Redalyc.Antiprotozoal Activity of Flavonoids Isolated from Mimosa Tenuiflora (Fabaceae-Mimosoideae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Psychoactive Plants Used in Designer Drugs As a Threat to Public Health
From Botanical to Medical Research Vol. 61 No. 2 2015 DOI: 10.1515/hepo-2015-0017 REVIEW PAPER Psychoactive plants used in designer drugs as a threat to public health AGNIESZKA RONDZISTy1, KAROLINA DZIEKAN2*, ALEKSANDRA KOWALSKA2 1Department of Humanities in Medicine Pomeranian Medical University Chłapowskiego 11 70-103 Szczecin, Poland 2Department of Stem Cells and Regenerative Medicine Institute of Natural Fibers and Medicinal Plants Kolejowa 2 62-064 Plewiska, Poland *corresponding author: e-mail: [email protected] Summary Based on epidemiologic surveys conducted in 2007–2013, an increase in the consumption of psychoactive substances has been observed. This growth is noticeable in Europe and in Poland. With the ‘designer drugs’ launch on the market, which ingredients were not placed on the list of controlled substances in the Misuse of Drugs Act, a rise in the number and diversity of psychoactive agents and mixtures was noticed, used to achieve a different state of mind. Thus, the threat to the health and lives of people who use them has grown. In this paper, the authors describe the phenomenon of the use of plant psychoactive sub- stances, paying attention to young people who experiment with new narcotics. This article also discusses the mode of action and side effects of plant materials proscribed under the Misuse of Drugs Act in Poland. key words: designer drugs, plant materials, drugs, adolescents INTRODUCTION Anthropological studies concerning preliterate societies have shown that psy- choactive substances have been used for ages. On the individual level, they help to Herba Pol 2015; 61(2): 73-86 A. Rondzisty, K. -
Erowid Extracts — Number 13 / November 2007 Erowid Extracts Table of Contents Number 13, November 2007
Erowid® Extracts D OCUMENTING THE C OMPLEX R ELATIONSHIP B ETWEEN H UMANS AN D P SYCHOACTIVES November 2007 Number 13 “The problem to be faced is: how to combine loyalty to one’s own tradition with reverence for different traditions.” — Abraham J. Heschel The Absinthe Enigma • Wormwood and Thujone • P. viridis vs. M. tenuiflora Varieties of Nicotine Experience • Khat Legal Challenges LETTERS & FEEDBACK Hi there Erowid staff, First of all, thank you for such Awesome website! A more thoughtfully a wonderful site. I’m not a serious compiled compendium of information I’m just writing to say how much I recreational user, but having some on the topic of psychoactives does appreciate your website. My father chronic pain issues, I tend to experiment not exist—at least not for the public showed it to me several years ago a little to find ways to alleviate the at large. Bravo. and it’s been fun to watch it grow pain (aside from standard Rx’s from in quality and content over the — ANOnymOus doctors). […] years. My dad adjunctly teaches a Letter to Erowid psychopharmacology class in town and Keep up the good work. Although always lists Erowid on his syllabus of some might look at Erowid negatively, recommended readings. I’m a college I look at it positively, in the sense that After looking up information on the student and am surprised, once I I’m smart enough to research things antitussive properties of DXM, how start talking to other kids, how many before I try them, and hopefully keep shocked I was to find your website, of them know about the information myself from an early demise. -
Mimosa Tenuiflora (Willd.) Poiret Under Water Deficit and Rewatering
Journal of Agricultural Studies ISSN 2166-0379 2019, Vol. 7, No. 4 Gas Exchange of Mimosa tenuiflora (Willd.) Poiret Under Water Deficit and Rewatering Francisco Jose Basilio Alves, Antonio Lucineudo Oliveira Freire (Corresponding Author) Dept. of Forest Engineering, Federal University of Campina Grande, Brazil Received: Aug. 26, 2019 Accepted: Oct. 29, 2019 Published: Oct. 30, 2019 doi:10.5296/jas.v7i4.15338 URL: https://doi.org/10.5296/jas.v7i4.15338 Abstract This research aimed to evaluate the physiological responses of Mimosa tenuiflora plants submitted to variable water availability conditions during the nursery stage. Twelve-month-old plants kept in plastic pots containing 5 kg of the substrate composed of the subsoil soil mixture and bovine manure (2:1) were submitted to two treatments: irrigated (control) and water stress, which was imposed through the suspension of irrigation, rewatering after seven days of stress. The relative water content (RWC) and stomatal parameters were evaluated. The M. tenuiflora plants responded quickly to the irrigation suspension, promoting the closure of the stomata, occurring reduction in stomatal conductance, transpiration rate and photosynthesis. The instantaneous efficiency in water use of plants under water deficit remained high only until the middle of the period when irrigation was suspended, and then declined until the last day of the water deficit. After rehydration, the plants showed recovery in all evaluated parameters, indicating that the level of stress imposed did not cause irreversible damages in the cells and tissues. Keywords: water stress, drought tolerance, water relations 1. Introduction Mimosa tenuiflora (Willd.) Poiret.), popularly named ‘jurema-preta’, is one of the most commonly woody species in the Brazilian semiarid, belonging to the Mimosaceae family. -
Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1]. -
Mimosa Tenuiflora) (Willd.) Poir
ETHNOGRAPHIC NOTES ON THE USE OF JUREM A (MIMOSA TENUIFLORA) (WILLD.) POIR. BY THE PANKARARE INDIANS (NORTHEAST BRAZIL). Submetido em: 02/11/2014. Aprovado em: 10/12/2014. Edilson Alves dos Santos1, Juracy Marques dos Santos1, Antônio Euzébio Goulart Santana2 1 Universidade do Estado da Bahia Campus VIII, Rua do Bom Conselho, 179, CEP 48.600-000 Paulo Afonso-BA Brazil. 2 Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Laboratório de Produtos Naturais – 57.0720970, Maceió-AL - Brazil. Corresponding author: Edilson Alves dos Santos, Departamento de Educação, Universidade do Estado da Bahia, Campus VIII, Rua do Bom Conselho, 179, CEP: 48.600-000 Paulo Afonso, BA Brazil. The Pankarare Indians are located in one of the richest areas of biodiversity in the northeastern state of Bahia in Brazi, located within the region known as the Raso da Catarina, in a quadrilateral bounded by the cities of Paulo Afonso, Jeremoabo, Canudos and Macururé. This is one of the driest regions of the state, where the caatinga (savanna) and the basins of the San Francisco and Vaza-Barris rivers served as the stage for the Cangaço (social banditry in northeast Brazil), the Canudos Revolt and the development of the hydro-based energy industry. The climate is semi-arid and the vegetation predominantly caatinga (savanna), with deciduous woody vegetation dominated by prickly seagrass, especially cacti and bromeliads (Costa Neto, 1999). More precisely, this indigenous group is found concentrated in Brejo do Burgo, 40 km from Paulo Afonso, on the northern border of Raso. A small portion of the indigenous people inhabit the Serrota (6 km south of Brejo), below Chico (Bandeira, 2003). -
Texto Completo (Pdf)
Etnobiología 8: 1-10, 2010 ETNOBOTÂNICA HISTÓRICA DA JUREMA NO NORDESTE BRASILEIRO Talita Maria Araújo Silva1 Valeria Veronica Dos Santos2 Argus Vasconcelos De Almeida3 1Estudante do Curso de Licenciatura em Ciências Biológicas da Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Biologia. Avenida Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, Pernambuco, CEP: 52171-900 2Estudante do Curso de Licenciatura em Ciências Biológicas da Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Biologia. Avenida Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, Pernambuco, CEP: 52171-900 3Professor Associado do Departamento de Biologia da Universidade Federal Rural de Pernambuco. Avenida Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, Pernambuco, Brasil. CEP: 52171-900 [email protected] RESUMO Através da Etnobotânica é possível ter acesso a inúmeras informações que esclarecem e enriquecem os saberes a cerca dos recursos vegetais da natureza que nos rodeiam e as suas formas de utilização caracterizados pelas práticas culturais. No contexto cultural, essa ciência define a jurema como a “droga mágica” do Nordeste. Pode ser ainda mencionada como uma planta, uma bebida ou uma entidade. Atualmente, no Nordeste brasileiro são utilizadas três espécies de juremas pelos povos indígenas e nos cultos afro-brasileiros: Mimosa tenuiflora (Willd.), Mimosa verrucosa Benth. e Vitex agnus-castus L. Dessa forma, a jurema projetou-se como uma das expressivas plantas do repertório tradicional do sertanejo. Palavras-chave: etnobotânica histórica, jurema, cultura ABSTRACT By the ethnobotanical approach it is possible to have access ofinformation that clarifies and enriches the knowledge about the botanical resources ofnature around us and their ways ofuse within cultural practices. -
And Season-Dependent Pattern of Flavonol Glycosides In
www.nature.com/scientificreports OPEN Age‑ and season‑dependent pattern of favonol glycosides in Cabernet Sauvignon grapevine leaves Sakina Bouderias1,2, Péter Teszlák1, Gábor Jakab1,2 & László Kőrösi1* Flavonols play key roles in many plant defense mechanisms, consequently they are frequently investigated as stress sensitive factors in relation to several oxidative processes. It is well known that grapevine (Vitis vinifera L.) can synthesize various favonol glycosides in the leaves, however, very little information is available regarding their distribution along the cane at diferent leaf levels. In this work, taking into consideration of leaf position, the main favonol glycosides of a red grapevine cultivar (Cabernet Sauvignon) were profled and quantifed by HPLC–DAD analysis. It was found that amount of four favonol glycosides, namely, quercetin-3-O-galactoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside and kaempferol-3-O-glucuronide decreased towards the shoot tip. Since leaf age also decreases towards the shoot tip, the obtained results suggest that these compounds continuously formed by leaf aging, resulting in their accumulation in the older leaves. In contrast, quercetin-3-O-glucuronide (predominant form) and quercetin-3-O-rutinoside were not accumulated signifcantly by aging. We also pointed out that grapevine boosted the favonol biosynthesis in September, and favonol profle difered signifcantly in the two seasons. Our results contribute to the better understanding of the role of favonols in the antioxidant defense system of grapevine. Flavonoids are very important secondary metabolites, having various functional roles in diferent physiological and developmental processes in plants1–3. Flavonols as a group of favonoids are mainly accumulated in epidermal cells of plant tissues in response to solar radiation 4, 5, to flter the UV-B light while allowing to pass the photo- synthetically active visible light 6–8. -
Arquivo2747 1.Pdf
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS DA SAÚDE DEPARTAMENTO DE CIÊNCIAS FARMACÊUTICAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS DISSERTAÇÃO DE MESTRADO AVALIAÇÃO DE ATIVIDADES FARMACOLÓGICAS DE Mimosa tenuiflora (Willd.) Poir. Lucileide Batista de Oliveira Recife – PE Fevereiro, 2011 LUCILEIDE BATISTA DE OLIVEIRA AVALIAÇÃO DE ATIVIDADES FARMACOLÓGICAS DE Mimosa tenuiflora (Willd.) Poir. Dissertação apresentada ao Programa de Pós- graduação em Ciências Farmacêuticas da Universidade Federal de Pernambuco, como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas. Área de Concentração: Avaliação e Obtenção de Produtos Naturais e Bioativos Orientadora: Profª Dra. Ivone Antônia de Souza Coorientadores: Profº Dr. Haroudo Satiro Xavier Prof° Dr. Edvaldo Rodrigues de Almeida Recife-PE Fevereiro, 2011 Oliveira, Lucileide Batista de Avaliação de atividades farmacológicas de Mimosa tenuiflora (Willd.) Poir. / Lucileide Batista de Oliveira. – Recife: O Autor, 2011. 105 folhas: il., fig. tab. Quadro. Graf.; 30 cm. Orientador: Ivone Antônia de Souza Coorientadores: Haroudo Satiro Xavier e Edvaldo Rodrigues de Almeida Dissertação (mestrado) – Universidade Federal de Pernambuco. CCS. Ciências Farmacêuticas, 2011. Inclui bibliografia e apêndice. 1. Mimosa tenuiflora. 2. Fitoquímica. 3. Toxidade aguda. 4. Sistema nervoso central. I. Souza, Ivone Antônia de. II. Xavier, Haroudo Satiro. III. Almeida, Edvaldo Rodrigues de. IV. Título. UFPE 615.7 CDD (20. Ed.) CCS2011-122 UNIVERSIDADE FEDERAL DE PERNAMBUCO -
Current Neuropharmacology, 2019, 17, 108-128 REVIEW ARTICLE
108 Send Orders for Reprints to [email protected] Current Neuropharmacology, 2019, 17, 108-128 REVIEW ARTICLE ISSN: 1570-159X eISSN: 1875-6190 Ayahuasca: Psychological and Physiologic Effects, Impact Factor: Pharmacology and Potential Uses in Addiction and 4.068 Mental Illness BENTHAM SCIENCE Jonathan Hamilla, Jaime Hallaka,b, Serdar M. Dursuna and Glen Bakera,* aDepartment of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; bDepartment of Neurosciences and Behavior and National Institute of Science and Technology (Translational Medicine), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil Abstract: Background: Ayahuasca, a traditional Amazonian decoction with psychoactive proper- ties, is made from bark of the Banisteriopsis caapi vine (containing beta-carboline alkaloids) and leaves of the Psychotria viridis bush (supplying the hallucinogen N,N-dimethyltryptamine, DMT). Originally used by indigenous shamans for the purposes of spirit communication, magical experi- ences, healing, and religious rituals across several South American countries, ayahuasca has been incorporated into folk medicine and spiritual healing, and several Brazilian churches use it routinely to foster a spiritual experience. More recently, it is being used in Europe and North America, not only for religious or healing reasons, but also for recreation. Objective: To review ayahuasca’s behavioral effects, possible adverse effects, proposed mechanisms A R T I C L E H I S T O R Y of action and potential clinical uses in mental illness. Received: July 26, 2017 Method: We searched Medline, in English, using the terms ayahuasca, dimethyltryptamine, Banis- Revised: November 07, 2017 teriopsis caapi, and Psychotria viridis and reviewed the relevant publications. -
Chemical Composition of Traditional and Analog Ayahuasca
Journal of Psychoactive Drugs ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujpd20 Chemical Composition of Traditional and Analog Ayahuasca Helle Kaasik , Rita C. Z. Souza , Flávia S. Zandonadi , Luís Fernando Tófoli & Alessandra Sussulini To cite this article: Helle Kaasik , Rita C. Z. Souza , Flávia S. Zandonadi , Luís Fernando Tófoli & Alessandra Sussulini (2020): Chemical Composition of Traditional and Analog Ayahuasca, Journal of Psychoactive Drugs, DOI: 10.1080/02791072.2020.1815911 To link to this article: https://doi.org/10.1080/02791072.2020.1815911 View supplementary material Published online: 08 Sep 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujpd20 JOURNAL OF PSYCHOACTIVE DRUGS https://doi.org/10.1080/02791072.2020.1815911 Chemical Composition of Traditional and Analog Ayahuasca Helle Kaasik a, Rita C. Z. Souzab, Flávia S. Zandonadib, Luís Fernando Tófoli c, and Alessandra Sussulinib aSchool of Theology and Religious Studies; and Institute of Physics, University of Tartu, Tartu, Estonia; bLaboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil; cInterdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil ABSTRACT ARTICLE HISTORY Traditional ayahuasca can be defined as a brew made from Amazonian vine Banisteriopsis caapi and Received 17 April 2020 Amazonian admixture plants. Ayahuasca is used by indigenous groups in Amazonia, as a sacrament Accepted 6 July 2020 in syncretic Brazilian religions, and in healing and spiritual ceremonies internationally. -
Descripción, Distribución, Anatomía, Composición Química Y Usos De Mimosa Tenuiflora (Fabaceae-Mimosoideae) En México
Rev. Biol. Trop., 48(4): 939-954, 2000 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Descripción, distribución, anatomía, composición química y usos de Mimosa tenuiflora (Fabaceae-Mimosoideae) en México Sara Lucía Camargo-Ricalde Universidad Autónoma Metropolitana-Iztapalapa; División de Ciencias Biológicas y de la Salud; Departamento de Biología; Apdo. Postal 55-535; 09340 México, D. F. Fax 58-04-46-88; correo electrónico [email protected] Recibido 28-IX-1999. Corregido 11-V-2000. Aceptado 16-VI-2000. Abstract: Because of some catastrophic events which occurred in Mexico during the 1980 decade, the utiliza- tion of “tepescohuite” bark against skin wounds and burns was popularized. The media manipulated the lack of available information about its medical properties and gave erroneous information to the society propagating a lot of myths. Therefore, the aim of this paper is to determine its taxonomic identity and to study the distribution, bark and wood anatomy of this species, and to determine its actual and historic uses, and the compilation of the information about bark pharmacology and toxicity. Its taxonomic identity is established as Mimosa tenuiflora (Willd.) Poir. (Fabaceae-Mimosoideae). It blooms and fructifies from November to June, occurring in Mexico (the states of Oaxaca and Chiapas), Guatemala, Honduras, El Salvador, Nicaragua, Panama, Colombia, Venezuela and Brazil, at altitudes of 0-1110 (-1520) m. In Mexico, it is found in dry forests, thorny thickets, Pinus and Pinus-Quercus forests, and in M. tenuiflora pure thickets, along roads and in resting or abandoned culture lands. This species has an aggregate distribution in the forests and a uniform one in the thickets. -
Synthesis, in Vitro Biological Evaluation, and Oxidative Transformation of New Flavonol Derivatives: the Possible Role of the Phenyl-N,N- Dimethylamino Group
Article Synthesis, in Vitro Biological Evaluation, and Oxidative Transformation of New Flavonol Derivatives: The Possible Role of the Phenyl-N,N- Dimethylamino Group Peter Szabados-Furjesi 1, David Pajtas 2, Aliz Barta 2, Evelin Csepanyi 1, Attila Kiss-Szikszai 3, Arpad Tosaki 4 and Istvan Bak 1,* 1 Department of Bioanalytical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen H-4032, Hungary; [email protected] (P.S.-F.); [email protected] (E.C.) 2 Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen H- 4032, Hungary; [email protected] (D.P.); [email protected] (A.B.) 3 Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen Debrecen H-4032, Hungary; [email protected] 4 Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen H-4032, Hungary; [email protected] * Correspondence: [email protected]; Tel./Fax: 00-36-52-255-586 Academic Editor: Luciano Saso Received: 13 November 2018; Accepted: 29 November 2018; Published: 30 November 2018 Abstract: Six new flavonols (6a–f) were synthesized with Claisen–Schmidt and Suzuki reactions and they were fully characterized by spectroscopic methods. In order to evaluate their antioxidant activities, their oxygen radical absorption capacity and ferric reducing antioxidant power were measured, along with their free radical scavenging activity against 2,2’-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazylradicals. In addition, their cytotoxicity on H9c2 cardiomyoblast cells was also assessed by a 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide assay.