Histo-Anatomical Aspects Referring to the Vegetative Organs on Some Halophytes from Romania
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JABG25P097 Barker
JOURNAL of the ADELAIDE BOTANIC GARDENS AN OPEN ACCESS JOURNAL FOR AUSTRALIAN SYSTEMATIC BOTANY flora.sa.gov.au/jabg Published by the STATE HERBARIUM OF SOUTH AUSTRALIA on behalf of the BOARD OF THE BOTANIC GARDENS AND STATE HERBARIUM © Board of the Botanic Gardens and State Herbarium, Adelaide, South Australia © Department of Environment, Water and Natural Resources, Government of South Australia All rights reserved State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia © 2012 Board of the Botanic Gardens & State Herbarium, Government of South Australia J. Adelaide Bot. Gard. 25 (2011) 97–103 © 2012 Department of Environment, Water and Natural Resources, Govt of South Australia Name changes associated with the South Australian census of vascular plants for the calendar year 2011 R.M. Barker & P.J. Lang and the staff and associates of the State Herbarium of South Australia State Herbarium of South Australia, DENR Science Resource Centre, P.O. Box 2732, Kent Town, South Australia 5071 Email: [email protected]; [email protected] Keywords: Census, plant list, new species, introductions, weeds, native species, nomenclature, taxonomy. The following tables show the changes, and the phrase names in Eremophila, Spergularia, Caladenia reasons why they were made, in the census of South and Thelymitra being formalised, e.g. Eremophila sp. Australian vascular plants for the calendar year 2011. Fallax (D.E.Symon 12311) was the informal phrase The census is maintained in a database by the State name for the now formally published Eremophila fallax Herbarium of South Australia and projected on the Chinnock. -
Corn Spurry Spergula Arvensis L
corn spurry Spergula arvensis L. Synonyms: Spergula arvensis L. ssp. arvensis L., S. arvensis L. ssp. sativa (Boenn.) Celak., S. arvensis L. var. sativa (Boenn.) Mert. & Koch, Spergula linicola Boreau ex Nyman, S. maxima Weihe, S. sativa Boenn. S. vulgaris Boenninghausen Other common names: devil’s gut, field spurry, pickpurse, sandweed Family: Caryophyllaceae Invasiveness Rank: 32 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Description and is similar to corn spurry. It can be distinguished Corn spurry is an annual plant that grows 15 to 61 cm from corn spurry by the lack of thin, membranous, dry tall from a taproot. Plants are covered in glandular hairs. stipules (Hultén 1968). Stems are branched at the base, somewhat sticky, and erect or prostrate. Leaves are thread-like, fleshy, 1 ¼ to 5 cm long, and arranged in whorls of 6. Stipules are membranous. Inflorescences are loose clusters of few to many flowers at the ends of branches. Flowers are small with 5 white petals, 5 sepals, 5 or 10 stamens, and 5 styles. Fruits are round capsules with many dull black, flattened seeds (Hultén 1968, Welsh 1974, Royer and Dickinson 1999, Whitson et al. 2000). Flowers of Spergula arvensis L. Photo by Rasbak. Similar species: Sand spurry (Spergularia rubra) is an introduced plant that resembles corn spurry in its growth habit. -
Caryophyllaceae
Reduction of the androecium in Spergularia marina (Caryophyllaceae) A.A. Sterk Hugo de Vries-Laboratorium, Universiteit van Amsterdam SUMMARY A study of the variation in the number of fertile stamens in flowers of Spergularia marina revealed that this number fluctuates between 0 and 10 but is usually 2 to 5. A statistical ana- lysis showed that reduction did not take place at random, because certain stamens tend to dis- appear more often than other ones, the progressive reduction also proceeding according to certain rules. Although the causal explanation for these phenomana can only be a tentative one for the time being, the statistical data are put on record in order to draw the attention to the occurrence of such singular processes. A study of androecial variability in Spergularia marina (L.) Griseb. showed that the number of fertile stamens per flower fluctuates between 0 and 10. Flowers with an optimum development of the androecium (with two whorls of 5 fertile stamens) are very rare. The majority of the flowers have 2 to 5 fertile androecial elements and evidently the reduction of the androecium has progres- sed rather far in this species (Sterk 1968, 1969). It is a question whether the reduction proceeds according to a certain pattern first certain androecial or at random. In the case configurations may be expected to occur in relatively high frequencies, but in the second no such preference of occurrence of special configurations may be anticipated. The possibility to study the reduction is provided by the circumstance that, at least in the populations studied, all phases of a progressive reduction are represented, i.e., all intermediatestages between flowers without fertile stamens and flowers with 10 fertile stamens occur. -
Notes on the Distribution of Spergularia Echinosperma and the Newly Recognized Species S
Neilreichia 9: 269–282 (2018) Notes on the distribution of Spergularia echinosperma and the newly recognized species S. kurkae in Austria Pavel Kúr,1 Clemens Pachschwöll2 & Milan Štech3 1 Department of Botany, National Museum, Cirkusová 1740, 193 00 Praha, Czech Republic; e-mail: [email protected] 2 Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria; e-mail: [email protected] 3 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; e-mail: [email protected] Abstract: Spergularia echinosperma represents a rare species of dwarf rush communities (veg- etation class Isoëto-Nano-Juncetea) bound to exposed bottoms of fishponds, sediment accumula- tions along rivers, exposed banks of oxbows, lakes and water reservoirs. Despite considered an endemic of Central Europe, S. echinosperma has only been poorly studied biosystematically until recently. Latest studies, however, radically changed our view of the species’ evolution and taxon- omy. Spergularia kurkae – an allotetraploid hybrid between diploid S. echinosperma and tetraploid S. rubra described in 1989 – has been demonstrated to be a stabilized self-seeding species. It grows in similar habitats as S. echinosperma but mostly occurs as a complete orphan, i.e., in the absence of any of the parental species. In addition, a new subspecies within S. echinosperma – S. echino- sperma subsp. albensis – has been described recently. Mapping the distributions of these only re- cently distinguished taxa has so far been limited to the Czech Republic and parts of Germany, and information on their occurrence in other Central European countries is still lacking. -
Distributions of Vascular Plants in the Czech Republic. Part 2
Preslia 88: 229–322, 2016 229 Distributions of vascular plants in the Czech Republic. Part 2 Rozšíření cévnatých rostlin v České republice. Část 2 Zdeněk K a p l a n1,JiříDanihelka1, 2,JitkaŠtěpánková1, Libor E k r t3, Jindřich C h r t e k Jr.1,JiříZázvorka1,VítGrulich2, Radomír Ř e p k a4, Jan P r a n č l1, 5,MichalDucháček6,PavelKúr3, Kateřina Š u m b e r o v á1 &JosefBrůna1 1Institute of Botany, The Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Repub- lic, e-mail: [email protected], [email protected], [email protected], zazvorka @ibot.cas.cz, [email protected], [email protected], [email protected], [email protected]; 2Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected], [email protected]; 3 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic, email: [email protected], [email protected]; 4Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, CZ-613 00 Brno, Czech Republic, e-mail: [email protected]; 5Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic; 6Department of Botany, National Museum, Cirkusová 1740, CZ-193 00 Praha 9-Horní Počernice, Czech Republic, e-mail: [email protected] Kaplan Z., Danihelka J., Štěpánková J., Ekrt L., Chrtek J. Jr., Zázvorka J., Grulich V., Řepka R., Prančl J., Ducháček M., Kúr P., Šumberová K. -
Microstructural Features of Seeds of Spergularia Marina (L.) Griseb., (Caryophyllaceae)
Pak. J. Bot., 42(3): 1423-1427, 2010. MICROSTRUCTURAL FEATURES OF SEEDS OF SPERGULARIA MARINA (L.) GRISEB., (CARYOPHYLLACEAE) RABIA ASMA MEMON1*, G. RAZA BHATTI2, SHAHIDA KHALID3 MUHAMMAD ARSHAD4, AMEER AHMED MIRBAHAR5 AND 6 RAHMATULLAH QURESHI 1Institute of Plant Sciences, University of Sindh, Jamshoo, Pakistan 2Department of Botany, Shah Abdul Latif University, Khairpur, Sindh, Pakistan 3Weed Science, National Agriculture Research centre, Islamabad, Pakistan 4Cholistan Institute of Desert Studies, the Islamia University of Bahawalpur, Pakistan 5Plant Biotechnology Wing, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan 6Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Murree Road, Rawalpind Abstract Seed morphology of Spergularia marina (L.) Griseb., occurring in wheat fields of Khairpur district, Sindh was carried out with Scanning electron microscope (SEM). Seed size, shape and surface were examined. The seed shape and surface exhibits great diversity, which provide valuable taxonomic information. In species under investigation both winged and unwinged type of seeds were found. Surface ornamentation showed heteromorphic characteristics of seed. Introduction Spergularia marina, a halophyte annual herb is native to California and is also found elsewhere in North America and beyond (Lum, 1975; Walker, 1992). It is commonly found in cultivated fields and waste lands of saline and sandy habitats (Ghazanfar & Nasir, 1986). It was first reported to occur in a wet saline marsh at Rittman, Ohio in 1978 by Riehl & Ungar (1980). According to Ungar (1988) this plant community contains the largest seed bank ever reported for a flowering plant community. Memon et al., (2003) reported it as a dominant weed found in fields of wheat crop in Khairpur district, Sindh, producing about 5000 seeds per plant. -
On the Flora of Australia
L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3. -
From Cacti to Carnivores: Improved Phylotranscriptomic Sampling And
Article Type: Special Issue Article RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Short Title: Walker et al.—Phylotranscriptomic analysis of Caryophyllales From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales Joseph F. Walker1,13, Ya Yang2, Tao Feng3, Alfonso Timoneda3, Jessica Mikenas4,5, Vera Hutchison4, Caroline Edwards4, Ning Wang1, Sonia Ahluwalia1, Julia Olivieri4,6, Nathanael Walker-Hale7, Lucas C. Majure8, Raúl Puente8, Gudrun Kadereit9,10, Maximilian Lauterbach9,10, Urs Eggli11, Hilda Flores-Olvera12, Helga Ochoterena12, Samuel F. Brockington3, Michael J. Moore,4 and Stephen A. Smith1,13 Manuscript received 13 October 2017; revision accepted 4 January 2018. 1 Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048 USA 2 Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108 USA 3 Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 4 Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097 USA 5 Current address: USGS Canyonlands Research Station, Southwest Biological Science Center, 2290 S West Resource Blvd, Moab, UT 84532 USA 6 Institute of Computational and Mathematical Engineering (ICME), Stanford University, 475 Author Manuscript Via Ortega, Suite B060, Stanford, CA, 94305-4042 USA This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. -
Differential Seed Germination Responses to the Ratio of Red to Far-Red Light in Temperate and Tropical Species
Plant Ecol DOI 10.1007/s11258-013-0205-y Differential seed germination responses to the ratio of red to far-red light in temperate and tropical species Pimonrat Tiansawat • James W. Dalling Received: 9 January 2013 / Accepted: 22 April 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Variation in vegetation density creates a that the threshold R:FR that stimulates 50 % of range of red to far-red ratios of irradiance (R:FR) maximum germination (R:FR50) was also related to potentially permitting fine-scale discrimination of seed mass and latitudinal distribution. In agreement light conditions for seed germination. However, with an earlier study, we found that for temperate taxa, remarkably few studies have explored whether R:FR the R:FR50 was significantly negatively correlated responses of germination vary among species that with seed mass. In contrast, for 22 tropical taxa, we differ in distribution and life-history traits. In this found a significant positive correlation. These oppos- study, we explored the relationships between R:FR ing relationships suggest contrasting selection pres- requirements and four species characteristics: seed sures on germination responses of tropical taxa mass, latitudinal distribution (tropical vs. temperate), (mostly trees) and temperate herbaceous plants, and seed dormancy (dormant vs. nondormant), and plant which are likely related to differences in seed longev- growth form (woody vs. nonwoody). We obtained data ity, seed burial rates, and reproductive output. on germination response to R:FR of 62 species from published literature and added new data for ten species Keywords Regeneration niche Á Light dependence Á from aseasonal tropical forests in Borneo. -
4. SPERGULARIA (Persoon) J
Flora of China 6: 4–5. 2001. 4. SPERGULARIA (Persoon) J. & C. Presl, Fl. Cech. 94. 1819, nom. cons. 拟漆姑属 ni qi gu shu Lu Dequan (鲁德全); Richard K. Rabeler Arenaria Linnaeus subgen. Spergularia Persoon, Syn. Pl. 1: 504. 1805; Buda Adanson, nom. rej.; Tissa Adanson, nom. rej. Herbs annual or perennial. Stems erect, decumbent, or procumbent, dilated at nodes, somewhat flattened. Leaves decussate, linear; stipules pale, scarious, connate around nodes, forming ± triangular structures on either side of stem; leaf fascicles (short, leafy lateral branches) when present borne on only one side at each node. Inflorescence of racemose cymes; bracts immediately subtending calyx absent. Sepals 5, free, green, margin scarious. Petals 5, white or pink, entire. Stamens 2–5 or 10. Ovary 1-loculed; ovules numerous; styles 3. Capsule ovoid, opening by 3 valves. Seeds numerous, flat, winged or not; embryo curved. About 25 species: N temperate regions, mostly halophytes; four species in China. 1a. Sepals 5–7 mm; capsule 1.5–2 × as long as calyx; stamens (5 or)10; all or most seeds winged ........... 3. S. media 1b. Sepals 1.5–4.5 mm; capsule ca. equaling or slightly longer than calyx; stamens 2–5 or 10; all or most seeds unwinged. 2a. Leaves fasciculate; stipules lanceolate, silvery; stamens (5 or)10 .................................................... 1. S. rubra 2b. Leaves not or rarely fasciculate; stipules triangular (rarely lanceolate), not silvery; stamens 2–5. 3a. Capsule 1.5–3 mm, equaling calyx; seeds dark brown to black, unwinged ............................. 2. S. diandra 3b. Capsule 5–6 mm, slightly longer than calyx; seeds light brown, mostly unwinged ................ -
Fremontia Journal of the California Native Plant Society
$10.00 (Free to Members) VOL. 40, NO. 1 AND VOL. 40, NO. 2 • JANUARY 2012 AND MAY 2012 FREMONTIA JOURNAL OF THE CALIFORNIA NATIVE PLANT SOCIETY THE NEW JEPSONJEPSON MANUALMANUAL THE FIRST FLORA OF CALIFORNIA NAMING OF THE GENUS SEQUOIA FENS:FENS: AA REMARKABLEREMARKABLE HABITATHABITAT AND OTHER ARTICLES VOL. 40, NO. 1 AND VOL. 40, NO. 2, JANUARY 2012 AND MAY 2012 FREMONTIA CALIFORNIA NATIVE PLANT SOCIETY CNPS, 2707 K Street, Suite 1; Sacramento, CA 95816-5130 FREMONTIA Phone: (916) 447-CNPS (2677) Fax: (916) 447-2727 Web site: www.cnps.org Email: [email protected] VOL. 40, NO. 1, JANUARY 2012 AND VOL. 40, NO. 2, MAY 2012 MEMBERSHIP Membership form located on inside back cover; Copyright © 2012 dues include subscriptions to Fremontia and the CNPS Bulletin California Native Plant Society Mariposa Lily . $1,500 Family or Group . $75 Bob Hass, Editor Benefactor . $600 International or Library . $75 Patron . $300 Individual . $45 Beth Hansen-Winter, Designer Plant Lover . $100 Student/Retired/Limited Income . $25 Brad Jenkins, Cynthia Powell, CORPORATE/ORGANIZATIONAL and Cynthia Roye, Proofreaders 10+ Employees . $2,500 4-6 Employees . $500 7-10 Employees . $1,000 1-3 Employees . $150 CALIFORNIA NATIVE PLANT SOCIETY STAFF – SACRAMENTO CHAPTER COUNCIL Executive Director: Dan Glusenkamp David Magney (Chair); Larry Levine Dedicated to the Preservation of Finance and Administration (Vice Chair); Marty Foltyn (Secretary) Manager: Cari Porter Alta Peak (Tulare): Joan Stewart the California Native Flora Membership and Development Bristlecone (Inyo-Mono): -
Checklist of the Vascular Plants of San Diego County 5Th Edition
cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P.