Discerning the Difficult-To-Detect: Star Formation in Dwarf and Low Surface Brightness Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Discerning the Difficult-To-Detect: Star Formation in Dwarf and Low Surface Brightness Galaxies DISCERNING THE DIFFICULT-TO-DETECT: STAR FORMATION IN DWARF AND LOW SURFACE BRIGHTNESS GALAXIES By ANNA CHARLENE WRIGHT A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Physics and Astronomy written under the direction of Alyson Brooks and approved by New Brunswick, New Jersey October, 2020 ABSTRACT OF THE DISSERTATION Discerning the Difficult-to-Detect: Star Formation in Dwarf and Low Surface Brightness Galaxies By ANNA CHARLENE WRIGHT Dissertation Director: Alyson Brooks In this work, we use cosmological simulations to study patterns of star formation in galaxies that have traditionally been underrepresented in surveys of galaxy formation across cosmic history. Because simulations have typically not been tuned to produce them, dwarf galaxies and low surface brightness galaxies provide a unique opportunity to test whether or not the models that we use to make bright, high mass galaxies are universal. We find that our simulations are able to reproduce a broad range of dwarf galaxy star formation histories, as well as low surface brightness galaxies, and we use these results to interpret the origin of specific types of galaxies. We identify a population of star-forming dwarf galaxies in our simulations that have experienced long periods of little to no star formation and whose properties are consistent with several dwarf galaxies observed in the local universe. We find that star formation can be reignited in these galaxies even billions of years after a quenching event through interactions with streams of gas in the intergalactic medium that compress hot halo gas. We also identify large populations of ultra-diffuse and classical low surface brightness galaxies in our simulations. Their properties are broadly consistent with ii those of observed samples and we predict that future observations will find that the star formation rates, HI masses, and colors of isolated ultra-diffuse galaxies are typical for their stellar masses. We find that both ultra-diffuse galaxies and classical low surface brightness galaxies are the products of major mergers that increase their angular momentum and cause star formation within the galaxies to move outward. In general, we find that environmental interactions have a significant impact on star formation in dwarf and low surface brightness galaxies - even those that appear isolated at the present day. iii Acknowledgments I am extremely grateful to my advisor, Alyson Brooks, whose patience, wisdom, and editing prowess have been truly invaluable. I am lucky enough to have a network of mentors that also includes Ferah Munshi, Michael Tremmel, Eric Gawiser, Curtis McCully, and Jillian Bellovary, who have all taken the time to guide and encourage me. I am deeply indebted to my friends and Rutgers co-workers - especially Sheehan Ahmed, Carl Mitchell, Jon Sloane, Jesse Rivera, Elaad Applebaum, Ray Sharma, and Charlotte Olsen - who have been a con- sistent source of laughter and support over the last 6 years. Finally, I am endlessly grateful for my husband, Jimmy Juno, whose unfailing optimism, kindness, and love are the foun- dations upon which I build all that I do. Chapter 2 of this thesis was adapted from “Reignition of Star Formation in Dwarf Galax- ies” by Anna C. Wright, Alyson M. Brooks, Daniel R. Weisz, and Charlotte R. Christensen. This article was published in Volume 482 of Monthly Notices of the Royal Astronomical Society. Chapter 3 of this thesis was adapted from “The Formation of Isolated Ultra-Diffuse Galaxies in Romulus25” by Anna C. Wright, Michael Tremmel, Alyson Brooks, Ferah Munshi, Daisuke Nagai, and Ray S. Sharma. This article has been submitted to Monthly Notices of the Royal Astronomical Society. The work presented in this thesis was supported by a Graduate Assistance in Areas of National Need fellowship, the Noemie Koller Endowed Scholarship, an ACM SIGHPC/Intel Computational & Data Science fellowship, Hubble Grant HST-AR-14281, and a PRAC allocation by the National Science Foundation (award number OAC-1613674). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program iv through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center and the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. v Dedication For my husband, Jimmy, and our best friend, Callie vi Table of Contents Abstract :::::::::::::::::::::::::::::::::::::::::: ii Acknowledgments :::::::::::::::::::::::::::::::::::: iv Dedication ::::::::::::::::::::::::::::::::::::::::: vi List of Tables ::::::::::::::::::::::::::::::::::::::: ix List of Figures :::::::::::::::::::::::::::::::::::::: x 1. Introduction ::::::::::::::::::::::::::::::::::::: 1 1.1. Star Formation in Dwarf Galaxies . .1 1.2. A Brief History of Low Surface Brightness Galaxies . .6 1.3. Cosmological Simulations . .9 2. Reignition of Star Formation in Dwarf Galaxies ::::::::::::::: 13 2.1. Introduction . 13 2.2. The Simulations . 15 2.3. Results . 19 2.4. Observational Signatures . 35 2.5. Summary . 40 3. Ultra-diffuse Galaxies :::::::::::::::::::::::::::::::: 43 3.1. Introduction . 43 3.2. The Romulus25 Simulation . 46 vii 3.3. Results . 49 3.4. Comparison to HUDS . 80 3.5. Summary . 83 4. Classical Low Surface Brightness Galaxies ::::::::::::::::::: 86 4.1. Introduction . 86 4.2. Results . 90 4.3. Summary . 118 5. Summary and Future Outlook :::::::::::::::::::::::::: 120 Appendix A. Resolution :::::::::::::::::::::::::::::::: 124 Bibliography ::::::::::::::::::::::::::::::::::::::: 127 viii List of Tables 2.1. Properties of simulated dwarf galaxies . 16 3.1. Fraction of isolated dwarf galaxies that are ultra-diffuse . 52 ix List of Figures 2.1. Stellar mass – halo mass for dwarf galaxies . 20 2.2. Cumulative star formation histories for dwarf galaxies . 21 2.3. Evolution of virial mass for dwarf galaxies . 22 2.4. Gas masses, gas accretion rates, and star formation histories for dwarf galaxies 23 2.5. Time series of interaction between h986b and expanding shock wave . 28 2.6. Large-scale image of interaction between h986c and gas stream . 29 2.7. Small-scale time series of interaction between h986c and gas stream . 30 2.8. Comparison of simulated dwarf galaxies to Local Group dwarf galaxies . 37 2.9. Comparison of simulated dwarf galaxies to Local Volume dwarf galaxies . 41 3.1. Sample surface brightness profiles and mock UVI images of isolated UDGs and dwarf galaxies . 51 3.2. Distributions of sizes and surface brightnesses for isolated galaxies . 53 3.3. Distribution of Sérsic indices for isolated ultra-diffuse and dwarf galaxies . 56 3.4. Stellar mass - halo mass relation for low-mass galaxies . 57 3.5. HI masses of isolated ultra-diffuse and dwarf galaxies . 59 3.6. Star formation rates of isolated ultra-diffuse and dwarf galaxies . 60 3.7. Evolution of central surface brightness in isolated ultra-diffuse and dwarf galaxies . 62 3.8. Evolution of effective radius in isolated ultra-diffuse and dwarf galaxies . 63 3.9. Evolution of central specific star formation rate in isolated ultra-diffuse and dwarf galaxies . 65 x 3.10. Evolution and distribution of spin in isolated ultra-diffuse and dwarf galaxies 67 3.11. Correlation between spin and effective radius and central surface brightness in isolated ultra-diffuse and dwarf galaxies . 69 3.12. Distribution of time that has elapsed since the last major merger in isolated ultra-diffuse and dwarf galaxies . 71 3.13. Evolution of central surface brightness, effective radius, central specific star formation rate, and total spin relative to the time of the last major merger in isolated ultra-diffuse and dwarf galaxies . 72 3.14. Distribution of merger configurations in isolated ultra-diffuse and dwarf galaxies 78 3.15. Comparison of Romulus25 isolated ultra-diffuse and dwarf galaxies to ob- served sample of HI-bearing Ultra-Diffuse galaxies (HUDs) . 82 4.1. Sample surface brightness profiles and mock UVI images of classical LSB galaxies . 92 4.2. Fraction of galaxies that are classical LSB galaxies as a function of stellar mass 93 4.3. HI masses of classical LSB galaxies . 95 4.4. Star formation rates of classical LSB galaxies . 96 4.5. Cumulative star formation histories of classical LSB galaxies and HSB galaxies 97 4.6. Star formation rate and HI profiles of classical LSB galaxies and HSB galaxies 99 4.7. Star formation rate profiles of classical LSB galaxies and HSB galaxies scaled by scale length . 101 4.8. Distributions of colors and metallicities of classical LSB galaxies and HSB galaxies . 104 4.9. Colors of classical LSB galaxies as a function of recent changes in star forma- tion rate and metallicity . 105 4.10. Number of galaxies within a given radius of classical LSB galaxies and HSB galaxies . 108 xi 4.11. Distributions of numbers of satellites and distances to nearest neighbor for classical LSB galaxies and HSB galaxies . 109 4.12. Fraction of current mass of classical LSB galaxies and HSB galaxies relative to peak mass . 111 4.13. Stellar mass – halo mass relation for all central galaxies in Romulus25 ... 111 4.14. Distributions of time that has elapsed since the last major merger for classical LSB galaxies and HSB galaxies . 113 4.15. Evolution of HI-richness, location of star formation, gas spin, and total spin relative to the time of the last major merger in classical LSB galaxies and HSB galaxies . 115 4.16. Distributions of merger orientations and orbital angular momenta for classical LSB galaxies and HSB galaxies . 117 A.1. Evolution of gas masses in stripped and gappy dwarf galaxies . 125 A.2. Gas mass, gas accretion rate, and star formation history of h516a . 125 xii 1 Chapter 1 Introduction Our understanding of galaxy formation and evolution has historically been largely based upon the galaxies that emit the most light – the big and the bright. Unfortunately, this does not describe the majority of the galaxy population. Small, faint galaxies are much more common than the behemoths that are easiest to spot.
Recommended publications
  • A Spectroscopic Study of the Giant Low Surface Brightness Galaxy Malin 1
    1 BlueMUSE Science workshop A spectroscopic study of the giant low surface brightness galaxy Malin 1 Junais Samuel Boissier Collaborators : Philippe Amram Benoit Epinat Alessandro Boselli Barry Madore Jin Koda Armando Gil de Paz J.C Muñoz-Mateos Laurent Chemin 10 November 2020 2 Low Surface Brightness Galaxies (LSBs) • Historical definition of LSBs based on disk central surface brightness (Freeman 1970): Bothun et al. (1997) 3 Low Surface Brightness Galaxies (LSBs) • Historical definition of LSBs based on disk central surface brightness (Freeman 1970): • LSBs may account up to 50% of all the galaxies in the universe (Impey & Bothun 1997, Martin et al. 2019) Bothun et al. (1997) 4 Low Surface Brightness Galaxies (LSBs) • In recent years, with powerful instruments (e.g. MUSE, Megacam, Dragonfly), there is a new interest in these sources. • LSBs also similar to galaxies with eXtended UV disk (XUV) (Thilker et al. 2007) • Ideal laboratories for the study of Star Formation activities in low density regime • Important to study this large population of galaxies • Their properties may redefine our knowledge of galaxy formation & evolution M83 with an XUV Disk 5 Low Surface Brightness Definitions • « Historical definition » (Freeman 1970) Diffuse galaxies Disk central surface brightness LSB • « Diffuse galaxies » (Sprayberry+1995) • « Ultra Diffuse Galaxies » (Koda+ 2015) UDG Hagen et al. (2016) 6 Low Surface Brightness Definitions • « Historical definition » (Freeman 1970) Diffuse galaxies Disk central surface brightness LSB • « Diffuse galaxies » (Sprayberry+1995) • « Ultra Diffuse Galaxies » (Koda+ 2015) UDG Malin 1 Hagen et al. (2016) MALIN 1 77 An extreme case of LSB !! Malin 1 image credits : NGVS u, g, i MALIN 1 88 Bothun et al.
    [Show full text]
  • An Ultra-Deep Survey of Low Surface Brightness Galaxies in Virgo
    ' $ An Ultra-Deep Survey of Low Surface Brightness Galaxies in Virgo Elizabeth Helen (Lesa) Moore, BSc(Hons) Department of Physics Macquarie University May 2008 This thesis is presented for the degree of Master of Philosophy in Physics & % iii Dedicated to all the sentient beings living in galaxies in the Virgo Cluster iv CONTENTS Synopsis : :::::::::::::::::::::::::::::::::::::: xvii Statement by Candidate :::::::::::::::::::::::::::::: xviii Acknowledgements ::::::::::::::::::::::::::::::::: xix 1. Introduction ::::::::::::::::::::::::::::::::::: 1 2. Low Surface Brightness (LSB) Galaxies :::::::::::::::::::: 5 2.1 Surface Brightness and LSB Galaxies De¯ned . 6 2.2 Physical Properties and Morphology . 8 2.3 Cluster and Field Distribution of LSB Dwarfs . 14 2.4 Galaxies, Cosmology and Clustering . 16 3. Galaxies and the Virgo Cluster :::::::::::::::::::::::: 19 3.1 Importance of the Virgo Cluster . 19 3.2 Galaxy Classi¯cation . 20 3.3 Virgo Galaxy Surveys and Catalogues . 24 3.4 Properties of the Virgo Cluster . 37 3.4.1 Velocity Distribution in the Direction of the Virgo Cluster . 37 3.4.2 Distance and 3D Structure . 38 vi Contents 3.4.3 Galaxy Population . 42 3.4.4 The Intra-Cluster Medium . 45 3.4.5 E®ects of the Cluster Environment . 47 4. Virgo Cluster Membership and the Luminosity Function :::::::::: 53 4.1 The Schechter Luminosity Function . 54 4.2 The Dwarf-to-Giant Ratio (DGR) . 58 4.3 Galaxy Detection . 59 4.4 Survey Completeness . 62 4.5 Virgo Cluster Membership . 63 4.5.1 Radial Velocities . 64 4.5.2 Morphology . 65 4.5.3 Concentration Parameters . 66 4.5.4 Scale Length Limits . 68 4.5.5 The Rines-Geller Threshold .
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]
  • The Properties of the Malin 1 Galaxy Giant Disk a Panchromatic View from the NGVS and Guvics Surveys?
    A&A 593, A126 (2016) Astronomy DOI: 10.1051/0004-6361/201629226 & c ESO 2016 Astrophysics The properties of the Malin 1 galaxy giant disk A panchromatic view from the NGVS and GUViCS surveys? S. Boissier1, A. Boselli1, L. Ferrarese2, P. Côté2, Y. Roehlly1, S. D. J. Gwyn2, J.-C. Cuillandre3, J. Roediger4, J. Koda5; 6; 7, J. C. Muños Mateos8, A. Gil de Paz9, and B. F. Madore10 1 Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France e-mail: [email protected] 2 National Research Council of Canada, Herzberg Astronomy and Astrophysics Program, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada 3 CEA/IRFU/SAp, Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, Observatoire de Paris, PSL Research University, CEA/IRFU/SAp, Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, Observatoire de Paris, PSL Research University, 91191 Gif-sur-Yvette Cedex, France 4 Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, Ontario, Canada 5 NAOJ Chile Observatory, National Astronomical Observatory of Japan, Joaquin Montero 3000 Oficina 702, Vitacura, 763-0409 Santiago, Chile 6 Joint ALMA Office, Alonso de Cordova 3107, Vitacura, 763-0355 Santiago, Chile 7 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA 8 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile 9 Departamento de Astrofísica, Universidad Complutense de Madrid, 28040 Madrid, Spain 10 Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA Received 1 July 2016 / Accepted 11 September 2016 ABSTRACT Context.
    [Show full text]
  • The Central Region of the Enigmatic Malin 1
    J. Astrophys. Astr. (0000) 000: #### DOI The central region of the enigmatic Malin 1 Kanak Saha1,*, Suraj Dhiwar2,3, Sudhanshu Barway4, Chaitra Narayan5, Shyam Tandon1 1Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India. 2Department of Physics, Savitribai Phule Pune University, Pune 411007, India 3Dayanand Science College, Barshi Road, Latur, Maharashtra 413512, India 4Indian Institute of Astrophysics (IIA), II Block, Koramangala, Bengaluru 560 034, India. 5National Centre for Radio Astrophysics-TIFR, Pune, India. *Corresponding author. E-mail: [email protected] MS received 10 10 2020; accepted 10 10 2020 Abstract. Malin 1, being a class of giant low surface galaxies, continues to surprise us even today. The HST/F814W observation has shown that the central region of Malin 1 is more like a normal SB0/a galaxy, while the rest of the disk has the characteristic of a low surface brightness system. The AstroSat/UVIT observations suggest scattered recent star formation activity all over the disk, especially along the spiral arms. The central 9” (∼ 14 kpc) region, similar to the size of the Milky Way’s stellar disk, has a number of far-UV clumps - indicating recent star-formation activity. The high resolution UVIT/F154W image reveals far-UV emission within the bar region (∼ 4 kpc) - suggesting the presence of hot, young stars in the bar. These young stars from the bar region are perhaps responsible for producing the strong emission lines such as Hα, [Oii] seen in the SDSS spectra. Malin 1B, a dwarf early-type galaxy, is interacting with the central region and probably responsible for inducing the recent star-formation activity in this galaxy.
    [Show full text]
  • Structure and Dynamics of Giant Low Surface Brightness Galaxies
    A&A 516, A11 (2010) Astronomy DOI: 10.1051/0004-6361/200913808 & c ESO 2010 Astrophysics Structure and dynamics of giant low surface brightness galaxies F. Lelli1,3, F. Fraternali1, and R. Sancisi2,3 1 Department of Astronomy, University of Bologna, via Ranzani 1, 40127 Bologna, Italy 2 INAF - Astronomical Observatory of Bologna, via Ranzani 1, 40127 Bologna, Italy 3 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands e-mail: [email protected] Received 4 December 2009 / Accepted 25 February 2010 ABSTRACT Giant low surface brightness (GLSB) galaxies are commonly thought to be massive, dark matter dominated systems. However, this conclusion is based on highly uncertain rotation curves. We present here a new study of two prototypical GLSB galaxies: Malin 1 and NGC 7589. We re-analysed existing H I observations and derived new rotation curves, which were used to investigate the distributions of luminous and dark matter in these galaxies. In contrast to previous findings, the rotation curves of both galaxies show a steep rise in the central parts, typical of high surface brightness (HSB) systems. Mass decompositions with a dark matter halo show that baryons may dominate the dynamics of the inner regions. Indeed, a “maximum disk” fit gives stellar mass-to-light ratios in the range of values typically found for HSB galaxies. These results, together with other recent studies, suggest that GLSB galaxies are systems with a double structure: an inner HSB early-type spiral galaxy and an outer extended LSB disk. We also tested the predictions of MOND: the rotation curve of NGC 7589 is reproduced well, whereas Malin 1 represents a challenging test for the theory.
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]
  • A Search for Low Surface Brightness Galaxies in the Near-Infrared
    A&A 408, 465–477 (2003) Astronomy DOI: 10.1051/0004-6361:20030714 & c ESO 2003 Astrophysics A search for Low Surface Brightness galaxies in the near-infrared , III. Nanc¸ayHI line observations D. Monnier Ragaigne1, W. van Driel1, S. E. Schneider2, C. Balkowski1, and T. H. Jarrett3 1 Observatoire de Paris, GEPI, CNRS UMR 8111 and Universit´e Paris 7, 5 place Jules Janssen, 92195 Meudon Cedex, France e-mail: [email protected]; [email protected] 2 University of Massachusetts, Astronomy Program, 536 LGRC, Amherst, MA 01003, USA e-mail: [email protected] 3 IPAC, Caltech, MS 100-22, 770 South Wilson Av., Pasadena, CA 91125, USA e-mail: [email protected] Received 6 March 2003 / Accepted 12 May 2003 Abstract. A total of 334 Low Surface Brightness galaxies detected in the 2MASS all-sky near-infrared survey have been observed in the 21 cm H line using the Nanc¸ay telescope. All have a Ks-band mean central surface brightness, measured −2 −2 within a 5 radius, fainter than 18 mag arcsec and a Ks-band isophotal radius at the 20 mag arcsec level larger than 20 .We present global H line parameters for the 171 clearly detected objects and the 23 marginal detections, as well as upper limits for the undetected objects. The 171 clear detections comprise 50 previously uncatalogued objects and 41 objects with a PGC entry only. Key words. galaxies: distances and redshifts – galaxies: general – galaxies: ISM – infrared: galaxies – radio lines: galaxies 1. Introduction number density and physical properties (luminosity, colours, dynamics) are still quite uncertain.
    [Show full text]
  • 2020 CFHT Annual Report
    2020 CFHT Annual Report Table of Contents Director’s Message ………………………………………………….………………………………………... 3 Science Report ………………………………………………....................................................... 5 CFHT Explores New Frontiers in Multi-Messenger Astronomy............................. 5 Galactic............................................ Census Reveals Origin of Most "Extreme" Galaxies ...…………………………. 6 New.......................................................... Machine Learning Applications f………………….or SITELLE ...............................…………………… .............……. 8 New M92 Stellar Stream Discovered ................................................................... 10 Engineering Report ………..………………………………….……………………………………….……… 11 Re-Coating-Shutdown, Coating Chamber and Mirror System Improvements ..... 11 Hydraulic System Update ............…………………………………………………………….......... 14 MegaCam Update ................................................................................................ 15 Bridge Crane .........................................….…………………………….……………………….… 16 Software Activities ........................….……………………………………………….…………….… 16 SITELLE Update .................................................................................................... 18 SPIRou Update ..................................................................................................... 20 Co-Mount ESPaDOnS and SPIRou ........................................................................ 22 MSE Report ………………………………………………………………………………………………..…..…. 24
    [Show full text]
  • Arxiv:1612.05272V1 [Astro-Ph.GA] 15 Dec 2016 Structure Line by Van De Hulst in 1944, and Its Detection in the Milky Way (Ewen
    HI in the Outskirts of Nearby Galaxies A. Bosma Abstract The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial res- olution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degen- eracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understand- ing the role of gas accretion via galactic fountains. The current L cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rota- tion velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies. 1 Introduction In this review, I will discuss the development of HI imaging in nearby galaxies, with emphasis on the galaxy outskirts, and take stock of the subject just before the start of the new surveys using novel instrumentation enabled by the developments in the framework of the Square Kilometer Array (SKA), which was originally partly inspired by HI imaging (Wilkinson 1991). I refer to other reviews on more spe- cific subjects when appropriate. Issues related to star formation are dealt with by Elmegreen and Hunter (this volume), and Koda and Watson (this volume).
    [Show full text]
  • Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles
    Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles Joshua Armstrong Eby B.S. Physics, Indiana University South Bend (2011) A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics of the College of Arts and Sciences Committee Chair: L.C.R. Wijewardhana, Ph.D Date: 4/24/2017 ii iii Abstract Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statis- tics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in the context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a cal- culation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes.
    [Show full text]
  • Genetically Modified Galaxies
    UNIVERSITY COLLEGE LONDON Faculty of Mathematical and Physical Sciences Department of Physics & Astronomy Genetically modified galaxies: performing controlled experiments in cosmological galaxy formation simulations Martin Pierre Rey Thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy of University College London Supervisors: Examiners: Dr. Andrew Pontzen Prof. George Efstathiou Dr. Amélie Saintonge Prof. Richard S. Ellis 6th of January, 2020 Martin Pierre Rey Genetically modied galaxies: performing controlled experiments in cosmological galaxy formation simula- tions Cosmology and Galaxy Formation, 6th of January, 2020 Examiners: Prof. George Efstathiou and Prof. Richard S. Ellis Supervisors: Dr. Andrew Pontzen and Dr. Amélie Saintonge UNIVERSITY COLLEGE LONDON Astrophysics Group Faculty of Mathematical and Physical Sciences Department of Physics & Astronomy Gower Street , WC1E 6BT London, UK Declaration I, Martin Pierre Rey, conrm that the work presented in this thesis is my own. Where information has been derived from other sources, I conrm that this has been indicated in the thesis. In particular, I would like to point out the following contributions: • Work presented in Chapter 2 is published in Rey and Pontzen (2018). • Work presented in Chapter 3 is published in Rey et al. (2019b). • Work presented in Chapter 4 has been submitted and is available online in Rey et al. (2019a). • Generating initial conditions for the results presented in Chapter 3, 4 and 5 has been performed using unpublished numerical methods, jointly developed by (alphabetically) Hiranya Peiris, Andrew Pontzen, Nina Roth, Stephen Stopyra and myself. This software will be released publicly in the near future (Stopyra et al. in prep).
    [Show full text]