Transport of Larvae and Detritus Across the Surf Zone of a Steep Reflective Pocket Beach

Total Page:16

File Type:pdf, Size:1020Kb

Transport of Larvae and Detritus Across the Surf Zone of a Steep Reflective Pocket Beach Vol. 528: 71–86, 2015 MARINE ECOLOGY PROGRESS SERIES Published May 28 doi: 10.3354/meps11223 Mar Ecol Prog Ser FREEREE ACCESSCCESS Transport of larvae and detritus across the surf zone of a steep reflective pocket beach Alan L. Shanks1,*, Jamie MacMahan2, Steven G. Morgan3, Ad J. H. M Reniers4, Marley Jarvis1, Jenna Brown2, Atsushi Fujimura4, Chris Griesemer3 1Oregon Institute of Marine Biology, University of Oregon, PO Box 5389, Charleston, Oregon 97420, USA 2Department of Oceanography, Naval Postgraduate School, 327c Spanagel Hall, Monterey, California 93943, USA 3Bodega Marine Laboratory, Department of Environmental Science and Policy, University of California Davis, 2099 Westside Dr., Bodega Bay, California 94923-0247, USA 4Department of Hydraulic Engineering, Delft University of Technology, Civil Engineering and Geosciences, Stevinweg 1, 2628CN Delft, The Netherlands ABSTRACT: Larvae of many intertidal species develop offshore and must cross the surf zone to complete their onshore migration to adult habitats. Depending on hydrodynamics, the surf zone may limit this migration, especially on reflective rocky shores. As a logistically tractable analog of a rocky shore environment, we carried out a comprehensive biological and physical study of the hydrodynamics of a steep reflective sandy beach. Holoplankton and precompetent larval inverte- brates were much less abundant within the surf zone than offshore, and their concentrations inside and outside the surf zone were not significantly correlated, suggesting that they were not entering the surf zone. Persistent offshore flow throughout the water column at the outer edge of the surf zone may prevent these organisms from entering the surf zone. In contrast, the concentra- tions of detritus and a competent larval invertebrate (i.e. cyprids), while also not significantly cor- related with concentrations offshore, were frequently more concentrated in the surf zone than offshore. Within the surf zone, the concentration of detritus was significantly correlated with con- centrations of competent larval invertebrates (barnacles, gastropods, polychaetes, and bopyrid amphipod) and organisms that may be associated with detritus (amphipods and harpacticoid copepods). These concentrations were significantly negatively correlated with average daily wave height. We hypothesize that detritus and larvae enter the surf zone near the bottom during calm wave conditions by a process of near-bottom streaming. Near-bottom streaming is associated with all surf zones and may be a general mechanism for onshore transport of larvae close to the coast. KEY WORDS: Streaming · Cyprids · Competent larvae · Precompetent larvae · Detritus · Reflective beach · Cross-shore exchange Resale or republication not permitted without written consent of the publisher INTRODUCTION pend on surf zone exchange processes to transport them onshore. Thus, onshore migrations of all larvae Larval development of many intertidal fishes and should be facilitated when water in the surf zone is invertebrates occurs in the coastal ocean. At the end exchanged with adjacent water seaward of the surf of their development, these larvae must return to zone, and reduced when this exchange is limited. shore to settle into their adult habitat. The last stage Surf zone hydrodynamics, in particular the ex - in this shoreward migration is to enter and cross the change of water, varies with beach morphology and surf zone. Strong swimming larvae may be able to wave conditions. Beach morphology varies from dis- swim across, but weak swimming larvae likely de - sipative to reflective. Dissipative beaches are rela- *Corresponding author: [email protected] © Inter-Research 2015 · www.int-res.com 72 Mar Ecol Prog Ser 528: 71–86, 2015 tively flat with subaqueous bars (resulting in a wide flection for normally incident monochromatic waves surf zone), whereas reflective beaches are character- on a planar beach. Battjes (1974) also empirically ized by steep beach slopes, coarse sand, narrow surf related wave reflection, R, to the Iribarren number, ξ: zones, and (at some shores) swash rips (Wright & R = ~0.1ξ2 (when ξ≤3) (1) Short 1984). Dissipative and reflective beaches are 2 ends of a continuum of sandy beach morphodyna - where: mics (Wright & Short 1984), but at rocky shores, surf zones are primarily reflective due to the steepness of tanβ ξ = (2) the shore. Surf zone hydrodynamics differ consider- H b L ably between dissipative and reflective shores. These o diverse hydrodynamic conditions may lead to differ- where tan β is the beach slope from the breakpoint to ential exchange of water, which may translate into the shore line, Hb is the wave height at breaking, and differential larval settlement and recruitment. In a Lo is the deep water wave length, defined as: comparative study of recruitment of intertidal organ- gT 2 isms to rocks on beaches along the coasts of Oregon Lo = (3) 2π and northern California, Shanks et al. (2010) found that much higher recruitment occurred at more dis - where g is gravitational acceleration and T is the sipative than at reflective shores. wave period. Eq. (2) relates beach slope to wave Several comprehensive field studies have been per - steepness (Hb/Lo). Note that R describes the ratio of formed at dissipative beaches, such as Torrey Pines, seaward propagating wave height to shoreward CA (Seymour 1989), Duck, NC (Elgar et al. 2001), propagating wave height; R = 1 represents 100% Monterey Bay, CA (MacMahan et al. 2005), and Truc reflection and R = 0 represents zero wave reflection Vert, France (Sénéchal et al. 2011). Recent studies (i.e. 100% wave dissipation). R estimates from natu- have focused on understanding the cross-shore trans- ral beaches are limited (Elgar et al. 1994) and are port of material in the surf zone (Imperial Beach and often calculated from beaches that are mildly reflec- Monterey Bay, CA). These recent efforts have shown tive (R Ӎ 0.3 for 0.05 to 0.15 Hz) at higher tides with that a primary mechanism for exchange at more lower energy waves (Tatavarti et al. 1988, Elgar et al. dissipative beaches is related to rip currents that 1994, Miles & Russell 2004). episodically pulse surf zone waters offshore (Reniers A field study to evaluate cross-shore exchange was et al. 2009, MacMahan et al. 2010). Rip currents performed over 40 d during the summer of 2011 at a strengthen with increasing wave height and at low steep beach at Carmel River State Beach, California. tides (MacMahan et al. 2005). However, despite Here, we describe new physical and biological field these studies, the cross-shore exchange at dissipative observations obtained from that study. We first pro- beaches still requires further investigation. In con- vide a description of the surf zone and nearshore trast, the cross-shore exchange process at reflective waves, water temperature, and currents as an over- beaches/ shores has received much less attention. view of this steep beach system. We then present evi- Theoretically, due to the lack of rip currents, reduc- dence suggesting how detritus, along with compe- tion in undertow, and the narrow episodic surf zone, tent larval invertebrates (i.e. those capable of settling reflective beaches may afford a less efficient ex - and metamorphosing) may enter a reflective surf change of water between the surf zone and the zone at a sandy beach. Significant correlations be - region seaward of breaking waves than more dis - tween the concentrations of detritus and a variety of sipative shores. competent larval invertebrates in the surf zone sug- Surface gravity waves evolve as they propagate gest that the mechanism of transport into reflective from deep to shallow water, and in most cases the surf zones may be similar. These observations pro- shoreward-propagating waves are dissipated near vide clues to the transport processes. the shoreline by wave breaking (Thornton & Guza 1983). There are, however, conditions when shore- ward-propagating waves reflect at the shoreline (El- MATERIALS AND METHODS gar et al. 1994). Steep beaches are known for narrow, energetic surf (swash) zones and higher wave reflec- In June and July 2011, a comprehensive biological tion which induces cross-shore standing wave pat- and physical study was performed at Carmel River terns (Battjes 1974). In a laboratory setting, Miche State Beach (CRSB) California (36° 32’ 18’’ N, 121° (1951) empirically determined the amount of wave re- 55’ 43’’ W), a 0.6 km long pocket beach located at the Shanks et al.: Larval delivery to a reflective surf zone 73 mouth of the Carmel River (Fig. 1). The Carmel River tween 3 and 7 m tidally-averaged water depth and periodically breached and closed on the south side of sampled ocean currents and waves for 40 d (instru- the beach during this experiment. The beach profile ment locations are presented in Fig. 1; positive is off- consisted of a 1:7.6 subaerial beach slope, 1:3 sub- shore and to the south). The ADCPs were mounted aqueous beach step, and 1:19 subaqueous beach pro- ~35 cm above the seabed. Velocity measurements file. There were no subaqueous bars or terraces; were obtained in 0.5 m bins; the bins near the wavy rocky intertidal zones were located at either end of sea surface were removed, and the ADCPs did not the beach, and a large kelp bed was situated offshore measure velocities within 0.5 m of the bottom. The at the northern end of the beach (Fig. 1). The bathy - ADCPs also recorded the pressure and bottom water metry and upper beachface profiles were acquired temperature at 1 Hz. A fourth ADCP (ADCP 4; Fig. 1) by investigators walking with a global positioning was deployed in 12 m water depth and measured system (GPS), and with a GPS- and echosounder- waves (e.g. wave height and period) for 40 min in a equipped electric kayak. burst mode every hour. Additionally, an array of 6 A cross-shore array of 3 self-contained, continu- Electromagnetic Current Meters (EMCMs) vertically ously 1 Hz sampling, 2 MHz Nortek Acoustic Doppler spaced at 0.2 m was de ployed for 5 d (Yeardays 169 Current Profilers (ADCPs 1 to 3) was deployed be- to 173) to observe the vertical structure of the cur- Fig.
Recommended publications
  • Can't Catch My Breath! a Study of Metabolism in Fish. Subjects
    W&M ScholarWorks Reports 2017 Can’t Catch My Breath! A Study of Metabolism in Fish. Subjects: Environmental Science, Marine/Ocean Science, Life Science/ Biology Grades: 6-8 Gail Schweiterman Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Science and Mathematics Education Commons Recommended Citation Schweiterman, G. (2017) Can’t Catch My Breath! A Study of Metabolism in Fish. Subjects: Environmental Science, Marine/Ocean Science, Life Science/Biology Grades: 6-8. VA SEA 2017 Lesson Plans. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/10.21220/V5414G This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Can’t catch my breath! A study of metabolism in fish Gail Schwieterman Virginia Institute of Marine Science Grade Level High School Subject area Biology, Environmental, or Marine Science This work is sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center. 1. Activity Title: Can’t Catch My Breath! A study of metabolism in fish 2. Focus: Metabolism (Ecological drivers); The Scientific Method (Formulating Hypothesis) 3. Grade Levels/ Subject: HS Biology, HS Marine Biology 4. VA Science Standard(s) addressed: BIO.1. The student will demonstrate an understanding of scientific reasoning, logic, and the nature of science by planning and conducting investigations (including most Essential Understandings and nearly all Essential Knowledge and Skills) BIO.4a.
    [Show full text]
  • Harmful Algal Blooms (Habs) and Desalination: a Guide to Impacts, Monitoring, and Management
    Manuals and Guides 78 Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring, and Management Edited by: Donald M. Anderson, Siobhan F.E. Boerlage, Mike B. Dixon UNESCO Manuals and Guides 78 Intergovernmental Oceanographic Commission Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring and Management Edited by: Donald M. Anderson* Biology Department, Woods Hole Oceanographic Institution Woods Hole, MA 02543 USA Siobhan F. E. Boerlage Boerlage Consulting Gold Coast, Queensland, Australia Mike B. Dixon MDD Consulting, Kensington Calgary, Alberta, Canada *Corresponding Author’s email: [email protected] UNESCO 2017 Bloom prevention and control 7 BLOOM PREVENTION AND CONTROL Clarissa R. Anderson1, Kevin G. Sellner2, and Donald M. Anderson3 1University of California, Santa Cruz, Santa Cruz, CA USA 2Chesapeake Research Consortium, Edgewater MD USA 3Woods Hole Oceanographic Institution, Woods Hole MA USA 7.1 Introduction ........................................................................................................................................... 205 7.2 Bloom prevention .................................................................................................................................. 207 7.2.1 Nutrient load reduction .................................................................................................................. 207 7.2.2 Nutrient load .................................................................................................................................
    [Show full text]
  • Marine Plants in Coral Reef Ecosystems of Southeast Asia by E
    Global Journal of Science Frontier Research: C Biological Science Volume 18 Issue 1 Version 1.0 Year 2018 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Marine Plants in Coral Reef Ecosystems of Southeast Asia By E. A. Titlyanov, T. V. Titlyanova & M. Tokeshi Zhirmunsky Institute of Marine Biology Corel Reef Ecosystems- The coral reef ecosystem is a collection of diverse species that interact with each other and with the physical environment. The latitudinal distribution of coral reef ecosystems in the oceans (geographical distribution) is determined by the seawater temperature, which influences the reproduction and growth of hermatypic corals − the main component of the ecosystem. As so, coral reefs only occupy the tropical and subtropical zones. The vertical distribution (into depth) is limited by light. Sun light is the main energy source for this ecosystem, which is produced through photosynthesis of symbiotic microalgae − zooxanthellae living in corals, macroalgae, seagrasses and phytoplankton. GJSFR-C Classification: FOR Code: 060701 MarinePlantsinCoralReefEcosystemsofSoutheastAsia Strictly as per the compliance and regulations of : © 2018. E. A. Titlyanov, T. V. Titlyanova & M. Tokeshi. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Marine Plants in Coral Reef Ecosystems of Southeast Asia E. A. Titlyanov α, T. V. Titlyanova σ & M. Tokeshi ρ I. Coral Reef Ecosystems factors for the organisms’ abundance and diversity on a reef.
    [Show full text]
  • HARMFUL ALGAL BLOOMS in COASTAL WATERS: Options for Prevention, Control and Mitigation
    Science for Solutions A A Special Joint Report with the Decision Analysis Series No. 10 National Fish and Wildlife Foundation onald F. Boesch, Anderson, Rita A dra %: Shumway, . Tesf er, Terry E. February 1997 U.S. DEPARTMENT OF COMMERCE U.S. DEPARTMENT OF THE INTERIOR William M. Daley, Secretary Bruce Babbitt, Secretary The Decision Analysis Series has been established by NOAA's Coastal Ocean Program (COP) to present documents for coastal resource decision makers which contain analytical treatments of major issues or topics. The issues, topics, and principal investigators have been selected through an extensive peer review process. To learn more about the COP or the Decision Analysis Series, please write: NOAA Coastal Ocean Office 1315 East West Highway Silver Spring, MD 209 10 phone: 301-71 3-3338 fax: 30 1-7 13-4044 Cover photo: The upper portion of photo depicts a brown tide event in an inlet along the eastern end of Long Island, New York, during Summer 7986. The blue water is Block lsland Sound. Photo courtesy of L. Cosper. Science for Solutions NOAA COASTAL OCEAN PROGRAM Special Joint Report with the Decision Analysis Series No. 10 National Fish and WildlifeFoundation HARMFUL ALGAL BLOOMS IN COASTAL WATERS: Options for Prevention, Control and Mitigation Donald F. Boesch, Donald M. Anderson, Rita A. Horner Sandra E. Shumway, Patricia A. Tester, Terry E. Whitledge February 1997 National Oceanic and Atmospheric Administration National Fish and Wildlife Foundation D. James Baker, Under Secretary Amos S. Eno, Executive Director Coastal Ocean Office Donald Scavia, Director This ~ublicationshould be cited as: Boesch, Donald F.
    [Show full text]
  • Teacher Notes
    TEACHER RESOURCE CSIRO_Oceans-12jm.indd 1 2/12/17 9:57 am TEACHER RESOURCE CSIRO_Oceans-12jm.indd 1 2/12/17 9:57 am CSIRO_Oceans-12jm.indd 2 2/12/17 9:57 am ABOUT Introduction to the guide This Student Learning Resource is designed to assist secondary school teachers to engage students in Years 7 to 10 in the study of marine environment and the direct influence oceans have on weather, climate and marine ecosystems. It is supported by the use of the CSIRO text Oceans: Science and Solutions for Australia, edited by Bruce Mapstone, and links to the Australian Curriculum with a flexible matrix of activities based on the ‘Five Es’ model. The resource explores elements of Years 7 to 10 science and geography curricula, covering the cross-curriculum priorities of Sustainability and Aboriginal and Torres Strait Islander Histories and Cultures. For science, it more specifically covers the areas of: Science Understanding; Science as a Human Endeavour, and Science Inquiry Skills. For geography, it covers the area of geographical knowledge and understanding, and geographical inquiry and skills. The main concepts covered are: • The seven main challenges we face when managing our marine estate. • Aspects of our marine estate, such as currents, marine organisms, geology, climate, recreation, the economy and governance. • Uses of the ocean, such as coastal development, security, search and rescue, pollution, research tools and technology, managing multiple uses of the oceans. • The future of science and technology. How to use the guide The notes in this study guide offer both variety and flexibility of use for the differentiated classroom.
    [Show full text]
  • OCEAN SUBDUCTION Show That Hardly Any Commercial Enhancement Finney B, Gregory-Eaves I, Sweetman J, Douglas MSV Program Can Be Regarded As Clearly Successful
    1982 OCEAN SUBDUCTION show that hardly any commercial enhancement Finney B, Gregory-Eaves I, Sweetman J, Douglas MSV program can be regarded as clearly successful. and Smol JP (2000) Impacts of climatic change and Model simulations suggest, however, that stock- Rshing on PaciRc salmon over the past 300 years. enhancement may be possible if releases can be Science 290: 795}799. made that match closely the current ecological Giske J and Salvanes AGV (1999) A model for enhance- and environmental conditions. However, this ment potentials in open ecosystems. In: Howell BR, Moksness E and Svasand T (eds) Stock Enhancement requires improvements of assessment methods of and Sea Ranching. Blackwell Fishing, News Books. these factors beyond present knowledge. Marine Howell BR, Moksness E and Svasand T (1999) Stock systems tend to have strong nonlinear dynamics, Enhancement and Sea Ranching. Blackwell Fishing, and unless one is able to predict these dynamics News Books. over a relevant time horizon, release efforts are Kareiva P, Marvier M and McClure M (2000) Recovery not likely to increase the abundance of the target and management options for spring/summer chinnook population. salmon in the Columbia River basin. Science 290: 977}979. Mills D (1989) Ecology and Management of Atlantic See also Salmon. London: Chapman & Hall. Ricker WE (1981) Changes in the average size and Mariculture, Environmental, Economic and Social average age of PaciRc salmon. Canadian Journal of Impacts of. Salmonid Farming. Salmon Fisheries: Fisheries and Aquatic Science 38: 1636}1656. Atlantic; Paci\c. Salmonids. Salvanes AGV, Aksnes DL, FossaJH and Giske J (1995) Simulated carrying capacities of Rsh in Norwegian Further Reading fjords.
    [Show full text]
  • Using Local Ecological Knowledge to Identify Shark River Habitats in Fiji
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Environmental Conservation 37 (1): 90–97 © Foundation for Environmental Conservation 2010 doi:10.1017/S0376892910000317 Using local ecological knowledge to identify shark river THEMATIC SECTION Community-based natural habitats in Fiji (South Pacific) resource management (CBNRM): designing the 1 2 ERONI RASALATO , VICTOR MAGINNITY next generation (Part 1) AND JUERG M. BRUNNSCHWEILER3 ∗ 1University of the South Pacific, Faculty of Science, Technology and Environment, Marine Campus, Suva, Fiji, 2Bay of Plenty Polytechnic, Marine Studies Department, Tauranga, New Zealand, and 3ETH Zurich, Raemistrasse 101, CH-8092 Zurich, Switzerland Date submitted: 23 August 2009; Date accepted: 3 February 2010; First published online: 13 May 2010 SUMMARY 2004a; Aswani 2005; Aswani et al. 2007; Christie & White 2007; Brunnschweiler 2010). Together with traditional marine Local ecological knowledge (LEK) and traditional tenure, traditional knowledge and customary law form the ecological knowledge (TEK) have the potential to three pillars of what is referred to as traditional resource improve community-based coastal resource manage- management, which is increasingly recognized as a key tool for ment (CBCRM) by providing information about the sustainable management of natural resources in certain areas presence, behaviour and ecology of species. This paper such as parts of the South Pacific (Caillaud et al. 2004; Cinner explores the potential of LEK and TEK to identify shark & Aswani 2007). river habitats in Fiji, learn how locals regard and use Traditional ecological knowledge (TEK) is the cumulative sharks, and capture ancestral legends and myths that body of knowledge, practice and belief that pertains to the shed light on relationships between these animals and relationship of living beings with one another and with their local people.
    [Show full text]
  • EVOLUTION and ECOLOGY of REEFS 85092 OCG 6668 (614) - 3 Credits Tuesdays 4-7 Pm Location: KRC 3120 Instructor : Dr
    UNIVERSITY OF SOUTH FLORIDA -- COLLEGE OF MARINE SCIENCE FALL SEMESTER 2009 Syllabus Version 1 (August 25) EVOLUTION AND ECOLOGY OF REEFS 85092 OCG 6668 (614) - 3 credits Tuesdays 4-7 pm Location: KRC 3120 Instructor : Dr. Pamela Hallock Muller Office : MSL 203 Phone : 727-553-1567 e-mail : [email protected] Office hours : by appointment Date Topic Reading Assignment Disc. Leaders Aug. 25 Introduction to course & to coral reefs Veron (2000) p. 19-31; Wells (1957) PHM Sept 1. Physical controls on reef growth & Hubbard (pdf); Hallock (pdf) PHM reefs through time Veron (2000), p 33-43 Sept. 8 Coral biology Weis et al. (2008) 1. Houlbrèque & Ferrier-Pagès (2009) 2. Coral –algal aymbiosis Stat et al. (2006) 3. Calcification (see note below) Allemand et al. (2004) 4. Sept. 15 Microbes and coral reefs Rosenberg et al. (2007) JG Guest lecture: Julie Galkiewicz Ritchie (2006) JG. Thurber et al. (2009) 1. Bourne et al. (2008) 2. Sept. 22 Coral classification Veron (2000) p. 47-57; VanWoesik (web) 1. What are species; species evolution Veron (2000) p. 424-433, 437-443 2. Coral reproduction Veron 416-421; Guest et al. (2005) 3. Sept. 29 Diversity and biogeography of reefs Veron (2000), p. 411-416/Fukami et al (2004) 1. Karlson (1999) p. 29-50 2. Hybridization in coral evolution Willis et al. (2006) 3. Abstracts/Preproposals Due Oct 6 Algae and primary production Payre (website) 1. Littler et al. (2006) 2. Dubinsky and Berman-Frank (2001) 3. Wooldridge (2009a) 4. Oct. 13 Coral predators, competitors, bioeroders Rotjan & Lewis (2008) 1.
    [Show full text]
  • MARINE SCIENCE Program
    MARINE SCIENCE Program AR Enabled 1. Download HP Reveal App 2. Open and point phone at image 3. Watch program video stockton.edu/nams Marine Science Program | MARS ABOUT THE PROGRAM Stockton University is located adjacent to the Jacques Cousteau National Estuarine Research Reserve (Mullica River-Great Bay estuary) and is one of only a few undergraduate institutions in the U.S. that offers a degree program in Marine Science alongside a dedicated, easily accessible field facility (Stockton Marine Field Station) www.stockton.edu/marine. With direct access to the Field Station only 10 minutes away, the program is well situated to provide superior field, teaching, and undergraduate research opportunities that form the backbone of the curriculum. Stockton’s Marine Science (MARS) program encompasses two general areas of study: Marine Biology and Oceanography. A number of field and laboratory courses, seminars, independent studies, internships, and research team opportunities are offered, with a strong emphasis on gaining experience in the field. The program is interdisciplinary and requires student competence in several areas of science. Upper-level students have the opportunity to design and implement their own independent study projects and are strongly encouraged to present results at the NAMS Undergraduate Research Symposium and regional conferences. Teacher (K-12) and GIS certifications are available through affiliated Stockton programs. The Marine Sciences tracks of study: Marine Biology, BA and BS, Oceanography, BA and BS Program Highlights • Small course sections taught primarily by full-time faculty (not by graduate assistants). • Every student is assigned a faculty member as their academic adviser (preceptor) • Faculty encourage and supervise internships and research projects.
    [Show full text]
  • Distribution of Phytoplankton Abundance in Thermocline Layers of Sangihe Talaud Island, Indonesia
    Biodiversity International Journal Research Article Open Access Distribution of phytoplankton abundance in thermocline layers of Sangihe Talaud Island, Indonesia Abstract Volume 3 Issue 3 - 2019 The aim of this study was to determine the abundance of phytoplankton in the Lady A Sriwijayanti,1 Djumanto,1 Riza Y thermocline layer of Sangihe Talaud Islands. The research was conducted in 33 stations Setiawan,1 Mochammad R Firdaus,2 Nurul in October 2018 and the samples were taken at the thermocline depth using a rosette 2 2 sampler as much as 10 L Environmental parameter, namely temperature, salinity, and Fitriya, Hagy Y Sugeha depth, was measured using the SBE 911-Plus CTD (Conductivity Temperature Depth). 1Department of Fisheries, Faculty of Agriculture, Gadjah Mada The water samples were concentrated into 40mL using plankton net with mesh size University, Indonesia 2 20 µm. The phytoplankton enumeration was conducted using the Sedgwick-Rafter Pusat Penelitian Oseanografi, Lembaga Ilmu Pengetahuan, Cell Counter under a 100x magnification microscope and identified to the species Indonesia level. Mapping of the phytoplankton abundance, temperature, and salinity in form Correspondence: Djumanto, Department of Fisheries, Faculty of contours was conducted by Surfer 9 software, and the similarities among stations of Agriculture, Gadjah Mada University, Yogyakarta, 55281, were analyzed based on the Bray-Curtis index using Biodiversity Pro Ver.2 software. Indonesia, Tel +6282226232223, Email The result showed there were 84 species found during sampling with an abundance of 7059-542,222 cell m-3. The highest abundance was observed to be as a result of Received: April 29, 2019 | Published: May 03, 2019 warm water temperatures, while low abundance were observed in some stations due to the presence of high salinity level.
    [Show full text]
  • Nutrients, Eutrophication and Harmful Algal Blooms Along the Freshwater to Marine Continuum
    Received: 18 April 2019 Revised: 22 June 2019 Accepted: 2 July 2019 DOI: 10.1002/wat2.1373 OVERVIEW Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum Wayne A. Wurtsbaugh1 | Hans W. Paerl2 | Walter K. Dodds3 1Watershed Sciences Department, Utah State University, Logan, Utah Abstract 2Institute of Marine Sciences, University of Agricultural, urban and industrial activities have dramatically increased aquatic North Carolina at Chapel Hill, Morehead nitrogen and phosphorus pollution (eutrophication), threatening water quality and City, North Carolina biotic integrity from headwater streams to coastal areas world-wide. Eutrophication 3Division of Biology, Kansas State creates multiple problems, including hypoxic “dead zones” that reduce fish and University, Manhattan, Kansas shellfish production; harmful algal blooms that create taste and odor problems and Correspondence threaten the safety of drinking water and aquatic food supplies; stimulation of Wayne A. Wurtsbaugh, Watershed Sciences Department, Utah State University, Logan, greenhouse gas releases; and degradation of cultural and social values of these Utah 94322-5210. waters. Conservative estimates of annual costs of eutrophication have indicated $1 Email: [email protected] billion losses for European coastal waters and $2.4 billion for lakes and streams in Funding information the United States. Scientists have debated whether phosphorus, nitrogen, or both NSF Konza LTER, Grant/Award Numbers: need to be reduced to control eutrophication along the freshwater to marine contin- NSF OIA-1656006, NSF DEB 1065255; uum, but many management agencies worldwide are increasingly opting for dual Dimensions of Biodiversity, Grant/Award Numbers: 1831096, 1240851; US National control. The unidirectional flow of water and nutrients through streams, rivers, Science Foundation, Grant/Award Numbers: lakes, estuaries and ultimately coastal oceans adds additional complexity, as each CBET 1230543, 1840715, OCE 9905723, of these ecosystems may be limited by different factors.
    [Show full text]
  • Miksisolds Et Al 2018Exploring-The-Ocean
    Exploring the Ocean Through Soundscapes Jennifer L. Miksis-Olds Listening to underwater soundscapes helps us understand how Postal: ocean physics and the biology of marine communities are responding School of Marine Science to a dynamically changing ocean. and Ocean Engineering It is a clear afternoon, and you are looking out at the skyline from the highest University of New Hampshire point within 100 km. From this vantage point, you can see for “miles and miles,” 24 Colovos Road but the only sounds you can hear are the people with you, a few birds, insects, Durham, New Hampshire 03824 and the wind. Now, if you went to an equivalent point in the ocean to stand on USA the mid-Atlantic ridge overlooking the ocean’s abyssal plain, you would still have Email: 1,200 m of inky black water above and around you. Listening through a hydro- [email protected] phone, the sounds you hear would be extraordinarily rich. Crustaceans would be heard scratching at the rock and deepwater corals. Sperm, beaked, and pilot whales would be searching for food using echolocating click trains. Blue and fin Bruce Martin whale calls, trapped in the deep sound channel, would arrive from thousands Postal: of kilometers away. Every few seconds, the sound channel would also bring you JASCO Applied Sciences energy pulses from oil and gas seismic surveys arriving from Brazil, Africa, the 32 Troop Avenue - Suite 32 North Sea, and Newfoundland. Dartmouth, Nova Scotia B3B 1Z1 Underwater acoustic research has revealed the amazing physics of how sound Canada propagates in the ocean, primarily motivated by using sound to detect oil and gas Email: under the Earth’s crust or for naval applications.
    [Show full text]