Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential

Total Page:16

File Type:pdf, Size:1020Kb

Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential biomolecules Review Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential Dharambir Kashyap 1, Vivek Kumar Garg 2, Hardeep Singh Tuli 3,*, Mukerrem Betul Yerer 4 , Katrin Sak 5 , Anil Kumar Sharma 3, Manoj Kumar 6, Vaishali Aggarwal 1 and Sardul Singh Sandhu 7 1 Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India; [email protected] (D.K.); [email protected] (V.A.) 2 Department of Biochemistry, Government Medical College and Hospital (GMCH), Chandigarh 160031, Punjab, India; [email protected] 3 Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India; [email protected] 4 Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey; [email protected] 5 NGO Praeventio, Tartu 50407, Estonia; [email protected] 6 Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India; [email protected] 7 Department of Biological Sciences, RD University, Jabalpur 482001, India; [email protected] * Correspondence: [email protected]; Tel.: +91-9896619923 Received: 2 April 2019; Accepted: 30 April 2019; Published: 6 May 2019 Abstract: Despite advancements in healthcare facilities for diagnosis and treatment, cancer remains the leading cause of death worldwide. As prevention is always better than cure, efficient strategies are needed in order to deal with the menace of cancer. The use of phytochemicals as adjuvant chemotherapeutic agents in heterogeneous human carcinomas like breast, colon, lung, ovary, and prostate cancers has shown an upward trend during the last decade or so. Flavonoids are well-known products of plant derivatives that are reportedly documented to be therapeutically active phytochemicals against many diseases encompassing malignancies, inflammatory disorders (cardiovascular disease, neurodegenerative disorder), and oxidative stress. The current review focuses on two key flavonols, fisetin and quercetin, known for their potential pharmacological relevance. Also, efforts have been made to bring together most of the concrete studies pertaining to the bioactive potential of fisetin and quercetin, especially in the modulation of a range of cancer signaling pathways. Further emphasis has also been made to highlight the molecular action of quercetin and fisetin so that one could explore cancer initiation pathways and progression, which could be helpful in designing effective treatment strategies. Keywords: apoptosis; cell cycle arrest; extracellular matrix remodeling; epithelial to mesenchymal transition; signaling cascades; flavonoids; fisetin; quercetin 1. Introduction The incidence of malignant diseases and the prevalence of cancer mortality is proliferating at an amplified rate across the developed and developing countries [1]. New Globocan 2018 cancer data from 185 countries documented 18.1 million new cancer cases and 9.6 million cancer-related deaths (GALOBOCAN 2018). Although the improvement of diagnostic tools, advanced treatment approaches, and cancer awareness programs have resulted in a remarkable drop in cancer mortality in the United States, cancer prevalence is still growing continuously [1]. This is attributed to smoking Biomolecules 2019, 9, 174; doi:10.3390/biom9050174 www.mdpi.com/journal/biomolecules Biomolecules 2019, 9, x FOR PEER REVIEW 2 of 22 Biomolecules 2019, 9, 174 2 of 22 in the United States, cancer prevalence is still growing continuously [1]. This is attributed to smoking habits,habits, alcohol alcohol consumption, consumption, unhealthy unhealthy food, food, stress, stress, and and no no or insuor insufficientfficient exercise exercise amongst amongst people people in thein developedthe developed and developingand developing world [world2]. There [2]. are There different are different therapeutic therapeutic modalities modalities for cancer treatmentfor cancer available,treatment including available, surgery, including radiation surgery, therapy, radiat chemotherapy,ion therapy, immunotherapy,chemotherapy, immunotherapy, and targeted therapy. and Tamoxifentargeted therapy. in estrogen Tamoxifen receptor-positive in estrogen breast receptor-pos tumor, Herceptinitive breast in tumor, Her 2 +Herceptinbreast cancer, in Her epithelial 2+ breast growthcancer, factor epithelial receptor growth (EGRF) factor inhibitors receptor (erlotinib, (EGRF) afatinib, inhibitors osimertinib, (erlotinib, and afatinib, fefitinib) inosimertinib, non-small celland lungfefitinib) carcinoma in non-small (NSCLC), cellK-ras lunginhibitors carcinoma (cetuximab) (NSCLC), inK-ras colon inhibitors cancer, B-Raf(cetuximab)inhibitors in colon (vemurafenib, cancer, B- dabrafenib,Raf inhibitors and (vemurafenib, encorafenib) inda melanoma,brafenib, and and encorafenib) gleevec for inABL-BCL melanoma,(translocation and gleevec of forc-ABL ABL-BCLgene sequences(translocation from of chromosome c-ABL gene 9sequences into the BCR fromgene chromosome on chromosome 9 into the 22) BCR positive gene leukemia on chromosome have been 22) usedpositive widely leukemia in clinical have settings been used [3]. However,widely in cancerclinical cells settings can evade[3]. However, death by cancer gaining cells resistance can evade to variousdeath by treatment gaining modalities,resistance to which various has treatment diluted the modalities, expected which outcome has ofdiluted these the therapies expected [4– 6outcome]. This hasof these necessitated therapies the [4–6]. discovery This has of alternativenecessitated treatment the discovery strategies of alternative to cure cancer treatment patients. strategies Numerous to cure incancer vitro studiespatients. in Numerous conjunction in with vitro ex studies vivo studies in conj haveunction exemplified with ex vivo the anti-cancerstudies have eff exemplifiedects of natural the productsanti-cancer such effects as flavonoids of natural [7 products–10]. Specifically, such as flavonoids fisetin and [7–10]. quercetin, Specifically, two well-studied fisetin and flavonoids, quercetin, havetwo shownwell-studied remarkable flavonoids, anti-cancer have eshownffects inremarkable multiple in anti-cancer vitro and ineffects vivo insystems. multiple Di ffinerent vitro events and in invivo cancer systems. initiation Different and progressionevents in cancer such initiation as apoptosis, and extracellularprogression such matrix as remodeling,apoptosis, extracellular epithelial tomatrix mesenchymal remodeling, transition, epithelial cancer-associated to mesenchymal inflammation, transition, andcancer-associated oxidative stress inflammation, can be controlled and byoxidative fisetin andstress quercetin can be controlled [11,12]. In by vitro fisetinstudies and quer showedcetin [11,12]. that fisetin In vitro and studies quercetin showed could that also fisetin act againstand quercetin chemotherapeutic could also resistance act against in several chemothera cancerspeutic [13,14 ].resistance Numerous in cancer-related several cancers molecules [13,14]. suchNumerous as anti-apoptotic cancer-related and pro-apoptotic molecules such proteins, as anti-apoptotic cyclin-dependent and kinasespro-apoptotic (CDKs), proteins, cyclins, matrixcyclin- metalloproteinasesdependent kinases (MMPs),(CDKs), cyclins, and growth matrix factors metallopr haveoteinases been shown (MMPs), to be and modulated growth factors by fisetin have andbeen quercetinshown to (Figures be modulated1 and2). by Quercetin fisetin and can quercetin also bind (F toigures a G protein 1 and coupled2). Quercetin receptors can toalso activate bind to a Ga G proteinprotein and coupled calcium-dependent receptors to activate pathway a G which protei leadsn and to calcium-dependent tumor cell death [13 pathway–15]. In addition, which leads these to phytochemicalstumor cell death also [13–15]. exhibit In addition, synergistic these effects phytoche wheremicals they enhance also exhibit the synergistic anti-tumor effects activity where of many they anti-cancerenhance the drug anti-tumor molecules activity (Table 1of). Themany present anti-can reviewcer drug highlights molecules the important (Table 1). anti-cancerThe present roles review of quercetinhighlights and the fisetin important in various anti-cancer in-vitro roles/ex-vivo of querceti studies.n and fisetin in various in-vitro/ex-vivo studies. FigureFigure 1. 1.Showing showing regulation regulation of of di differentfferent cancer cancer related related processes processes under under the the e ffeffectect of of flavonoids. flavonoids. All All thesethese processes processes are are crucial crucial in in carcinogenesis carcinogenesis and and play play key key roles roles for for cancer cancer initiation initiation and and progression. progression. FlavonoidsFlavonoids e ffeffectivelyectively act act at at these these processes processes to to inhibit inhibit cancer cancer growth. growth. Biomolecules 2019, 9, x FOR PEER REVIEW 3 of 22 Biomolecules 2019, 9, 174 3 of 22 Figure 2. Figure showing regulationregulation ofof didifferentfferent cancer cancer associated associated signaling signaling pathways. pathways. Deregulation Deregulation of ofthese these pathways pathways has has been been determined determined in humanin human malignancies. malignancies. Flavonoids Flavonoids control control the the deregulation deregulation of ofthese these pathways pathways and and cancer cancer proliferation. proliferation. Table 1. Synergistic effects. Table 1. Synergistic effects. PhytochemicalPhytochemical
Recommended publications
  • Neuroprotective Effect of Fisetin Through Suppression of IL-1R/TLR Axis and Apoptosis in Pentylenetetrazole-Induced Kindling in Mice
    ORIGINAL RESEARCH published: 21 July 2021 doi: 10.3389/fneur.2021.689069 Neuroprotective Effect of Fisetin Through Suppression of IL-1R/TLR Axis and Apoptosis in Pentylenetetrazole-Induced Kindling in Mice Saima Khatoon 1, Nidhi Bharal Agarwal 2*, Mohammed Samim 3 and Ozair Alam 4 1 Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India, 2 Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India, 3 Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India, 4 Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India Epilepsy is a complex neurological disorder, characterized by frequent electrical activity in brain regions. Inflammation and apoptosis cascade activation are serious neurological sequelae during seizures. Fisetin (3, 3′,4′,7-tetrahydroxyflavone), a flavonoid molecule, is considered for its effective anti-inflammatory and anti-apoptotic properties. This study Edited by: investigated the neuroprotective effect of fisetin on experimental epilepsy. For acute Mohd Farooq Shaikh, studies, increasing current electroshock (ICES) and pentylenetetrazole (PTZ)-induced Monash University, Malaysia seizure tests were performed to evaluate the antiseizure activity of fisetin. For the chronic Reviewed by: Shuai Guo, study, the kindling model was established by the administration of PTZ in subconvulsive Huazhong Agricultural dose (25 mg/kg, i.p.). Mice were treated with fisetin (5, 10, and 20 mg/kg, p.o.) to study University, China Syed Shadab Raza, its probable antiseizure mechanism. The kindled mice were evaluated for seizure scores. ERA’s Lucknow Medical College, India Their hippocampus and cortex were assessed for neuronal damage, inflammation, and *Correspondence: apoptosis.
    [Show full text]
  • Anti-Inflammatory Effects of Kaempferol, Myricetin, Fisetin and Ibuprofen in Neonatal Rats
    Guo & Feng Tropical Journal of Pharmaceutical Research August 2017; 16 (8): 1819-1826 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v16i8.10 Original Research Article Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats Peng Guo and Yun-Yun Feng* The Second Pediatric Department of Internal Medicine, Zhumadian Central Hospital, Zhumadian, No. 747 Zhonghua Road, Zhumadian, Henan Province 463000, China *For correspondence: Email: [email protected]; Tel/Fax: 0086-0396-2726840 Sent for review: 9 September 2016 Revised accepted: 14 July 2017 Abstract Purpose: To investigate the anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in rat pups. Methods: The expression levels of cyclooxygenase (COX)-1, COX-2 and tumour necrosis factor-α (TNF-α) were determined by western blotting; the inhibition of these proteins by plant compounds was evaluated. In addition, a computational simulation of the molecular interactions of the compounds at the active sites of the proteins was performed using a molecular docking approach. Absorption, distribution, metabolism and excretion (ADME) and toxicity analysis of the plant compounds was also performed. Results: Kaempferol, myricetin and fisetin inhibited the activities of COX-1, COX-2 and TNF-α by 70–88 %. The computational simulation revealed the molecular interactions of these compounds at the active sites of COX-1, COX-2 and TNF-α. ADME and toxicity analysis demonstrated that the three plant compounds were safe. Conclusion: The data obtained indicate that myricetin, kaempferol and fisetin exert anti-inflammatory effects in neonatal rats, with fewer side effects than those of ibuprofen.
    [Show full text]
  • A Placebo-Controlled, Pseudo-Randomized, Crossover Trial of Botanical Agents for Gulf War Illness: Resveratrol (Polygonum Cuspid
    International Journal of Environmental Research and Public Health Article A Placebo-Controlled, Pseudo-Randomized, Crossover Trial of Botanical Agents for Gulf War Illness: Resveratrol (Polygonum cuspidatum), Luteolin, and Fisetin (Rhus succedanea) Kathleen S. Hodgin 1, Emily K. Donovan 2 , Sophia Kekes-Szabo 3 , Joanne C. Lin 4, Joseph Feick 5, Rebecca L. Massey 6, Timothy J. Ness 7 and Jarred W. Younger 1,* 1 Department of Psychology, University of Alabama at Birmingham, CH 233, 1300 University Boulevard, Birmingham, AL 35233, USA; [email protected] 2 Department of Psychology, Virginia Commonwealth University, White House, 806 West Franklin Street, Richmond, VA 23284, USA; [email protected] 3 Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA; [email protected] 4 School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; [email protected] 5 Double Oak Mountain Pharmacy, 5510 Highway 280, Suite 123, Birmingham, AL 35242, USA; [email protected] 6 UAB School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Citation: Hodgin, K.S.; Donovan, Birmingham, AL 35223, USA; [email protected] 7 Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, E.K.; Kekes-Szabo, S.; Lin, J.C.; Feick, BMR2-208, 901 19th Street South, Birmingham, AL 35205, USA; [email protected] J.; Massey, R.L.; Ness, T.J.; Younger, * Correspondence: [email protected]; Tel.: +1-205-975-5907 J.W. A Placebo-Controlled, Pseudo-Randomized, Crossover Trial Abstract: A chronic multi-symptom illness of unknown etiology, Gulf War Illness (GWI) affects of Botanical Agents for Gulf War Illness: Resveratrol (Polygonum 175,000 to 250,000 veterans of the Gulf War.
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • And Season-Dependent Pattern of Flavonol Glycosides In
    www.nature.com/scientificreports OPEN Age‑ and season‑dependent pattern of favonol glycosides in Cabernet Sauvignon grapevine leaves Sakina Bouderias1,2, Péter Teszlák1, Gábor Jakab1,2 & László Kőrösi1* Flavonols play key roles in many plant defense mechanisms, consequently they are frequently investigated as stress sensitive factors in relation to several oxidative processes. It is well known that grapevine (Vitis vinifera L.) can synthesize various favonol glycosides in the leaves, however, very little information is available regarding their distribution along the cane at diferent leaf levels. In this work, taking into consideration of leaf position, the main favonol glycosides of a red grapevine cultivar (Cabernet Sauvignon) were profled and quantifed by HPLC–DAD analysis. It was found that amount of four favonol glycosides, namely, quercetin-3-O-galactoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside and kaempferol-3-O-glucuronide decreased towards the shoot tip. Since leaf age also decreases towards the shoot tip, the obtained results suggest that these compounds continuously formed by leaf aging, resulting in their accumulation in the older leaves. In contrast, quercetin-3-O-glucuronide (predominant form) and quercetin-3-O-rutinoside were not accumulated signifcantly by aging. We also pointed out that grapevine boosted the favonol biosynthesis in September, and favonol profle difered signifcantly in the two seasons. Our results contribute to the better understanding of the role of favonols in the antioxidant defense system of grapevine. Flavonoids are very important secondary metabolites, having various functional roles in diferent physiological and developmental processes in plants1–3. Flavonols as a group of favonoids are mainly accumulated in epidermal cells of plant tissues in response to solar radiation 4, 5, to flter the UV-B light while allowing to pass the photo- synthetically active visible light 6–8.
    [Show full text]
  • Molecular and Therapeutic Effects of Fisetin Flavonoid in Diseases
    J Basic Clin Health Sci 2020; 4:190-196 Journal of Basic and Clinical Health Sciences https://doi.org/10.30621/jbachs.2020.1171 Review Molecular and Therapeutic Effects of Fisetin Flavonoid in Diseases Ezgi Nur Sari1 , Yasemin Soysal1 1Dokuz Eylül University Department of Molecular Medicine, Izmir, Turkey Address for Correspondence: Yasemin Soysal, E-mail: [email protected] Received: 14.04.2020; Accepted: 22.07.2020; Available Online Date: 15.10.2020 ©Copyright 2020 by Dokuz Eylül University, Institute of Health Sciences - Available online at www.jbachs.org Cite this article as: Sari EN, Soysal Y. Molecular and Therapeutic Effects of Fisetin Flavonoid in Diseases. J Basic Clin Health Sci 2020; 4:190-196. ABSTRACT Chronic inflammation is defined as a prolonged and impaired immune response leading to a wide range of physiological and pathological conditions, for instance; abnormalities in nervous system, heart diseases, diabetes, obesity, lung diseases, immunological diseases, and cancer. In order to suppress chronic inflammatory diseases, inflammation should be prevented and treatments without side effects are needed at this time. Traditional medicine and dietary restriction have been used in treatment by people for ages. Today, the WHO (the World Health Organization) data reveals that approximately 60% of the world’s population and about 80% of the population of the developing countries have turned to herbal medicines. In this context, nutraceuticals attract attention because of their being safe, economical, easily accessible and in low toxicity, and their usages are gradually increasing. Recently, fisetin, a new flavonoid among nutritional supplements, has attracted considerable attention. Fisetin, a bioactive flavonol found in fruits and vegetables, has chemo-preventive, anti-metastatic, neuroprotective, antioxidant, and anti-inflammatory effects.
    [Show full text]
  • Flavonoids, Dietary-Derived Inhibitors of Cell Proliferation and in Vitro Angiogenesis' Theodorefotsis,2Michaels
    CANCER RESEARCH 57. 2916-2921. July 15. 19971 Flavonoids, Dietary-derived Inhibitors of Cell Proliferation and in Vitro Angiogenesis' TheodoreFotsis,2MichaelS. Pepper,ErkanAktas,StephenBreit,3Sirpa Rasku,HermanAdlercreutz, Kristiina Wähälä,Roberto Montesano, and Lothar Schweigerer@ Division of Hema:olog@ and Oncologe. Children ‘sHospital, Ruprecht-Karls Universir-v, INF 150, 69120 Heidelberg, Germany (T. F.. E. A., S. B., L SI: Institute of Histology and Embryology. Departnient of Morphology. Unis'ersitv Medical Center, 1121 Geneva 4, Switzerland (M. S. P., R. MI; Department of C'hemistrv, Organic C'hemistry Laboratory, P. 0. Box 55. University of Helsinki, FIN-IXXJI4Helsinki. Finland (S. R., K. WI: Department of Clinical Chemistry. Meilahti Hospital. University of Helsinki. SF-00290 Helsinki. Finland jH. A.! ABSTRACT diseases (8); however, an increased risk for these diseases accompa nies a change toward a Westernized diet (9). These data indicate that Consumption of a plant-based diet can prevent the development and certain plant-derived dietary groups might contain compounds that progression of chronic diseases associated with extensive neovasculariza exert antimitotic and antitumorigenic effects, thereby offering anti tion, including solid malignant tumors. In previous studies, we have shown that the plant-derived isoflavonoid genistein is a potent inhibitor of cell cancer protection to individuals consuming such diets. Identification proliferation and in vitroangiogenesis. In the present study, we report that and characterization
    [Show full text]
  • Electronic Supplementary Information Switching Enzyme Specificity from Phosphate to Resveratrol Glucosylation
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017 Electronic Supplementary Information Switching enzyme specificity from phosphate to resveratrol glucosylation Michael Kraus, Clemens Grimm, Jürgen Seibel Correspondence to: [email protected] [email protected] This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S61 Tables S1 to S26 Electronic Supplementary Information outline 1. Materials and Methods ............................................................................................................ 3 1.1 Materials ........................................................................................................................... 3 1.2 Production of nigerose (as previously described)2 ........................................................... 3 1.3 Production, isolation and characterization of glucosylated polyphenols ......................... 3 1.4 Acetylation of Quercetin-3’,7-α-D-diglucoside ............................................................... 4 1.5 Cloning expression and purification of BaSP wt, BaSP Q345F and BaSP D192N/ Q345F 4 1.6 Construction of BaSP Q345F ........................................................................................... 4 1.7 Construction of BaSP D192N/Q345F .............................................................................. 4 1.8 Cloning Expression and Purification BaSP variants ........................................................ 4 1.9 Crystallization,
    [Show full text]
  • Phytomedicine-Based Potent Antioxidant, Fisetin Protects CNS-Insult LPS-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment
    Journal of Clinical Medicine Article Phytomedicine-Based Potent Antioxidant, Fisetin Protects CNS-Insult LPS-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment Ashfaq Ahmad y, Tahir Ali y, Shafiq Ur Rehman y and Myeong Ok Kim * Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; [email protected] (A.A.); [email protected] (T.A.); shafi[email protected] (S.U.R.) * Correspondence: [email protected]; Tel.: +82-55-772-1345; Fax: +82-55-772-2656 These authors contributed equally to this work. y Received: 16 May 2019; Accepted: 11 June 2019; Published: 14 June 2019 Abstract: Phytomedicine based natural flavonoids have potent antioxidant, anti-inflammatory, and neuroprotective activities against neurodegenerative diseases. The aim of the present study is to investigate the potent neuroprotective and antioxidant potential effects of fisetin (natural flavonoid) against central nervous system (CNS)-insult, lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), neuroinflammation, neurodegeneration, and synaptic/memory deficits in adult mice. The mice were injected intraperitoneally (i.p.) with LPS (250 µg/kg/day for 1 week) and a fisetin dosage regimen (20 mg/kg/day i.p. for 2 weeks, 1 week pre-treated to LPS and 1 week co-treated with LPS). Behavioral tests, and biochemical and immunofluorescence assays were applied. Our results revealed that fisetin markedly abrogated the LPS-induced elevated ROS/oxidative stress and activated phosphorylated c-JUN N-terminal Kinase (p-JNK) in the adult mouse hippocampus. Fisetin significantly alleviated LPS-induced activated gliosis. Moreover, fisetin treatment inhibited LPS-induced activation of the inflammatory Toll-like Receptors (TLR4)/cluster of differentiation 14 (CD14)/phospho-nuclear factor kappa (NF-κB) signaling and attenuated other inflammatory mediators (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL1-β), and cyclooxygenase (COX-2).
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI Chemical Activity Count (+)-AROMOLINE 1 (+)-CATECHIN 5 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-PRAERUPTORUM-A 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-ACETOXYCOLLININ 1 (-)-APOGLAZIOVINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-EPICATECHIN 4 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 Chemical Activity Count 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,8-CINEOLE 1 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-GINGEROL 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 14-ACETOXYCEDROL 1 14-O-ACETYL-ACOVENIDOSE-C 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H-
    [Show full text]
  • Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols As Revealed by Molecular Dynamics Simulations and MM/ PBSA Free Energy Calculations
    RESEARCH ARTICLE Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/ PBSA Free Energy Calculations Sharad Verma1, Sonam Grover2, Chetna Tyagi1, Sukriti Goyal3, Salma Jamal3, Aditi Singh4, Abhinav Grover1* 1 School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, 2 Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India, 3 Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India, 4 Department of Biotechnology, TERI University, Vasant Kunj, New Delhi, India * [email protected] Abstract p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits OPEN ACCESS its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of poly- Citation: Verma S, Grover S, Tyagi C, Goyal S, phenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free Jamal S, Singh A, et al. (2016) Hydrophobic energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics was found to be stable throughout MD simulation. Luteolin showed the highest negative Simulations and MM/PBSA Free Energy binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. Calculations. PLoS ONE 11(2): e0149014. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have doi:10.1371/journal.pone.0149014 major contribution in binding free energy.
    [Show full text]
  • Dietary Flavonoids Fisetin, Luteolin and Their Derived Compounds
    Food Chemistry 141 (2013) 2253–2262 Contents lists available at SciVerse ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania (Leishmania) amazonensis infection Leticia Correa Manjolin a, Matheus Balduíno Goncalves dos Reis a, Claudia do Carmo Maquiaveli b, ⇑ Osvaldo Andrade Santos-Filho c, Edson Roberto da Silva d, a Programa de Iniciação Científica da Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil b Programa de Pós-Graduação em Fisiologia, Departamento de Fisiologia, Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900 Monte Alegre, Ribeirão Preto, SP CEP 14049-900, Brazil c Laboratório de Modelagem Molecular, Departamento de Síntese Orgânica, Farmanguinhos/Fundação Oswaldo Cruz, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil d Laboratório de Imunologia de Parasitas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil article info abstract Article history: Fisetin, quercetin, luteolin and 7,8-hydroxyflavone show high activity in Leishmania cultures and present Received 26 October 2012 low toxicity to mammalian cells. In this work, the structural aspects of 13 flavonoids were analyzed for Received in revised form 22 March 2013 their inhibition of the arginase enzyme from Leishmania (Leishmania) amazonensis. A higher potency of Accepted 8 May 2013 arginase inhibition was observed with fisetin, which was four and ten times greater than that of quercetin Available online 18 May 2013 and luteolin, respectively.
    [Show full text]