Strawberry and Palbociclib- Side by Side Comparison

Total Page:16

File Type:pdf, Size:1020Kb

Strawberry and Palbociclib- Side by Side Comparison Plant Spotlight Series Strawberry and Palbociclib- Side by Side Comparison February 2020 (Series # A006) Strawberry ● Produced from the plant Fragaria ananassa. ● Strawberry identified key ingredients are ○ Anthocyanins - Pelargonidin-3-glucoside, Cyanidin-3-glucoside. ○ Flavonols - Fisetin, Kaempferol, Quercetin. ○ Ellagitannins - Ellagic Acid. Palbociclib ● Oral drug, kinase inhibitor targeting CDK4 and CDK6. Approved for breast cancer. addon.life Plant Spotlight Series : Strawberry and Palbociclib- Side by Side Comparison Strawberry (Fisetin) Palbociclib Marketed by Generic, and available as a Dietary Pfizer Inc Supplement Biological Targets Number of targets including Cyclin-dependent kinase 4 (C DK4 ) Cyclin-dependent kinase 4 (C DK4 ); and Cyclin-dependent kinase 6 Cyclin-dependent kinase 6 (C DK6 ); (C DK6 ), key kinases for cell cycle Cyclin-dependent kinase 2 (C DK2 ); progression and cell proliferation. Cyclin-dependent kinase 1 (C DK1 ); (P albociclib Prescribing Cyclin-dependent-like kinase 5 information) (C DK5 ); Cyclin-dependent kinase 5 activator 1 (C DK5R1) ; G2/mitotic-specific cyclin-B1 (C CNB1 ); G2/mitotic-specific cyclin-B2 (C CNB2 ); G2/mitotic-specific cyclin-B3 (C CNB3 ); Glycogen synthase kinase-3 alpha (G SK3A ); Glycogen synthase kinase-3 beta (G SK3B) ; Arachidonate 12-lipoxygenase (A LOX12) ; Arachidonate 15-lipoxygenase (A LOX15) ; Casein kinase II subunit alpha (C SNK2A1 ); Casein kinase II subunit alpha' (C SNK2A2) ; Casein kinase II subunit beta (C SNK2B ) (L u X et al, J Nutr., 2005 ; Lu H et al, J Med Chem., 2005; Lee J et al, Bioorg Med Chem Lett., 2007 ; Golub AG et al, Bioorg Med Chem., 2013 ; Yokoyama T et al, J Med Chem., 2015 ) Pathways Targeted Proliferation, Arachidonic acid Proliferation, G1S Cell Cycle Metabolism, PI3K-AKT Signaling, TP53 Signaling, Apoptosis February 2020 | Series #A006 addon.life 2 Plant Spotlight Series : Strawberry and Palbociclib- Side by Side Comparison Clinical Dosing Daily dose of 100 mg is used in a 125 mg once daily taken with food clinical trial (F arsad-Naeimi A et al, for 21 days followed by 7 days off Food Funct., 2018 ). treatment ( Palbociclib Prescribing information) . Approved by FDA for Not approved as a therapeutic agent For the treatment of adult patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer in combination with an aromatase inhibitor as initial endocrine-based therapy in postmenopausal women or in men; or in combination with fulvestrant in patients with disease progression following endocrine therapy (P albociclib Prescribing information) . Off-Label Use for Orally, strawberries are used for GI - tract mucous membrane inflammation, diarrhea, intestinal sluggishness, liver disease, jaundice, upper and lower respiratory tract mucous membrane inflammation, gout, arthritis, nervous tension, kidney ailments involving gravel and stones, diuretic, supportive for heart and circulatory ailments, fever, night sweats, blood purification, for stimulating metabolism, anemia, as a tonic, for inhibiting menstruation, and supporting weight loss. Topically, strawberries are used as a compress for rashes. Impact in Breast Cancer Proliferation G1S Cell Cycle Proliferation G1S Cell Cycle Inhibitor Inhibitor Inhibitor Inhibitor G2M Cell PI3K-AKT G2M Cell PI3K-AKT Cycle Signaling Cycle Signaling Inhibitor Inhibitor No effect No effect February 2020 | Series #A006 addon.life 3 Plant Spotlight Series : Strawberry and Palbociclib- Side by Side Comparison Pros and Cons of Differential Impact Pros Pros in Cancer Indications Fisetin inhibits CDK4/6 which cause Palbociclib is an inhibitor of CDK4 G1S cell cycle arrest and subsequent and CDK6. CDK4/6 are decrease in proliferation of cancer downstream of estrogen signaling cells ( Lu X et al, J Nutr., 2005 ). pathway and along with CCND1 Since Fisetin also inhibits CDK1 and they lead to proliferation. CDK2, Fisetin can also cause G2M Inhibiting CDK4/6 by Palbociclib, arrest and subsequent apoptosis in reduces proliferation of ER breast cancer cells. Loss of RB1 will positive breast cancer cells. not limit the effect of Fisetin. Fisetin Palbociclib is cytostatic and causes can also enhance certain cancer cells to undergo chemotherapeutic drugs like senescence. cisplatin, 5-fluorouracil, Cyclophosphamide response. (S mith Cons ML et al, J Cell Biochem., 2016) . Palbociclib effect is limited to RB1 Inhibition of Casein kinase by Fisetin wild-type status. If RB1 is deleted can cause upregulation of tumor or mutated, Palbociclib will not suppressor PTEN and TP53. PTEN show therapeutic effect. upregulation causes inhibition of Similarly, if CDK1 or CDK2 is PI3K-AKT signaling. PI3K-AKT constitutively activated, signaling is dominant in breast Palbociclib’s effect will be limited. cancer (L i J et al, Front Pharmacol., Palbociclib can antagonize certain 2018 ). chemotherapeutic drug effects like gemcitabine, Docetaxel, Cons Trifluridine, Mercaptopurine etc Since GSK3B is an endogenous (W itkiewicz AK et al, Cell Rep., inhibitor of beta-catenin signaling, 2018 ). Fisetin mediated inhibition of GSK3B may cause this signaling upregulated. High beta-catenin signaling can limit Fisetin response. Demonstrated Response In a cohort of 37 colorectal cancer Overall Response Rate (Complete patients, Fisetin supplementation and Partial Response) and was given to 18 patients while 19 Progression Free Survival (PFS) patients received placebo. Patients in (P albociclib Prescribing the Fisetin group had reduced information) : inflammatory factors (IL-8 and In patients with ER-positive, hs-CRP) and MMPs (MMP7 and HER2-negative advanced or MMP9) compared to placebo metastatic breast cancer, (F arsad-Naeimi A et al, Food Funct., Palbociclib with Letrozole (n=444) 2018 ). showed 55.3% objective response In a clinical trial of 75 patients with rate in comparison to 44.4% Esophagus dysplasia (precursor of response rate with Letrozole alone esophageal squamous cell (n=222). Median PFS was 24.8 carcinoma), 60 g/d strawberry months in Palbociclib and extract was given to 38 Subjects. In Letrozole arm vs 14.5 months in 29 of evaluated 36 patients (80.6%), Letrozole arm (Table 8). there was a decrease in histological In patients with HR-positive, grade of dysplasia. This dose also HER2-negative advanced or February 2020 | Series #A006 addon.life 4 Plant Spotlight Series : Strawberry and Palbociclib- Side by Side Comparison decreased inflammatory biomarkers metastatic breast cancer, like iNOS, COX2, NFkB, and RPS6 by Palbociclib with Fulvestrant 60-80% (C hen T et al, Cancer Prev (n=347) showed 24.6% objective Res (Phila)., 2012) . response rate in comparison to Intake of Rosaceae family fruits 10.9% response rate with (apples, peaches, nectarines, plums, Fulvestrant alone (n=174). Median pears and strawberries) is shown to PFS was 9.5 months in Palbociclib be associated with significant and Fulvestrant arm vs 4.6 months reduced risk of Esophageal Cancer in Fulvestrant arm (Table 9). (F reedman ND et al, Int J Cancer., 2007 ). Intake of Rosaceae family fruits (apples, peaches, nectarines, plums, pears and strawberries) is shown to be associated with significant reduced risk of Head and Neck Cancer (F reedman ND et al, Int J Cancer., 2008 ). Polyphenol-rich Strawberry Extract (PRSE) is shown to significantly reduce highly invasive breast cancer tumor growth in a breast cancer xenograft (A matori S et al, Sci Rep., 2016 ). Toxicity No recorded data about toxicity Neutropenia, Infections, Leukopenia, Fatigue, Nausea, Alopecia, Stomatitis, Diarrhea, Anemia, Rash, Asthenia, Thrombocytopenia, Vomiting, Decreased appetite, Dry skin, Pyrexia, and Dysgeusia. (P albociclib Prescribing infor- mation ) Available format and doses Capsule (100 mg and other dosages) Capsules: 125 mg, 100 mg, and 75 mg Cost $0.41/- (1x100 mg capsule) $619.36/- (1X125 mg) (s wansonvitamins ) (D rugs.com) February 2020 | Series #A006 addon.life 5 Plant Spotlight Series : Strawberry and Palbociclib- Side by Side Comparison Disclaimer ● These statements have not been evaluated by the Food and Drug Administration. This analysis is not intended to diagnose, treat, cure, or prevent any disease. ● This website/document is provided for informational purposes only and is not intended as a substitute for the advice provided by your physician or other healthcare professional. ● You should not use the information on this website/document for diagnosing or treating a health problem or disease, prescribing any medication or other treatment, or discontinuing any medication or treatment recommended by your healthcare provider. February 2020 | Series #A006 addon.life 6 .
Recommended publications
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • And Season-Dependent Pattern of Flavonol Glycosides In
    www.nature.com/scientificreports OPEN Age‑ and season‑dependent pattern of favonol glycosides in Cabernet Sauvignon grapevine leaves Sakina Bouderias1,2, Péter Teszlák1, Gábor Jakab1,2 & László Kőrösi1* Flavonols play key roles in many plant defense mechanisms, consequently they are frequently investigated as stress sensitive factors in relation to several oxidative processes. It is well known that grapevine (Vitis vinifera L.) can synthesize various favonol glycosides in the leaves, however, very little information is available regarding their distribution along the cane at diferent leaf levels. In this work, taking into consideration of leaf position, the main favonol glycosides of a red grapevine cultivar (Cabernet Sauvignon) were profled and quantifed by HPLC–DAD analysis. It was found that amount of four favonol glycosides, namely, quercetin-3-O-galactoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside and kaempferol-3-O-glucuronide decreased towards the shoot tip. Since leaf age also decreases towards the shoot tip, the obtained results suggest that these compounds continuously formed by leaf aging, resulting in their accumulation in the older leaves. In contrast, quercetin-3-O-glucuronide (predominant form) and quercetin-3-O-rutinoside were not accumulated signifcantly by aging. We also pointed out that grapevine boosted the favonol biosynthesis in September, and favonol profle difered signifcantly in the two seasons. Our results contribute to the better understanding of the role of favonols in the antioxidant defense system of grapevine. Flavonoids are very important secondary metabolites, having various functional roles in diferent physiological and developmental processes in plants1–3. Flavonols as a group of favonoids are mainly accumulated in epidermal cells of plant tissues in response to solar radiation 4, 5, to flter the UV-B light while allowing to pass the photo- synthetically active visible light 6–8.
    [Show full text]
  • Synthesis, in Vitro Biological Evaluation, and Oxidative Transformation of New Flavonol Derivatives: the Possible Role of the Phenyl-N,N- Dimethylamino Group
    Article Synthesis, in Vitro Biological Evaluation, and Oxidative Transformation of New Flavonol Derivatives: The Possible Role of the Phenyl-N,N- Dimethylamino Group Peter Szabados-Furjesi 1, David Pajtas 2, Aliz Barta 2, Evelin Csepanyi 1, Attila Kiss-Szikszai 3, Arpad Tosaki 4 and Istvan Bak 1,* 1 Department of Bioanalytical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen H-4032, Hungary; [email protected] (P.S.-F.); [email protected] (E.C.) 2 Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen H- 4032, Hungary; [email protected] (D.P.); [email protected] (A.B.) 3 Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen Debrecen H-4032, Hungary; [email protected] 4 Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen H-4032, Hungary; [email protected] * Correspondence: [email protected]; Tel./Fax: 00-36-52-255-586 Academic Editor: Luciano Saso Received: 13 November 2018; Accepted: 29 November 2018; Published: 30 November 2018 Abstract: Six new flavonols (6a–f) were synthesized with Claisen–Schmidt and Suzuki reactions and they were fully characterized by spectroscopic methods. In order to evaluate their antioxidant activities, their oxygen radical absorption capacity and ferric reducing antioxidant power were measured, along with their free radical scavenging activity against 2,2’-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazylradicals. In addition, their cytotoxicity on H9c2 cardiomyoblast cells was also assessed by a 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide assay.
    [Show full text]
  • Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,*
    Chemodiversity of Exudate Flavonoids in Seven Tribes of Cichorioideae and Asteroideae (Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,* a Department of Plant Systematics and Evolution Ð Comparative and Ecological Phytochemistry, University of Vienna, Rennweg 14, A-1030 Wien, Austria b Institut für Botanik der TU Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 62c, 155Ð163 (2007); received October 26/November 24, 2006 Members of several genera of Asteraceae, belonging to the tribes Mutisieae, Cardueae, Lactuceae (all subfamily Cichorioideae), and of Astereae, Senecioneae, Helenieae and Helian- theae (all subfamily Asteroideae) have been analyzed for chemodiversity of their exudate flavonoid profiles. The majority of structures found were flavones and flavonols, sometimes with 6- and/or 8-substitution, and with a varying degree of oxidation and methylation. Flava- nones were observed in exudates of some genera, and, in some cases, also flavonol- and flavone glycosides were detected. This was mostly the case when exudates were poor both in yield and chemical complexity. Structurally diverse profiles are found particularly within Astereae and Heliantheae. The tribes in the subfamily Cichorioideae exhibited less complex flavonoid profiles. Current results are compared to literature data, and botanical information is included on the studied taxa. Key words: Asteraceae, Exudates, Flavonoids Introduction comparison of accumulation trends in terms of The family of Asteraceae is distributed world- substitution patterns is more indicative for che- wide and comprises 17 tribes, of which Mutisieae, modiversity than single compounds. Cardueae, Lactuceae, Vernonieae, Liabeae, and Earlier, we have shown that some accumulation Arctoteae are grouped within subfamily Cichori- tendencies apparently exist in single tribes (Wol- oideae, whereas Inuleae, Plucheae, Gnaphalieae, lenweber and Valant-Vetschera, 1996).
    [Show full text]
  • Redalyc.Antiprotozoal Activity of Flavonoids Isolated from Mimosa Tenuiflora (Fabaceae-Mimosoideae)
    Journal of the Mexican Chemical Society ISSN: 1870-249X [email protected] Sociedad Química de México México Bautista, Elihú; Calzada, Fernando; Ortega, Alfredo; Yépez-Mulia, Lilian Antiprotozoal Activity of Flavonoids Isolated from Mimosa tenuiflora (Fabaceae-Mimosoideae) Journal of the Mexican Chemical Society, vol. 55, núm. 4, octubre-diciembre, 2011, pp. 251-253 Sociedad Química de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=47521272011 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto J. Mex. Chem. Soc. 2011, 55(4), 251-253 ArticleAntiprotozoal Activity of Flavonoids Isolated from Mimosa tenuiflora (Fabaceae-Mimosoideae) © 2011, Sociedad Química de México251 ISSN 1870-249X Antiprotozoal Activity of Flavonoids Isolated from Mimosa tenuiflora (Fabaceae-Mimosoideae) Elihú Bautista,1 Fernando Calzada,2 Alfredo Ortega,1* and Lilian Yépez-Mulia3 1 Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México D.F. México. 2 Unidad de Investigación Médica en Farmacología de Productos Naturales, UMAE Hospital de Pediatría, 2º Piso, CORCE, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, CP 06725, México D.F., México. 3 Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, 2º Piso, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, CP 06725, México D.F., México. [email protected] Received April 12, 2011; accepted September 28, 2011 Abstract.
    [Show full text]
  • Quercetin and Its Derivatives: Chemical Structure and Bioactivity – a Review
    POLISH JOURNAL OF FOOD AND NUTRITION SCIENCES www.pan.olsztyn.pl/journal/ Pol. J. Food Nutr. Sci. e-mail: [email protected] 2008, Vol. 58, No. 4, pp. 407-413 QUERCETIN AND ITS DERIVATIVES: CHEMICAL STRUCTURE AND BIOACTIVITY – A REVIEW Małgorzata Materska Research Group of Phytochemistry, Department of Chemistry, Agricultural University, Lublin Key words: quercetin, phenolic compounds, bioactivity Quercetin is one of the major dietary flavonoids belonging to a group of flavonols. It occurs mainly as glycosides, but other derivatives of quercetin have been identified as well. Attached substituents change the biochemical activity and bioavailability of molecules when compared to the aglycone. This paper reviews some of recent advances in quercetin derivatives according to physical, chemical and biological properties as well as their content in some plant derived food. INTRODUCTION of DNA synthesis, inhibition of cancerous cell growth, de- crease and modification of cellular signal transduction path- In recent years, nutritionists have shown an increased in- ways [Erkoc et al., 2003]. terest in plant antioxidants which could be used in unmodi- In food, quercetin occurs mainly in a bounded form, with fied form as natural food preservatives to replace synthetic sugars, phenolic acids, alcohols etc. After ingestion, deriva- substances [Kaur & Kapoor, 2001]. Plant extracts contain tives of quercetin are hydrolyzed mostly in the gastrointes- various antioxidant compounds which occur in many forms, tinal tract and then absorbed and metabolised [Scalbert thus offering an attractive alternative to chemical preserva- & Williamson, 2000; Walle, 2004; Wiczkowski & Piskuła, tives. A small intake of these compounds and their structural 2004]. Therefore, the content and form of all quercetin de- diversity minimize the risk of food allergies.
    [Show full text]
  • Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers
    nutrients Review Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers Robert Kubina 1,* , Marcello Iriti 2 and Agata Kabała-Dzik 1 1 Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; [email protected] 2 Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +48-32-364-13-54 Abstract: Flavonols are ones of the most common phytochemicals found in diets rich in fruit and vegetables. Research suggests that molecular functions of flavonoids may bring a number of health benefits to people, including the following: decrease inflammation, change disease activity, and alleviate resistance to antibiotics as well as chemotherapeutics. Their antiproliferative, antioxidant, anti-inflammatory, and antineoplastic activity has been proved. They may act as antioxidants, while preventing DNA damage by scavenging reactive oxygen radicals, reinforcing DNA repair, disrupting chemical damages by induction of phase II enzymes, and modifying signal transduction pathways. One of such research areas is a potential effect of flavonoids on the risk of developing cancer. The aim of our paper is to present a systematic review of antineoplastic activity of flavonols in general. Special attention was paid to selected flavonols: fisetin, kaempferol, and quercetin in preclinical and in vitro studies. Study results prove antiproliferative and proapoptotic properties of flavonols Citation: Kubina, R.; Iriti, M.; with regard to head and neck cancer. However, few study papers evaluate specific activities during Kabała-Dzik, A. Anticancer Potential various processes associated with cancer progression.
    [Show full text]
  • Flavonoids from Artemisia Annua L. As Antioxidants and Their Potential Synergism with Artemisinin Against Malaria and Cancer
    Molecules 2010, 15, 3135-3170; doi:10.3390/molecules15053135 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Flavonoids from Artemisia annua L. as Antioxidants and Their Potential Synergism with Artemisinin against Malaria and Cancer 1, 2 3 4 Jorge F.S. Ferreira *, Devanand L. Luthria , Tomikazu Sasaki and Arne Heyerick 1 USDA-ARS, Appalachian Farming Systems Research Center, 1224 Airport Rd., Beaver, WV 25813, USA 2 USDA-ARS, Food Composition and Methods Development Lab, 10300 Baltimore Ave,. Bldg 161 BARC-East, Beltsville, MD 20705-2350, USA; E-Mail: [email protected] (D.L.L.) 3 Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA; E-Mail: [email protected] (T.S.) 4 Laboratory of Pharmacognosy and Phytochemistry, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium; E-Mail: [email protected] (A.H.) * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 26 January 2010; in revised form: 8 April 2010 / Accepted: 19 April 2010 / Published: 29 April 2010 Abstract: Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Since artemisinin was discovered as the active component of A. annua in early 1970s, hundreds of papers have focused on the anti-parasitic effects of artemisinin and its semi-synthetic analogs dihydroartemisinin, artemether, arteether, and artesunate. Artemisinin per se has not been used in mainstream clinical practice due to its poor bioavailability when compared to its analogs. In the past decade, the work with artemisinin-based compounds has expanded to their anti-cancer properties.
    [Show full text]
  • Fluorescence Properties of Hydroxy- and Methoxyflavones and the Effect of Shift Reagents
    Fluorescence Properties of Hydroxy- and Methoxyflavones and the Effect of Shift Reagents Otto S. Wolfbeis*a, Monowara Begum2, and Hans Geigerb a Institut für Organische Chemie, KF-Universität, A-8010 Graz, Austria b Institut für Chemie der Universität Hohenheim, D-7000 Stuttgart, West Germany Z. Naturforsch. 39b, 231 — 237 (1984); received September 23, 1983 Flavonoids, Fluorescence, Structure Elucidation, Shift Reagents The fluorescence spectra of 42 hydroxy- and methoxyflavones in methanol solution have been investigated. The following findings are considered to be useful in structure elucidation and identification of flavonoids: (a) The maxima of the absorption and fluorescence bands give, in most cases, a unique combination; (b) flavones exhibit exceptionally large Stokes’ shifts (6,800 to 10,000 cm-1); (c) most flavones fluoresce blue, but flavonols fluoresce yellow or green; the fluorescence of flavonols consists frequently of two bands; (d) fluorescence is zero or very weak for 5-hydroxyflavones; (e) 5-hydroxyflavones become increasingly fluorescent with in increasing number of oxygen functions being present in the molecule; a 3-hydroxy group has a particular beneficial effect; (f) hydroxyflavones fluoresce less intense than the corresponding methoxy­ flavones; (g) fluorescence intensity is distinctly higher in polar protic than in apolar solvents. The effects of three groups of shift reagents on the spectra has also been investigated. The first group involves water, 10% and 50% sulphuric acid. The second group consists of basic
    [Show full text]
  • Synthesis, Molecular Properties, Anti-Inflammatory and Anticancer
    Bioorganic Chemistry 89 (2019) 103009 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Synthesis, molecular properties, anti-inflammatory and anticancer activities T of novel 3-hydroxyflavone derivatives ⁎ Mansour Znatia,b, Claire Bordesc, Valérian Forquetc, Pierre Lantéric, Hichem Ben Janneta, , ⁎ Jalloul Bouajilab, a Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia b University of Toulouse, Paul-Sabatier University, Faculty of Pharmacy Toulouse, Laboratory of IMRCP UMR CNRS 5623, 118 route de Narbonne, F-31062 Toulouse, France c Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA (Institut des Sciences Analytiques), UMR CNRS n°5280, 5 rue de la Doua, F-69100 Villeurbanne, France ARTICLE INFO ABSTRACT Keywords: A new series of 3-hydroxyflavones (1–46) were synthesized according to the Claisen-Schmidt followed by Algar- 3-hydroxyflavones Flynn-Oyamada reactions (AFO) in one step. The synthesized flavonoids were characterized by 1H NMR, 13C DFT calculations NMR and DCI-HRMS. All the synthesized compounds were tested in vitro for their 15-lipoxygenase inhibitory and 15-lipoxygenase inhibitory cytotoxic activity against the human cell lines HCT-116 (Human colon carcinoma), IGROV-1 and OVCAR-3 Cytotoxic activity (human ovarian carcinoma). It has been found that the derivatives 25, 37 and 45 were the most actives against Drug likeness HCT-116 (IC = 8.0, 9.0 and 9.0 μM, respectively) and against IGROV-1 (IC = 2.4, 5.0 and 6.0 μM, respec- Molecular propreties 50 50 tively).
    [Show full text]
  • Analysis of Naturally Occurring Phenolic Compounds in Aromatic Plants by RP-HPLC Coupled to Diode Array Detector (DAD) and GC-MS After Silylation
    Foods 2013, 2, 90-99; doi:10.3390/foods2010090 OPEN ACCESS foods ISSN 2304-8158 www.mdpi.com/journal/foods Article Analysis of Naturally Occurring Phenolic Compounds in Aromatic Plants by RP-HPLC Coupled to Diode Array Detector (DAD) and GC-MS after Silylation Charalampos Proestos 1,†,* and Michael Komaitis 2,† 1 Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece 2 Laboratory of Food Chemistry and Analysis, Department of Food Science and Technology, Agricultural University of Athens, 11855, Athens, Greece; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +30-210-727-4160 (ext. 160); Fax: +30-210-727-4476. Received: 6 February 2013; in revised form: 4 March 2013 / Accepted: 5 March 2013 / Published: 13 March 2013 Abstract: The following aromatic plants of Greek origin, Origanum dictamnus (dictamus), Eucalyptus globulus (eucalyptus), Origanum vulgare L. (oregano), Mellisa officinalis L. (balm mint) and Sideritis cretica (mountain tea), were examined for the content of phenolic substances. Reversed phase HPLC coupled to diode array detector (DAD) was used for the analysis of the plant extracts. The gas chromatography-mass spectrometry method (GC-MS) was also used for identification of phenolic compounds after silylation. The most abundant phenolic acids were: gallic acid (1.5–2.6 mg/100 g dry sample), ferulic acid (0.34–6.9 mg/100 g dry sample) and caffeic acid (1.0–13.8 mg/100 g dry sample). (+)-Catechin and (−)-epicatechin were the main flavonoids identified in oregano and mountain tea.
    [Show full text]
  • Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans
    nutrients Review Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans Wijdan M. Dabeek and Melissa Ventura Marra * Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-304-293-2690 Received: 20 August 2019; Accepted: 22 September 2019; Published: 25 September 2019 Abstract: Fruit and vegetable intake has been associated with a reduced risk of cardiovascular disease. Quercetin and kaempferol are among the most ubiquitous polyphenols in fruit and vegetables. Most of the quercetin and kaempferol in plants is attached to sugar moieties rather than in the free form. The types and attachments of sugars impact bioavailability, and thus bioactivity. This article aims to review the current literature on the bioavailability of quercetin and kaempferol from food sources and evaluate the potential cardiovascular effects in humans. Foods with the highest concentrations of quercetin and kaempferol in plants are not necessarily the most bioavailable sources. Glucoside conjugates which are found in onions appear to have the highest bioavailability in humans. The absorbed quercetin and kaempferol are rapidly metabolized in the liver and circulate as methyl, glucuronide, and sulfate metabolites. These metabolites can be measured in the blood and urine to assess bioactivity in human trials. The optimal effective dose of quercetin reported to have beneficial effect of lowering blood pressure and inflammation is 500 mg of the aglycone form. Few clinical studies have examined the potential cardiovascular effects of high intakes of quercetin- and kaempferol-rich plants. However, it is possible that a lower dosage from plant sources could be effective due to of its higher bioavailability compared to the aglycone form.
    [Show full text]