelfish, (Hemichromis letourneuxi) is native to the north and northwestern regions of Africa. Although the species has been present in the canals of south Florida since the 1950s, its geographic range has expanded greatly in recent years and continues to spread throughout south Florida habitats, from Ever- glades National Park to Big Cypress National Park (Loftus and others 2006).
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Copyright by Laura Elizabeth Dugan 2014
    Copyright by Laura Elizabeth Dugan 2014 The Dissertation Committee for Laura Elizabeth Dugan Certifies that this is the approved version of the following dissertation: Invasion Risk and Impacts of a Popular Aquarium Trade Fish and the Implications for Policy and Conservation Management Committee: Dean Hendrickson, Supervisor Camille Parmesan, Co-Supervisor Hans Hofmann Mathew Leibold Mary Poteet Invasion Risk and Impacts of a Popular Aquarium Trade Fish and the Implications for Policy and Conservation Management by Laura Elizabeth Dugan, B.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2014 Dedication This dissertation is dedicated to my family, fellow pursuers of knowledge, who have always encouraged, motivated and supported me and my academic interests. I could not have come this far without you. "The idea of wilderness needs no defense. It only needs more defenders." Edward Abbey Acknowledgements I would like to thank my advisor Dean Hendrickson for the opportunity to work on this interesting topic in such a beautiful place. I would also like to thank my advisors Dean Hendrickson and Camille Parmesan, my committee members Hans Hofmann, Mathew Leibold and Mary Poteet and the Parmesan lab members for all their support and invaluable input on this work. In addition, without the assistance of my colleagues in Cuatro Ciénegas as well as several undergraduate students
    [Show full text]
  • Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region
    Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region Theresa E. Mackey, Caleb T. Hasler, and Eva C. Enders Fisheries and Oceans Canada Ecosystems and Oceans Science Central and Arctic Region Freshwater Institute Winnipeg, MB R3T 2N6 2019 Canadian Technical Report of Fisheries and Aquatic Sciences 3308 1 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique.
    [Show full text]
  • New Fossils of Cichlids from the Miocene of Kenya and Clupeids from the Miocene of Greece (Teleostei)
    The importance of articulated skeletons in the identification of extinct taxa: new fossils of cichlids from the Miocene of Kenya and clupeids from the Miocene of Greece (Teleostei) Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München Vorgelegt von Charalampos Kevrekidis München, 28. September 2020 Erstgutacher: Prof. Dr. Bettina Reichenbacher Zweitgutacher: PD Dr. Gertrud Rößner Tag der mündlichen Prüfung: 08.02.2021 2 Statutory declaration and statement I hereby confirm that my Thesis entitled “Fossil fishes from terrestrial sediments of the Miocene of Africa and Europe”, is the result of my own original work. Furthermore, I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the Ludwig-Maximilians-Universität München. München, 21.09.2020 Charalampos Kevrekidis 3 Abstract Fishes are important components of aquatic faunas, but our knowledge on the fossil record of some taxa, relative to their present diversity, remains poor. This can be due to a rarity of such fossils, as is the case for the family Cichlidae (cichlids). Another impediment is the rarity of well-preserved skeletons of fossil fishes.
    [Show full text]
  • ERSS-African Jewelfish (Hemichromis Letourneuxi)
    African Jewelfish (Hemichromis letourneuxi) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, February 2018, July 2018 Web Version, 7/30/2018 Photo: Noel M. Burkhead – USGS. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=457. (February 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Africa: Nile to Senegal and from North Africa to Côte d'Ivoire [Central African Republic, Chad, Egypt, Ethiopia, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Senegal, Sierra Leone, South Sudan, Sudan; questionable in Algeria].” From Nico et al. (2018): “Tropical Africa. Widespread in northern, central, and west Africa (Loiselle 1979, 1992; Linke and Staeck 1994) in savannah and oasis habitats.” CABI (2018) reports H. letourneuxi as widespread and native in the following countries: Algeria, Burkina Faso, Cameroon, Chad, Egypt, Ethiopia, Gambia, Ghana, Ivory Coast, Kenya, Niger, Nigeria, Senegal, Sudan, and Uganda. 1 Status in the United States From Eschmeyer et al. (2018): “[…] established in Florida, U.S.A.” From Nico et al. (2018): “Established in Florida. Prior to 1972, found only in Miami Canal and canals on western side of Miami International Airport (Hogg 1976a). Species is now abundant and spreading westward and northward.” “The species was first documented as occurring in south Florida in the Hialeah Canal-Miami River Canal system, Miami area, by Rivas (1965). It is now established and abundant in many canals in and around Miami-Dade County, and also in parts of the Everglades freshwater wetlands and tidal habitats (Courtenay et al. 1974; Hogg 1976a, b; Loftus and Kushlan 1987; Loftus et al.
    [Show full text]
  • Cichlasoma Bimaculatum) Ecological Risk Screening Summary
    Black Acara (Cichlasoma bimaculatum) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2011 Revised, August 2014 and January 2018 Web Version, 4/5/2018 Photo: Florida Fish and Wildlife Conservation Commission. Licensed under Creative Commons (CC BY-NC). Available: https://www.invasive.org/browse/detail.cfm?imgnum=5371466. (January 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “South America: Orinoco River basin, in the Caroni […] River [in] Venezuela; Guianas, from the Essequibo River to the Sinnamary River; Amazon River basin, in the upper Branco River basin [Brazil].” 1 Status in the United States From Nico et al. (2018): “The species has been established in Florida since the early 1960s; it was first discovered in Broward County (Rivas 1965). The expanded geographic range of the species includes the counties of Broward (Courtenay et al. 1974; Courtenay and Hensley 1979a; museum specimens), Collier (Courtenay and Hensley 1979a; Courtenay et al. 1986; museum specimens), Glades (museum specimens), Hendry (Courtenay and Hensley 1979a; museum specimens), Highlands (Baber et al. 2002), Lee (Ceilley and Bortone 2000; Nico, unpublished), Martin (museum specimens), Miami-Dade (Kushlan 1972; Courtenay et al. 1974; Hogg 1976; Courtenay and Hensley 1979a; Loftus and Kushlan 1987; museum specimens), Monroe (Kushlan 1972; Courtenay et al. 1974; Courtenay and Hensley 1979a; Loftus and Kushlan 1987; museum specimens), Palm Beach (Courtenay et al. 1974; Courtenay and Hensley 1979a; museum specimens), Pasco (museum specimens), and Pinellas (museum specimens). It is established in Big Cypress National Preserve, Biscayne National Park, Everglades National Park (Kushlan 1972; Loftus and Kushlan 1987; Lorenz et al.
    [Show full text]
  • Laboratory Operations Manual Version 2.0 May 2014
    United States Environmental Protection Agency Office of Water Washington, DC EPA 841‐B‐12‐010 National Rivers and Streams Assessment 2013‐2014 Laboratory Operations Manual Version 2.0 May 2014 2013‐2014 National Rivers & Streams Assessment Laboratory Operations Manual Version 1.3, May 2014 Page ii of 224 NOTICE The intention of the National Rivers and Streams Assessment 2013‐2014 is to provide a comprehensive “State of Flowing Waters” assessment for rivers and streams across the United States. The complete documentation of overall project management, design, methods, quality assurance, and standards is contained in five companion documents: National Rivers and Streams Assessment 2013‐14: Quality Assurance Project Plan EPA‐841‐B‐12‐007 National Rivers and Streams Assessment 2013‐14: Site Evaluation Guidelines EPA‐841‐B‐12‐008 National Rivers and Streams Assessment 2013‐14: Non‐Wadeable Field Operations Manual EPA‐841‐B‐ 12‐009a National Rivers and Streams Assessment 2013‐14: Wadeable Field Operations Manual EPA‐841‐B‐12‐ 009b National Rivers and Streams Assessment 2013‐14: Laboratory Operations Manual EPA 841‐B‐12‐010 Addendum to the National Rivers and Streams Assessment 2013‐14: Wadeable & Non‐Wadeable Field Operations Manuals This document (Laboratory Operations Manual) contains information on the methods for analyses of the samples to be collected during the project, quality assurance objectives, sample handling, and data reporting. These methods are based on the guidelines developed and followed in the Western Environmental Monitoring and Assessment Program (Peck et al. 2003). Methods described in this document are to be used specifically in work relating to the NRSA 2013‐2014.
    [Show full text]
  • Native and Nonnative Freshwater Fish Interactions in a Stressful Dry Down Environment Vanessa Trujillo Florida International University, [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-27-2017 Jewels for Dollars: Native and Nonnative Freshwater Fish Interactions in a Stressful Dry Down Environment Vanessa Trujillo Florida International University, [email protected] DOI: 10.25148/etd.FIDC001758 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Behavior and Ethology Commons, and the Integrative Biology Commons Recommended Citation Trujillo, Vanessa, "Jewels for Dollars: Native and Nonnative Freshwater Fish Interactions in a Stressful Dry Down Environment" (2017). FIU Electronic Theses and Dissertations. 3212. https://digitalcommons.fiu.edu/etd/3212 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida JEWELS FOR DOLLARS: NATIVE AND NONNATIVE FRESHWATER FISH INTERACTIONS IN A STRESSFUL DRY DOWN ENVIRONMENT A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Vanessa Trujillo 2017 To: Dean Michael R. Heithaus College of Arts, Sciences and Education This dissertation, written by Vanessa Trujillo, and entitled Jewels for Dollars: Native and Nonnative Freshwater Fish Interactions in a Stressful Dry Down Environment, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. M. Danielle McDonald John C. Withey Robert Lickliter Jennifer S.
    [Show full text]
  • Chapter 14: Control of Invasive Species and Native Pests
    Chapter 14: Control of Invasive Species and Native Pests Nonnative species, both plants and animals, are a serious concern for managers at Everglades National Park. The warm subtropical climate and changes caused by the Central and Southern Florida Flood Control Project make the area particularly susceptible to invasion by exotic species. In some cases, local residents introduced exotic plants long before the park was authorized. When exotic plants have high repro- ductive rates, elevated seed production, and longevity, they can easily displace native plants. Park scientists raised a concern over Australian pine within a decade of park establishment. Today, approximately 250 nonnative plant species are known to exist in the park. For many decades, South Florida has supported an exotic pet trade that annually imported or bred thousands of nonnative animals. There have been multiple accidental or deliberate releases of exotic land animals and fish from private owners and pet breeding establishments.705 Some of these animals have established breeding populations within the park. Park efforts regarding exotics have moved from attempts to control or eradicate them within its boundary to public education efforts aimed at preventing their release outside the park. In addition to attempting to control exotics, the park has had to contend with mosquitoes and other native pests that, unless artifi- cially restrained, can at times make the park unbearable for visitors and staff. The Pink Bollworm Project The pink bollworm project, the first known effort to control an exotic species in what became the park, got underway in the early 1930s. The pink bollworm is a larval form of a moth, Pectinophora gossypiella, believed to be native to the Indian subcontinent (figure 14-1, pink bollworm).
    [Show full text]