Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations Ecology of the fringe-toed lizard, Uma notata, in Arizona's Mohawk Dunes Item Type text; Thesis-Reproduction (electronic) Authors Turner, Dale Scott, 1957- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 13:59:57 Link to Item http://hdl.handle.net/10150/278678 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing m this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Compaiqr 300 Noith Zeeb Road, Ann Aibor MI 48I06-I346 USA 313/761-4700 800/521-0600 ECOLOGY OF THE FRINGE-TOED LIZARD, UMA NOTATA, IN ARIZONA'S MOHAWK DUNES by Dale Scott Turner A Thesis Submitted to the Faculty of the SCHOOL OF RENEWABLE NATURAL RESOURCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN WILDLIFE AND FISHERIES SCIENCE In the Graduate College THE UMVERSITY OF ARIZONA 1998 UMI Number: 1392411 UMI Microform 1392411 Copyright 1999, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations fi-om this thesis are allowable without special permission, provided that accurate acknowledgement of the source is made. Requests for permission for extended quotation firom or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained fi-om the author. SIGNED: APPROVAL BY THESIS COMMITTEE This thesis has been approved on the date shown below: Cecil R. Schwalbe Assistant Professor of Wildlife and Fisheries Science William W. Shaw Date Professor of Wildlife and Fisheries Science Date Assistant Unit Leader Cooperative Fish and Wildlife Research Unit 3 ACKNOWLEDGEMENTS The Arizona Game and Fish Department provided funding for this research fix>m their Heritage Fund, HP AM Project #195042. The Environmental Programs office of Luke Air Force Base provided fimding for this research from the U.S. Air Force Legacy Resource Management Program, project #95-1009. The U.S. Air Force and The Nature Conservancy jointly provided support through the Air Force Intemship Program. Cecil Schwalbe provided invaluable guidance, support, and humor throughout this and other efforts. Stephen DeStefano helped with study design and survival analysis. Bill Shaw provided important direction on preparation of this thesis. Phil Rosen provided sage advice on study design and the meaning of it all. Bob Steidl gave vital statistical advice. Peter Warren helped arrange flmding and assisted in study site evaluation. Matt Goode laid much of the physical groundwork for research at the Mohawk Dunes. Jeff Rowland provided valuable review comments on an earlier version of this report. Mark Fisher of the University of Cahfomia's Deep Canyon Research Center generously shared his insights on Uma research. Bill Broyles pro\'ided weather data and rain gauges. Michelle Mooney donated marking materials. Many people provided hours or days of effort to help gather and process data, including Cris Cristoffer, Chuck Hayes, and Ellen Pahek from Luke AFB; Dan Bell, Matt Goode, Gene Hall, Chip Hedgcock, Peter Hohn, Phil Jenkins, Bob McCord, Ted Morgan, Carl Olson, Phi Pham, Jeff Seminoff, Jon Shumaker, Don Swann, and Bridget Watts from the University of Arizona; Rulon Clark, Chris Garrard, Joanna Garrard, April Young, and Kevin Young of Utah State University; Richard Felger, Julia Fonseca, Trevor Hare, Shawna Nelson, Bill Rick, Sean Sartorius, Wade Sherbrooke, Gerald Turner, Louise Turner, Tom VanDevender, and Jim Walsh. Additional help was given by members of three herpetology classes at the University of Arizona and other volimteers too numerous to acknowledge individually. 4 TABLE OF CONTENTS ACKNOWLEDGEMENTS 3 LIST OF TABLES 7 LIST OF HGURES 8 ABSTRACT 10 INTRODUCTION 11 Population estimates 13 Reproduction and juvenile emergence 13 Survival 13 Temperature and humidity effects 14 Home range 14 Territoriality and tail loss 15 Selection and characteristics of escape cover 15 Substrate selection 16 Diet 17 STUDY AREA 18 METHODS Field effort 23 Study grid 23 Lizard surveys 24 Pitfall traps 25 Lizard collections 26 Demographics 27 Population estimates 27 Reproduction and juvenile emergence 29 Survival 29 Temperatiore and humidity effects 30 Home range 31 Territoriality and tail loss 32 Selection and characteristics of escape cover 32 Substrate selection 34 Diet analysis 36 5 TABLE OF CONTENTS - Continued RESULTS AND DISCUSSION 38 DEMOGRAPfflCS Results 38 Discussion 41 POPULATION ESTIMATES Results 43 Biomass estimates 45 Discussion 46 REPRODUCTION AND JUVENILE EMERGENCE Results 49 Discussion 51 SURVIVAL Results 55 Discussion 56 TEMPERATURE AND HUMIDITY EFFECTS Results 57 Discussion 57 HOME RANGE Results and discussion 68 TERRITORIALITY AND TAIL LOSS Results : 75 Discussion 75 SELECTION AND CHARACTERISTICS OF ESCAPE COVER Results 78 Results from collections 80 Discussion 82 SUBSTRATE SELECTION Results 86 Discussion 87 6 TABLE OF CONTENTS - Continued SEASONAL AND ONTOGENETIC EFFECTS ON DIET Results 90 Discussion 97 SUMMARY AND CONCLUSIONS 101 MANAGEMENT RECOMMENDATIONS 103 APPENDIX A. Environmental data instruments: specifications and placement 105 APPENDIX B. Collection data for Uma notata specimens 106 APPENDIX C. Sighting locality data used for home range analysis 112 APPENDIX D. Individual home range sizes, with minimum convex polygon areas (MCP) and with adjustments of MCPs to correct for sample size bias 117 APPENDIX E. Taxonomic hst of lizard stomach contents, Mohawk Dunes, Yuma Co., Arizona 118 APPENDIX F. Taxonomic list of lizard stomach contents, Yuma Dimes, Yuma Co., Arizona 121 APPENDIX G. Statistical values for mass-length regression comparisons 122 APPENDIX H. Mohawk Dunes lizard transect results, 1994-1996 123 APPENDIX I. Capture data for marked Uma notata 125 LITERATURE CITED 129 7 LIST OF TABLES TABLE L Uma notata snout-vent length (mm), Mohawk Dunes, AZ 39 TABLE 2. Uma notata body mass (g), Mohawk Dimes, AZ 39 TABLE 3. All Uma notata seen on the study grid in a given year 39 TABLE 4. Grid residents: Uma notata seen ^ times on the study grid in a given year 40 TABLE 5. Grid transients: Uma notata seen ^ times on the study grid in a given year 40 TABLE 6. Uma notata captured in pitfall traps 41 TABLE 7. Uma notata seen (# per km) on transects, Mohawk Dunes, 1994-96 43 TABLE 8. Uma population densities in Mohawk Dimes and other areas 48 TABLE 9. Reproductive condition of adult male Uma notata 49 TABLE 10. Reproductive condition of adult female Uma notata 51 TABLE 11. Environmental and body temperatures (°C) of active Uma notata, 1995-1996 58 TABLE 12. Environmental temperatures (°C) and humidities (%) of active Uma notata, 1996 58 TABLE 13. Uma notata home ranges by year in the Mohawk Dunes, 1995-1996 72 TABLE 14. Uma notata home ranges by sex and size class in the Mohawk Dunes, 1995-1996 72 TABLE 15. Uma inomata home range sizes, from Muth and Fisher (1991) 73 TABLE 16. Available ground cover (%) on 2-ha study grid 78 TABLE 17. Cover types on study grid where Uma notata were found and to which they ran 80 TABLE 18. Cover types where collected Uma notata were found and to which they ran 82 TABLE 19. Mean percent ground cover in quadrats along Mohawk Dunes transects, March 1996 87 TABLE 20. Composition of the diet of Uma notata from the Mohawk Dunes, AZ, 1995-96 91 TABLE 21. Mean proportions of arthropod material volumes to total stomach content volumes 93 8 LIST OF HGURES FIGURE 1. Study sites in the Mohawk Dunes, Arizona 19 FIGURE 2. Monthly rainfall, Mohawk Dunes, AZ 22 FIGURE 3. Uma notata population estimates, Mohawk Dunes 44 FIGURE 4. Reproductive condition of adult male Uma notata, Mohawk Dunes, AZ 50 FIGURE 5. Size and date of captured juvenile Uma notata, Mohawk Dimes, 1995-96 ..54 FIGURE 6. Body temperatures of Uma notata, Mohawk Dunes, 1995-96 59 FIGURE 7. Surface temperatures for Uma sightings, Mohawk Dunes, 1995-96 59 FIGURE 8.
Recommended publications
  • Keys to Families of Beetles in America North of Mexico
    816 · Key to Families Keys to Families of Beetles in America North of Mexico by Michael A. Ivie hese keys are specifically designed for North American and, where possible, overly long lists of options, but when nec- taxa and may lead to incorrect identifications of many essary, I have erred on the side of directing the user to a correct Ttaxa from outside this region. They are aimed at the suc- identification. cessful family placement of all beetles in North America north of No key will work on all specimens because of abnormalities Mexico, and as such will not always be simple to use. A key to the of development, poor preservation, previously unknown spe- most common 50% of species in North America would be short cies, sexes or variation, or simple errors in characterization. Fur- and simple to use. However, after an initial learning period, most thermore, with more than 30,000 species to be considered, there coleopterists recognize those groups on sight, and never again are undoubtedly rare forms that escaped my notice and even key them out. It is the odd, the rare and the exceptional that make possibly some common and easily collected species with excep- a complex key necessary, and it is in its ability to correctly place tional characters that I overlooked. While this key should work those taxa that a key is eventually judged. Although these keys for at least 95% of specimens collected and 90% of North Ameri- build on many previous successful efforts, especially those of can species, the specialized collector who delves into unique habi- Crowson (1955), Arnett (1973) and Borror et al.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • T TA /Î-T Dissertation Ij L Y L I Information Service
    INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advstnced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. * 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarify on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.* *For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department. T TA /Î-T Dissertation i J l Y l i Information Service University Microfilms International A Bell & Howell Information Company 300 N.
    [Show full text]
  • Coleoptera: Dascillidae)
    Zootaxa 3613 (3): 245–256 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3613.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:E34220A4-1B4E-45E1-9FF7-D97801161046 A revision of the genus Notodascillus Carter (Coleoptera: Dascillidae) ZHENYU JIN1, 2, ADAM ŚLIPIŃSKI2 & HONG PANG1 1State Key Laboratory of Biocontrol and Institute of Entomology, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, Sun Yat-Sen University, Guangzhou 510275, China. E-mail: [email protected]; [email protected] 2CSIRO Ecosystem Sciences, Australian National Insect Collection, GPO Box 1700, Canberra, ACT 2601, Australia. E-mail: [email protected] Abstract The Australian species of Notodascillus Carter are revised based on examination of available type material and extensive collections. Three very closely related species have been recognised: N. brevicornis (Macleay), N. sublineatus Carter and N. iviei sp. n. Detailed generic and species descriptions, key to the species and distribution data are provided. Key words: Coleoptera, Dascillidae, taxonomy, new species, Australia Introduction Dascillidae are a small and rarely studied family that, jointly with the Rhipiceridae, form the superfamily Dascilloidea among the polyphagan beetles. In the past Dascillidae were defined very broadly and included taxa now recognized as families (e.g., Artematopodidae, Cneoglossidae, Eulichadidae, Brachypsectridae, Psephenidae and Scirtidae) or taxa now placed within other families (e.g., Platydascillinae and Haematoides Fairmaire to Byturidae, Singularodaemon Pic to Ptilodactylidae, Pseudokarumia Pic to Telegeusidae, Cydistus to Phengodidae incertae sedis, etc.) (Pic 1914; Crowson 1971; Lawrence 2005).
    [Show full text]
  • Biotic Resources of Indio Mountains Research Station
    BIOTIC RESOURCES OF INDIO MOUNTAINS RESEARCH STATION Southeastern Hudspeth County, Texas A HANDBOOK FOR STUDENTS AND RESEARCHERS Compiled by: Richard D. Worthington Carl Lieb Wynn Anderson Pp. 1 - 85 El Paso, Texas Fall, 2004 (Continually Reviewed and Updated) by Jerry D. Johnson (Last Update) 16 September 2010 1 TABLE OF CONTENTS INTRODUCTION - Pg. 3 COLLECTING IMRS RESOURCES – Pg. 4 POLICIES FOR THE PROTECTION OF RESOURCES – Pg. 4 PHYSICAL SETTING – Pg. 5 CHIHUAHUAN DESERT – Pg. 6 CLIMATE – Pg. 6 GEOLOGY – Pg. 8 SOILS – Pg. 12 CULTURAL RESOURCES – Pg. 13 PLANT COMMUNITIES – Pg. 14 LICHENS – Pg. 15 NONVASCULAR PLANTS – Pg. 18 VASCULAR PLANTS – Pg. 19 PROTOZOANS – Pg. 34 FLATWORMS – Pg. 34 ROUNDWORMS – Pg. 34 ROTIFERS – Pg. 35 ANNELIDS – Pg. 36 MOLLUSKS – Pg. 36 ARTHROPODS – Pg. 37 VERTEBRATES – Pg. 64 IMRS GAZETTEER – Pg. 80 2 INTRODUCTION It is our pleasure to welcome students and visitors to the Indio Mountains Research Station (IMRS). A key mission of this facility is to provide a research and learning experience in the Chihuahuan Desert. We hope that this manual will assist you in planning your research and learning activities. You will probably be given a short lecture by the station Director upon entering the station. Please pay attention as IMRS is not without potential hazards and some long-term research projects are underway that could be disturbed if one is careless. Indio Mountains Research Station came into being as a result of the generosity of a benefactor and the far-sighted vision of former UTEP President Haskell Monroe. Upon his death in 1907, the will of Boston industrialist Frank B.
    [Show full text]
  • SCI Insectsurveys Report.Fm
    Terrestrial Invertebrate Survey Report for San Clemente Island, California Final June 2011 Prepared for: Naval Base Coronado 3 Wright Avenue, Bldg. 3 San Diego, California 92135 Point of Contact: Ms. Melissa Booker, Wildlife Biologist Under Contract with: Naval Facilities Engineering Command, Southwest Coastal IPT 2739 McKean Street, Bldg. 291 San Diego, California 92101 Point of Contact: Ms. Michelle Cox, Natural Resource Specialist Under Contract No. N62473-06-D-2402/D.O. 0026 Prepared by: Tierra Data, Inc. 10110 W. Lilac Road Escondido, CA 92026 Points of Contact: Elizabeth M. Kellogg, President; Scott Snover, Biologist; James Lockman, Biologist COVER PHOTO: Halictid bee (Family Halictidae), photo by S. Snover. Naval Auxiliary Landing Field San Clemente Island June 2011 Final Table of Contents 1.0 Introduction . .1 1.1 Regional Setting ................................................................................................................... 1 1.2 Project Background .............................................................................................................. 1 1.2.1 Entomology of the Channel Islands .................................................................... 3 1.2.2 Feeding Behavior of Key Vertebrate Predators on San Clemente Island ............. 4 1.2.3 Climate ................................................................................................................. 4 1.2.4 Island Vegetation.................................................................................................. 5
    [Show full text]
  • A Catalog of the Coleóptera of America North of Mexico Family: Pselaphidae
    A CATALOG OF THE COLEÓPTERA OF AMERICA NORTH OF MEXICO FAMILY: PSELAPHIDAE ah52931 /^^ UNITED STATES AGRICULTURE PREPARED BY fiJUl DEPARTMENT OF HANDBOOK AGRICULTURAL "^^7 AGRICULTURE NUMBER 529-31 RESEARCH SERVICE FAMILIES OF COLEóPTERA IN AMERICA NORTH OF MEXICO Fascicy Family Year issued Fascicle^ Family Year issued Fascicle^ Family Year issued 1 Cupedidae 1979 46 Callirhipidae 102 Biphyllidae 2 Micromalthidae 1982 47 Heteroceiidae 1978 103 Byturidae 1991 3 Carabidae 48 Limnichidae 1986 104 Mycetophagidae 4 Rhysodidae 1985 49 Dryopidae 1983 105 ....... Ciidae 1982 5 Amphizoidae 1984 50 Elmidae 1983 107 Prostomidae 6 Haliplidae 51 Buprestidae 109 Colydiidae 8 Noteridae 52 Cebrionidae 110....... Monommatidae 9 Dytiscidae 53 Elateridae Ill Cephaloidae 10 Gyrinidae 54 Throscidae 112 Zopheridae 13 Sphaeriidae 55....... Cerophytidae 115 ....... Tenebrionidae 14 Hydroscaphidae 56 Perothopidae 116 AUeculidae 15 Hydraenidae 57 Eucnemidae 117 Lagriidae 16 Hydrophilidae 58 Telegeusidae 118 Salpingidae ^ 17 Georyssidae 61 Phengodidae 119....... Mycteridae 18 Sphaeritidae 62 Lampyridae 120 Pyrochroidae 1983 20 Histeridae 63 ]. Cantharidae 121 Othniidae 21 Ptiliidae 64 Lycidae 122....... Inopeplidae 22 Limulodidae.. 65 Derodontidae 1989 123 Oedemeridae 23 Dasyceridae ..... 66 Nosodendridae 124 Melandryidae 24 Micropeplidae 1984 67 Dennestidae 125 Mordellidae 1986 25 .'. Leptinidae 69 Ptinidae 126 Rhipiphoridae 26 Leiodidae 70 Anobiidae 1982 127 ....... Meloidae 27 Scydmaenidae 71 Bostrichidae 128 ....... Anthicidae 28 Silphidae 1993 72 Lyctidae 129 Pedilidae 29 Scaphidiidae 74 Trogositidae 130 Euglenidae 30 Staphylinidae 76 Cleridae 131 Cerambycidae 31 Pselaphidae 1997 78 Melyridae 132 Bruchidae 32 Lucanidae 79 Lymexylidae 133 Chrysomelidae 33 Passalidae 81 Sphindidae 134 Nemonychidae 1994 34 Scarabaeidae 1984 82 Nitidulidae 135 Anthribidae 35 Eucinetidae 83 Rhizophagidae 138 AUocorynidae 1991 36 Helodidae 86 Cucujidae 140 Brentidae 37 Clambidae r....
    [Show full text]
  • A Comparison of Antlions, Bees, Darkling Beetles and Velvet Ants Across Sand Dune and Non-Sand Dune Habitats at Ash Meadows National Wildlife Refuge Nicole F
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 A Comparison of Antlions, Bees, Darkling Beetles and Velvet Ants Across Sand Dune and Non-Sand Dune Habitats at Ash Meadows National Wildlife Refuge Nicole F. Boehme Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Boehme, Nicole F., "A Comparison of Antlions, Bees, Darkling Beetles and Velvet Ants Across Sand Dune and Non-Sand Dune Habitats at Ash Meadows National Wildlife Refuge" (2014). All Graduate Theses and Dissertations. 2078. https://digitalcommons.usu.edu/etd/2078 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. A COMPARISON OF ANTLIONS, BEES, DARKLING BEETLES AND VELVET ANTS ACROSS SAND DUNE AND NON-SAND DUNE HABITATS AT ASH MEADOWS NATIONAL WILDLIFE REFUGE by Nicole F. Boehme A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Approved: _________________________ _________________________ Dr. James P. Pitts Dr. Theresa L. Pitts-Singer Major Professor Committee Member _________________________ _________________________ Dr. Barbara Bentz Dr. Mark McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2014 ii Copyright © Nicole F. Boehme 2014 All Rights Reserved iii ABSTRACT A Comparison of Antlions, Bees, Darkling Beetles and Velvet ants across Sand Dune and Non-sand Dune Habitats at Ash Meadows National Wildlife Refuge by Nicole F.
    [Show full text]
  • Lacewing News
    Lacewing News NEWSLETTER OF THE INTERNATIONAL ASSOCIATION OF NEUROPTEROLOGY No. 16 Spring 2013 Presentation From David Penney th Hi all! Here’s the 16 issue of Lacewing News. THE FOSSIL NEUROPTERA BOOK Leitmotiv of this issue is “old, fond memories”: GAUNTLET HAS BEEN PICKED UP so, a lot of photos and dear moments! I hope you will enjoy them, Thank to all colleagues who send photos, messages and contributions. Please, don’t forget this is not a “formal” gazette, nor an official instruments of IAN, but only a “open space” to disseminate information, cues, jokes through the neuropterological community. So don’t hesitate to send me any suggestions, ideas, proposal, information, for the next issue! Please send all communications concerning Lacewing News to [email protected] (Agostino Letardi). Questions about the International Association of Neuropterology may be addressed to our current president, Dr. In Lacewing News 15 I proposed the idea of a Michael Ohl ([email protected]), who book on Fossil Neuroptera. The gauntlet was is also the organizer of next XII International picked up and this work is now in progress as Symposium on Neuropterology (Berlin 2014). part of the Siri Scientific Press Monograph Ciao! Series (email for ordering information or visit http://www.siriscientificpress.co.uk), with an expected publication date of 2014. The authors will be James E. Jepson (currently National Museum of Wales), Alexander Khramov (Paleontological Institute Moscow) and David Penney (University of Manchester). The draft cover shows a particularly nice example of the extinct family Kalligrammatidae. We already have lots of nice fossil images (both amber and rock) for this volume, but if any of you have access to well preserved fossils or hold the copyright of such images and would like to see them published in this volume, then we would be very happy to receive high resolution images in jpeg format.
    [Show full text]
  • Species Catalog of the Neuroptera, Megaloptera, and Raphidioptera Of
    http://www.biodiversitylibrary.org Proceedings of the California Academy of Sciences, 4th series. San Francisco,California Academy of Sciences. http://www.biodiversitylibrary.org/bibliography/3943 4th ser. v. 50 (1997-1998): http://www.biodiversitylibrary.org/item/53426 Page(s): Page 39, Page 40, Page 41, Page 42, Page 43, Page 44, Page 45, Page 46, Page 47, Page 48, Page 49, Page 50, Page 51, Page 52, Page 53, Page 54, Page 55, Page 56, Page 57, Page 58, Page 59, Page 60, Page 61, Page 62, Page 63, Page 64, Page 65, Page 66, Page 67, Page 68, Page 69, Page 70, Page 71, Page 72, Page 73, Page 74, Page 75, Page 76, Page 77, Page 78, Page 79, Page 80, Page 81, Page 82, Page 83, Page 84, Page 85, Page 86, Page 87 Contributed by: MBLWHOI Library Sponsored by: MBLWHOI Library Generated 10 January 2011 12:00 AM http://www.biodiversitylibrary.org/pdf3/005378400053426 This page intentionally left blank. The following text is generated from uncorrected OCR. [Begin Page: Page 39] PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Vol. 50, No. 3, pp. 39-114. December 9, 1997 SPECIES CATALOG OF THE NEUROPTERA, MEGALOPTERA, AND RAPHIDIOPTERA OF AMERICA NORTH OF MEXICO By 'itutio. Norman D. Penny "EC 2 Department of Entomology, California Academy of Sciences San Francisco, CA 941 18 8 1997 Wooas Hole, MA Q254S Phillip A. Adams California State University, Fullerton, CA 92634 and Lionel A. Stange Florida Department of Agriculture, Gainesville, FL 32602 The 399 currently recognized valid species of the orders Neuroptera, Megaloptera, and Raphidioptera that are known to occur in America north of Mexico are listed and full synonymies given.
    [Show full text]
  • First Record of Rhipiceridae (Coleoptera: Polyphaga: Dascilloidea) from Wisconsin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Valparaiso University The Great Lakes Entomologist Volume 35 Number 1 - Spring/Summer 2002 Number 1 - Article 6 Spring/Summer 2002 April 2002 First Record of Rhipiceridae (Coleoptera: Polyphaga: Dascilloidea) From Wisconsin Daniel K. Young University of Wisconsin Kerry Katovich University of Wisconsin Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Young, Daniel K. and Katovich, Kerry 2002. "First Record of Rhipiceridae (Coleoptera: Polyphaga: Dascilloidea) From Wisconsin," The Great Lakes Entomologist, vol 35 (1) Available at: https://scholar.valpo.edu/tgle/vol35/iss1/6 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Young and Katovich: First Record of Rhipiceridae (Coleoptera: Polyphaga: Dascilloidea 2002 THE GREAT LAKES ENTOMOLOGIST 33 FIRST RECORD OF RHIPICERIDAE (COLEOPTERA: POLYPHAGA: DASCILLOIDEA) FROM WISCONSIN Daniel K. Young1 and Kerry Katovich2 ABSTRACT The Cedar beetle family, Rhipiceridae, is recorded from Wisconsin for the first time. A single adult female of Sandalus niger was collected on a walk- way along a forested path in south-central Wisconsin on 7 October 2000. This discovery represents not only the first record of Rhipiceridae from Wisconsin, but also the first record of the entire superfamily Dascilloidea, a relatively basal lineage of Elateriformia. ____________________ The small and poorly known dascilloid beetle family Rhipiceridae includes six genera and 57 species, widely distributed in all major zoogeographic regions (Lawrence et al.
    [Show full text]
  • Fossil Perspectives on the Evolution of Insect Diversity
    FOSSIL PERSPECTIVES ON THE EVOLUTION OF INSECT DIVERSITY Thesis submitted by David B Nicholson For examination for the degree of PhD University of York Department of Biology November 2012 1 Abstract A key contribution of palaeontology has been the elucidation of macroevolutionary patterns and processes through deep time, with fossils providing the only direct temporal evidence of how life has responded to a variety of forces. Thus, palaeontology may provide important information on the extinction crisis facing the biosphere today, and its likely consequences. Hexapods (insects and close relatives) comprise over 50% of described species. Explaining why this group dominates terrestrial biodiversity is a major challenge. In this thesis, I present a new dataset of hexapod fossil family ranges compiled from published literature up to the end of 2009. Between four and five hundred families have been added to the hexapod fossil record since previous compilations were published in the early 1990s. Despite this, the broad pattern of described richness through time depicted remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter term patterns. Corrections for rock record and sampling effort change some of the patterns seen. The time series produced identify several features of the fossil record of insects as likely artefacts, such as high Carboniferous richness, a Cretaceous plateau, and a late Eocene jump in richness. Other features seem more robust, such as a Permian rise and peak, high turnover at the end of the Permian, and a late-Jurassic rise.
    [Show full text]