Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation UNIVERSITA’ DEGLI STUDI DI ROMA TOR VERGATA Dipartimento di Ingegneria Civile e Ingegneria Informatica GeoInformation Doctorate Monitoring Forests: Parameters Estimation and Vegetation Classification with Multisource Remote Sensing Data A thesis submitted in partial fulfillment for the PhD degree (Dottore di Ricerca) Candidate: MSc. Gaia Vaglio Laurin Supervisors: Prof. Leila Guerriero, Ing. Fabio Del Frate January 2014 Abstract The work presented in this thesis covers two main areas of forest research with remote sensing data: the classification of forested landscapes, conducted in a tropical and an Alpine montane region, and the estimation of parameters of forestry interest, namely above ground biomass and the Shanon-Wiener arboreal diversity index. The thesis first introduces the need of monitoring forested landscapes, their changes and their resources, illustrating objectives, motivations and areas of innovation in the present research. The material and methods adopted in the research, with specifications on the study areas, and a short thesis outline, are also presented in the Introduction chapter. A short overview of techniques and sensors used in classification and estimation of the two forest parameters of interest is presented in Chapter 2, followed by the identification of some of the most recent challenges in remote sensing applied to forest studies, which have been object of the present thesis. In Chapter 3 the first case study is introduced, as published in Remote Sensing of Environment, addressing the integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground biomass. Chapter 4 presents the research paper as published by the International Journal of Remote Sensing, dealing with discrimination of vegetation types in alpine sites with ALOS PALSAR, RADARSAT-2 and lidar derived information. Chapter 5 illustrates the third case study, which is about optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa, according to the paper published in the International Journal of Applied Earth Observation and Geoinformation. In Chapter 6, the case study addresses the aboveground biomass estimation in an Africa tropical forest with lidar and hyperspectral data, a paper at its second review in the ISPRS Journal of Photogrammetry and Remote Sensing. The last case study is presented in Chapter 7, and deals with biodiversity mapping in a tropical West African forest with hyperspectral data, and is also a paper at its second review in PlosONE. Finally, the research summary and conclusions are presented in Chapter 8. 2 Acknowledgments These research years have been among the most exciting and interesting of my life, but this study effort was only possible thanks to the many persons who supported me. First, all my colleagues of the EO lab, with whom I shared ideas, hypothesis, laughs, hopes, troubles, and more and more for a long time: Lino, Giorgio, Chiara, Irene, Antonio, Matteo, Daniele, Reza, Ruggero, Andrei, Simone, Zina, Cristina. Three persons really inspired me more than others, and tried to transmit me the ‘sense’ of scientific research: Riccardo Valentini (La Tuscia University) who guided me with his vision and pushed and supported me toward invaluable scientific experiences; Qi Chen (University of Hawaii) who hosted and assisted me in all the ways before, during and after my months at the University of Hawaii; David Coomes (University of Cambridge) who always provided opportunity for research, exchange and collaboration. All of them gave me their trust, patience and time, and I really hope I will have a chance to keep on sharing and collaborating with them. My supervisors at the University of Rome Tor Vergata, Leila Guerriero and Fabio Del Frate, offered continuous assistance, encouragement and support during these years. Finally I have to thank my family: all my love to my mother who followed me on the other side of the globe and to my daughter with her sweetness and patience. 3 Table of Contents Abstract 2 Acknowledgments 3 Table of contents 4 Chapter 1 - Introduction 6 1.1 Thesis objectives, motivations and innovation 7 1.2 Materials and methods 15 1.2.1 The Sierra Nevada, U.S.A (study site 1) 16 1.2.2 The Alps, Bozen, Italy (study site 2) 16 1.2.3 Gola Rainforest National Park, Sierra Leone (study site 3) 17 1.3 Thesis outline 18 1.4 References 19 Chapter 2 – Remote sensing of forested landscapes 22 2.1 Land cover mapping 23 2.2 Estimation of forest parameters 25 2.2.1 Biomass estimation 26 2.2.2 Biodiversity estimation 29 2.3 Recent challenges in forest studies 30 2.3.1 Ancillary data usefulness in AGB LiDAR-based estimations 30 2.3.2 Ancillary data usefulness in discriminating vegetation types 32 2.3.3 Data fusion: evaluating the benefits of optical and RADAR 33 sensors integration for tropical land cover classification 2.3.4 Data fusion: evaluating the integration of LiDAR and 35 hyperspectral sensors for AGB estimation 2.3.5 Evaluating the impact of field data geolocation in 37 LiDAR-based AGB estimates 2.4 References 38 Chapter 3 – Integration of airborne LiDAR and vegetation types derived 47 from aerial photography for mapping aboveground live biomass – Research paper as published in Remote Sensing of Environment. 4 Chapter 4 – Discrimination of vegetation types in alpine sites with 58 ALOS PALSAR, RADARSAT-2, and LiDAR-derived information – Research paper as published in International Journal of Remote Sensing. Chapter 5 – Optical and SAR sensor synergies for forest and land 77 cover mapping in a tropical site in West Africa – Research paper as published in International Journal of Applied Earth Observation and Geoinformation. Chapter 6 – Above ground biomass estimation in an African tropical 88 forest with LiDAR and hyperspectral data - Research paper as submitted to Journal of Photogrammetry and Remote Sensing. Chapter 7 – Biodiversity mapping in a tropical West African forest 131 with airborne hyperspectral data - Research paper as submitted to Plos One. Chapter 8 – Research summary 158 8.1 Challenges addressed 158 8.2 Conclusion 165 8.3 References 167 Appendix 1 – Curriculum Vitae and publications list 169 5 Chapter 1 Introduction Forest is defined as land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ. It does not include land that is predominantly under agricultural or urban land use (FAO 2010). Forest ecosystems are characterized by the dominant vegetation type, stand structure, climate, soil type, and topography; local climate determine the biome level division in tropical, boreal and temperate forests. In the last three decades the international community has debated on climate change and global warming, and since the 1994 the United Nation Framework Convention on Climate Change entered into force, with the ultimate aim of preventing dangerous human interference with the climate system. Carbon dioxide has constantly increased in the last decades (Fig. 1) and the CO2 emissions are the first responsible for greenhouse effects, modifying the radiative balance of the earth, which results in increased heat absorbed and trapped into the atmosphere and thus in global warming (NOAA 2007) . Figure 1 – The Keeling curve: atmospheric carbon dioxide concentration in parts per million in the last 50 years (NOAA 2007). 6 1. Introduction Oceans are the major sinks of carbon on earth, but soil and vegetation are the first responsible – through photosynthesis – of CO2 removal from atmosphere (IPCC/GRID- Arendal 2001), with about half of forest biomass made by carbon. Deforestation is considered the responsible of about 10-20% of global annual greenhouse gases emissions. Considering the constraints of reducing emissions from industrialized countries and the increasing emission from emerging economies (i.e. Brazil, India), to avoid deforestation and forest degradation is possibly the best option to quickly and efficiently reduce carbon emissions and mitigate on-going climate change. This is one of the main reasons behind the increase in forest studies in recent years. Monitoring of forest resources is therefore essential and it can be realized by means of retrieval and classification of remote sensing data, which allow generalizing to large areas the local in situ observations. Estimation of forest biophysical and ecological parameters, among which are found woody biomass and forest biodiversity, is important for forest inventory, management and for scientific purposes (Parresol, 1999). Classification of forests, discrimination of different forest types, and mapping their extent is also essential to management and conservation activities and to assess degradation. Both retrieval and classification activities, based on remote sensing data, are needed for the full understanding of ecosystem functioning in a changing climate scenario, and its management and conservation. 1.1 Thesis objectives, motivations, innovation The main goal of this research is to innovatively use remote sensing data to produce information on important forest characteristics, such as forest parameters and classification into distinguishable vegetation classes. The main motivation behind this research is the desire to contribute to forest conservation by means of improving methods and tools for its monitoring, bringing ecology and engineering issues closer. Forests are complex ecosystems, having different and often site-specific characteristics. The
Recommended publications
  • Roberto Cazzolla Gatti – Brief CV
    Roberto Cazzolla Gatti – Brief CV Roberto Cazzolla Gatti is Associate Professor in Ecology and Biodiversity at the Biological Institute and Researcher at the Laboratory of Ecology and Biological Diversity of the Tomsk State University, in Russia. He also works as a freelance documentary photographer and wildlife filmmaker. He participates to geographic and scientific explorations of some of the most remote places of Earth. He studied at a Science High School and then graduated in Biology (Bachelor’s Degree), defending a thesis in Marine Ecology (“Demersal Mediterranean marine resources monitoring”), and with highest honours in Environmental and evolutionary biology (Master’s Degree MSc) at the University of Bari, Italy, defending a thesis in Anthropology (“Primate visual system and stereopsis”). He holds a Ph.D. in Forest Ecology earned at the University of Tuscia in Viterbo, studying the tropical forests of Africa and their biodiversity (Ph.D. in Tropical Forest Ecology), defending a thesis titled “The anthropogenic impacts on tropical forest ecology and dynamics”. He also holds with merit a Postgraduate Master’s Degree in International Policies and Global Environmental Protection earned at the Tuscia University in collaboration to the Italian Ministry for the Environment, defending a thesis on “Africa: biodiversity and climate change”. He attended a diploma from the School of Specialization in “Biodiversity and Ecosystem Services” at the Potsdam Institute for Climate Impact Research (PIK), Germany with a training in Peyresq, Alpes de Haute-Provence, France. He is specialized in Biological Diversity analysis and Theoretical-experimental Ecology (with applications in Ethology and Evolution). Moreover, he further developed his studies in Philosophy of Biology, Bioethics and Biochemistry of nutrition.
    [Show full text]
  • The Woods of Liberia
    THE WOODS OF LIBERIA October 1959 No. 2159 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST PRODUCTS LABORATORY FOREST SERVICE MADISON 5, WISCONSIN In Cooperation with the University of Wisconsin THE WOODS OF LIBERIA1 By JEANNETTE M. KRYN, Botanist and E. W. FOBES, Forester Forest Products Laboratory,2 Forest Service U. S. Department of Agriculture - - - - Introduction The forests of Liberia represent a valuable resource to that country-- especially so because they are renewable. Under good management, these forests will continue to supply mankind with products long after mined resources are exhausted. The vast treeless areas elsewhere in Africa give added emphasis to the economic significance of the forests of Liberia and its neighboring countries in West Africa. The mature forests of Liberia are composed entirely of broadleaf or hardwood tree species. These forests probably covered more than 90 percent of the country in the past, but only about one-third is now covered with them. Another one-third is covered with young forests or reproduction referred to as low bush. The mature, or "high," forests are typical of tropical evergreen or rain forests where rainfall exceeds 60 inches per year without pro­ longed dry periods. Certain species of trees in these forests, such as the cotton tree, are deciduous even when growing in the coastal area of heaviest rainfall, which averages about 190 inches per year. Deciduous species become more prevalent as the rainfall decreases in the interior, where the driest areas average about 70 inches per year. 1The information here reported was prepared in cooperation with the International Cooperation Administration. 2 Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
    [Show full text]
  • Mandrillus Leucophaeus Poensis)
    Ecology and Behavior of the Bioko Island Drill (Mandrillus leucophaeus poensis) A Thesis Submitted to the Faculty of Drexel University by Jacob Robert Owens in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2013 i © Copyright 2013 Jacob Robert Owens. All Rights Reserved ii Dedications To my wife, Jen. iii Acknowledgments The research presented herein was made possible by the financial support provided by Primate Conservation Inc., ExxonMobil Foundation, Mobil Equatorial Guinea, Inc., Margo Marsh Biodiversity Fund, and the Los Angeles Zoo. I would also like to express my gratitude to Dr. Teck-Kah Lim and the Drexel University Office of Graduate Studies for the Dissertation Fellowship and the invaluable time it provided me during the writing process. I thank the Government of Equatorial Guinea, the Ministry of Fisheries and the Environment, Ministry of Information, Press, and Radio, and the Ministry of Culture and Tourism for the opportunity to work and live in one of the most beautiful and unique places in the world. I am grateful to the faculty and staff of the National University of Equatorial Guinea who helped me navigate the geographic and bureaucratic landscape of Bioko Island. I would especially like to thank Jose Manuel Esara Echube, Claudio Posa Bohome, Maximilliano Fero Meñe, Eusebio Ondo Nguema, and Mariano Obama Bibang. The journey to my Ph.D. has been considerably more taxing than I expected, and I would not have been able to complete it without the assistance of an expansive list of people. I would like to thank all of you who have helped me through this process, many of whom I lack the space to do so specifically here.
    [Show full text]
  • Pdf the United Nations, Rome, Italy, Pp
    Research Article ii FF o o r r e e s s t t doi: 10.3832/ifor1779-008 Biogeosciences and Forestry vol. 9, pp. 354-362 Does degradation from selective logging and illegal activities differently impact forest resources? A case study in Ghana Gaia Vaglio Laurin (1-3), Degradation, a reduction of the ecosystem’s capacity to supply goods and ser- William D Hawthorne (2), vices, is widespread in tropical forests and mainly caused by human distur- Tommaso Chiti (1-3), bance. To maintain the full range of forest ecosystem services and support the (1) development of effective conservation policies, we must understand the over- Arianna Di Paola , all impact of degradation on different forest resources. This research investi- (1) Roberto Cazzolla Gatti , gates the response to disturbance of forest structure using several indicators: Sergio Marconi (3), soil carbon content, arboreal richness and biodiversity, functional composition Sergio Noce (1), (guild and wood density), and productivity. We drew upon large field and re- Elisa Grieco (1), mote sensing datasets from different forest types in Ghana, characterized by Francesco Pirotti (4), varied protection status, to investigate impacts of selective logging, and of (1-3) illegal land use and resources extraction, which are the main disturbance Riccardo Valentini causes in West Africa. Results indicate that functional composition and the overall number of species are less affected by degradation, while forest struc- ture, soil carbon content and species abundance are seriously impacted, with resources distribution reflecting the protection level of the areas. Remote sensing analysis showed an increase in productivity in the last three decades, with higher resiliency to change in drier forest types, and stronger producti- vity correlation with solar radiation in the short dry season.
    [Show full text]
  • Cytotaxonomic Studies in the Euphorbiaceae, Subtribe
    CYTOTAXONOMICSTUDIES IN THE EUPHORBIACEAE, SUBTRIBE PHYLLANTHINAE' GRADY L. WEBSTER and J.R. ELLIS Departmentof Biological Sciences, Purdue University,Lafayette, Indiana and Galton Laboratory,University College, London, England ABSTRACT WEBSTER, GRADY L. (Purdue U., Lafayette,Ind.), and J. R. ELLIS, Cytotaxonomicstudies in the Euphorbiaceae, subtribePhyllanthinae. Amer. Jour. Bot. 49: (1): 1X18. Illus. 1962.-Chromosome numbersare reportedfor 18 species of mostlyWest Indian Euphorbiaceae, subtribe Phyllanthinae, 13 of these for the first time (including the firstpublished count for the genus Margaritaria). For 4 species, a number differentfrom previous determinationshas been recorded. The base chromosomenumber in Breynia, Fluggea, Margaritaria,and most species of Phyllanthusappears to be 13. However, in Phyllanthus subg. Isocladus haploid numbers of 8 and 18 were observed.One species, Phyllanthuspulcher, is a sterile hexaploid (n - 39) of presumablyhybrid origin. The cytological data do not support Perry's suggestionthat annual taxa are primitivein the Euphorbiaceae. THE 7,000 species of the famllyEuphorbiaceae regarded as unequivocallyconfirmed. The few presentsuch a vegetativeand floraldiversity that workerswho have studiedtaxa of the subtribein- systematictreatment of the grouphas alwaysbeen clude Perry (1943), Raghavan (1957), Raghavan controversial.Not only have there been many and Arora (1958), JanakiAmmal and Raghavan schools of thoughtin delimltingtaxa withinthe (1958), and Thombre(1959). family,but its recognitionas a naturalgroup has In the presentcontribution we wish to report been seriouslyquestioned on the basis that it is the resultsof cytologicalobservations on 18 spe- polyphyleticin origin.Hutchinson (1959) suggests cies belongingto 4 generaof subtribe Phyllanthinae, derivationof the familyfrom at least 4 different most of which are eithernative to or cultivated orders(Blixales, Tiliales, Malvales, and Celastrales). in the West Indies.
    [Show full text]
  • SG Flora Survey
    H & B Consulting Immeuble HAJAL CENTER – 6Th Floor – Suite 604 H & B Consulting USA LLC P O Box 2986 Yaoundé Cameroon 4800 Hampden Lane - Suite 200 (237) 22 22 38 90 – (237) 99 92 67 07 Bethesda, MD 20814 [email protected] Phone: 1-240-752-1564 www.handb-consulting.com Fax: 1-240-482-3759 [email protected] REPORT FLORA SURVEY IN THE MUNDEMBA, TOKO AND NGUTI SGSOC PROJECT AREA By Dr. George B CHUYONG and Moses N. SAINGE Dept of Plant and Animal Sciences, University of Buea, POB 63 Buea, SWR Cameroon Revised by Dr. Nicolas C. SONGWE Associate professor of Forestry, Bamenda University of Science and Technology; Former WWF Korup Project Research Coordinator October 2010 Table of Contents 1. INTRODUCTION ......................................................................................................... 3 2. VEGETATION ASSESSMENT ................................................................................. 4 3. PROTECTED AREAS AROUND THE PROJECT AREA ......................................... 6 4. POTENTIAL IMPACTS, ENVIRONMENTAL MANAGEMENT MEASURES AND MITIGATIONS ................................................................................................................. 7 5. SELECTED REFERENCES ..................................................................................... 7 Table 1: GPS coordinate Altitude and number of species recorded at selected focal points in the three blocks of the project area. ................................................................... 4 Plate 1: Pictures of leaves
    [Show full text]
  • The Big Plan
    World CONSERVATION THE MAGAZINE OF THE INTERNATIONAL UNION FOR CONSERVATION OF NATURE January 2011 The Big Plan Ocean futures Curbing wildlife trade Love not loss WORLD CONSERVATION Volume 41, No. 1 January 2011 Rue Mauverney 28 1196 Gland, Switzerland Contents Tel +41 22 999 0000 Fax +41 22 999 0002 [email protected] Your space 3 www.iucn.org/worldconservation The turning tide 4 Editor: Anna Knee Managing Editor: John Kidd Production and distribution: Cindy Craker NEW CHALLENGES Contributing editors: A new idealism 5 Deborah Murith Stephanie Achard We need to unplug from virtual reality and reconnect with nature if we have a chance to save biodiversity, says Jeffrey A. McNeely Design: L’IV Comm Sàrl, Le Mont-sur-Lausanne, Getting tough on trade 7 Switzerland Richard Thomas describes the armoury of tools needed to tackle escalating levels of wildlife Printed by: Sro-Kundig, Geneva, Switzerland trade Opinions Staying power 8 Opinions expressed in this publication do not David Huberman examines the rapid rise of the Green Economy concept necessarily refl ect the views of IUCN, its Council or its Members. Comments and suggestions NEW APPROACHES Please e-mail the World Conservation team at [email protected], or telephone us on +41 22 999 0116. There’s no going back 10 Sue Mainka on why conservationists may need to rethink their priorities Back issues An easy win 12 Back issues of World Conservation are available at: www.iucn.org/worldconservation Don’t ignore the cost-effective solution that protected areas offer in tackling climate change and saving biodiversity, says Ernesto Enkerlin-Hoefl ich Paper Feel the love 14 This magazine is printed on FSC paper.
    [Show full text]
  • Article Is Available Thank the Three Anonymous Reviewers, Contributors to the Short Com- Online At
    Earth Syst. Sci. Data, 13, 3927–3950, 2021 https://doi.org/10.5194/essd-13-3927-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations Maurizio Santoro1, Oliver Cartus1, Nuno Carvalhais2,3, Danaë M. A. Rozendaal4,5,6, Valerio Avitabile7, Arnan Araza4, Sytze de Bruin4, Martin Herold4, Shaun Quegan8, Pedro Rodríguez-Veiga9,10, Heiko Balzter9,10, João Carreiras8, Dmitry Schepaschenko11,12,13, Mikhail Korets14, Masanobu Shimada15, Takuya Itoh16, Álvaro Moreno Martínez17,18, Jura Cavlovic19, Roberto Cazzolla Gatti20, Polyanna da Conceição Bispo9,21, Nasheta Dewnath22, Nicolas Labrière23, Jingjing Liang24, Jeremy Lindsell25,26, Edward T. A. Mitchard27, Alexandra Morel28, Ana Maria Pacheco Pascagaza9,21, Casey M. Ryan27, Ferry Slik29, Gaia Vaglio Laurin30, Hans Verbeeck31, Arief Wijaya32, and Simon Willcock33 1Gamma Remote Sensing, 3073 Gümligen, Switzerland 2Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745 Jena, Germany 3Departamento de Ciências e Engenharia do Ambiente, DCEA, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 4Laboratory of Geo-Information Science and Remote Sensing, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands 5Plant Production Systems Group, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, the Netherlands 6Centre for Crop Systems Analysis,
    [Show full text]
  • Biodiversity Is Autocatalytic
    Ecological Modelling 346 (2017) 70–76 Contents lists available at ScienceDirect Ecological Modelling j ournal homepage: www.elsevier.com/locate/ecolmodel Biodiversity is autocatalytic a,∗ b c Roberto Cazzolla Gatti , Wim Hordijk , Stuart Kauffman a Biological Diversity and Ecology Laboratory, Bio-Clim-Land Centre of Excellence, Tomsk State University (TSU), Tomsk, Russia b Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria c Institute for Systems Biology, Seattle, WA, USA a r t i c l e i n f o a b s t r a c t Article history: A central question about biodiversity is how so many species can coexist within the same ecosystem. The Received 14 October 2016 idea that ecological niches are critical for the maintenance of species diversity has received increasing sup- Received in revised form 5 December 2016 port recently. However, a niche is often considered as something static, preconditioned, and unchanging. Accepted 6 December 2016 With the “Biodiversity-related Niches Differentiation Theory” (BNDT), we recently proposed that species themselves are the architects of biodiversity, by proportionally increasing the number of potentially Keywords: available niches in a given ecosystem. Autocatalytic sets Along similar lines, but independently, the idea of viewing an ecosystem of interdependent species as Ecological niches Biodiversity an emergent autocatalytic set (a self-sustaining network of mutually “catalytic” entities) was suggested, where one (group of) species enables the existence of (i.e., creates niches for) other species. Here, we show that biodiversity can indeed be considered a system of autocatalytic sets, and that this view offers a possible answer to the fundamental question of why so many species can coexist in the same ecosystem.
    [Show full text]
  • Impact of Climate Change on Vegetative Species Diversity in Masvingo Province, Zimbabwe
    IMPACT OF CLIMATE CHANGE ON VEGETATIVE SPECIES DIVERSITY IN MASVINGO PROVINCE, ZIMBABWE by LAZARUS CHAPUNGU Submitted in accordance with the requirements for the degree of DOCTOR OF PHILOSOPHY in the subject ENVIRONMENTAL SCIENCES at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: Dr L T NHAMO AUGUST 2017 Dedication To my late mum and dad for giving me my first pen. To my wife Dorcas and our children Makanaka, Rukudzo and Tadadisa for being my source of inspiration. To my brothers and sisters Collins, Patience and Abigail for socio-psychological support. i Declaration I Chapungu Lazarus hereby declare that the dissertation/thesis, which I hereby submit for the degree of PhD Environmental Science at the University of South Africa, is my own work and has not previously been submitted by me for a degree at this or any other institution. I declare that the dissertation /thesis does not contain any written work presented by other persons whether written, pictures, graphs or data or any other information without acknowledging the source. I declare that where words from a written source have been used the words have been paraphrased and referenced and where exact words from a source have been used the words have been placed inside quotation marks and referenced. I declare that I have not copied and pasted any information from the Internet, without specifically acknowledging the source and have inserted appropriate references to these sources in the reference section of the dissertation or thesis. I declare that during my study I adhered to the Research Ethics Policy of the University of South Africa, received ethics approval for the duration of my study prior to the commencement of data gathering, and have not acted outside the approval conditions.
    [Show full text]
  • Theoretical Biology Forum
    THEORETICAL BIOLOGY FORUM 104 · 1/2011 PISA · ROMA FABRIZIO SERRA EDITORE MMXI Autorizzazione del Tribunale: in corso di nuova registrazione. Già registrata presso il Tribunale di Genova: registrazione n. 22/96 del 2 maggio 1996. Direttore responsabile: Fabrizio Serra * Amministrazione e abbonamenti Fabrizio Serra editore® Casella postale n. 1, succursale n. 8, I 56123 Pisa Uffici di Pisa: Via Santa Bibbiana 28, I 56127 Pisa, tel. +39 050542332, fax +39 050574888, [email protected] Uffici di Roma: Via Carlo Emanuele I, I 00185 Roma, tel. +39 0670493456, fax +39 0670476605, [email protected] * I prezzi ufficiali di abbonamento cartaceo e/o Online sono consultabili presso il sito Internet della casa editrice www.libraweb.net. Print and/or Online official subscription rates are available at Publisher’s website www.libraweb.net. I pagamenti possono essere effettuati tramite versamento su c.c.p. n. 17154550 indirizzato a: Fabrizio Serra editore® o tramite carta di credito (American Express, Eurocard, Mastercard, Visa). * Proprietà riservata · All rights reserved © Copyright 2011 by Fabrizio Serra editore®, Pisa · Roma. www.libraweb.net Sono rigorosamente vietati la riproduzione, la traduzione, l’adattamento anche parziale o per estratti, per qualsiasi uso e con qualsiasi mezzo effettuati, compresi la copia fotostatica, il microfilm, la memorizzazione elettronica, ecc. senza la preventiva autorizzazione della Fabrizio Serra editore®, Pisa · Roma. Ogni abuso sarà perseguito a norma di legge. ISSN 0035-6050 CONTENTS editorial Silvano Traverso,
    [Show full text]
  • (Ntfp) in Liberia
    AN ENVIRONMENTAL AND ECONOMIC APPROACH TO THE DEVELOPMENT AND SUSTAINABLE EXPLOITATION OF NON-TIMBER FOREST PRODUCTS (NTFP) IN LIBERIA By LARRY CLARENCE HWANG A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Plant Biology Written under the direction of James E. Simon And approved by _________________________________________________ _________________________________________________ _________________________________________________ _________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION An Environmental and Economic Approach to the Development and Sustainable Exploitation of Non-Timber Forest Products (NTFP) in Liberia by LARRY C. HWANG Dissertation Director: James E. Simon Forests have historically contributed immensely to influence patterns of social, economic, and environmental development, supporting livelihoods, aiding construction of economic change, and encouraging sustainable growth. The use of NTFP for the livelihood and subsistence of forest community dwellers have long existed in Liberia; with use, collection, and local/regional trade in NTFP still an ongoing activities of rural communities. This study aimed to investigate the environmental and economic approaches that lead to the sustainable management exploitation and development of NTFP in Liberia. Using household information from different socio-economic societies, knowledge based NTFP socioeconomics population, as well as abundance and usefulness of the resources were obtained through the use of ethnobotanical survey on use of NTFP in 82 rural communities within seven counties in Liberia. 1,165 survey participants, with 114 plant species listed as valuable NTFP. The socioeconomic characteristics of 255 local community people provided collection practice information on NTFP, impact and threats due to collection, and their income generation.
    [Show full text]