Lacewing News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biological and Landscape Diversity in Slovenia
MINISTRY OF THE ENVIRONMENT AND SPATIAL PLANNING ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA Biological and Landscape Diversity in Slovenia An overview CBD Ljubljana, 2001 MINISTRY OF THE ENVIRONMENTAL AND SPATIAL PLANNING ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA Published by: Ministry of the Environment and Spatial Planning - Environmental Agency of the Republic of Slovenia Editors in chief and executive editors: Branka Hlad and Peter Skoberne Technical editor: Darja Jeglič Reviewers of the draft text: Kazimir Tarman Ph.D., Andrej Martinčič Ph.D., Fedor Černe Ph.D. English translation: Andreja Naraks Gordana Beltram Ph.D. (chapter on Invasive Species, ......., comments on the figures), Andrej Golob (chapter on Communication, Education and Public Awareness) Revision of the English text: Alan McConnell-Duff Ian Mitchell (chapter on Communication, Education and Public Awareness) Gordana Beltram Ph.D. Designed and printed by: Littera Picta d.o.o. Photographs were contributed by: Milan Orožen Adamič (2), Matjaž Bedjanič (12), Gordana Beltram (3), Andrej Bibič (2), Janez Božič (1), Robert Bolješič (1), Branka Hlad (15), Andrej Hudoklin (10), Hojka Kraigher (1), Valika Kuštor (1), Bojan Marčeta (1), Ciril Mlinar (3), Marko Simić (91), Peter Skoberne (57), Baldomir Svetličič (1), Martin Šolar (1), Dorotea Verša (1) and Jana Vidic (2). Edition: 700 copies CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 502.3(497.4)(082) 574(497.4)(082) BIOLOGICAL and landscape diversity in Slovenia : an overview / (editors in chief Branka Hlad and Peter Skoberne ; English translation Andreja Naraks, Gordana Beltram, Andrej Golob; photographs were contributed by Milan Orožen Adamič... et. al.). - Ljubljana : Ministry of the Environment and Spatial Planning, Environmental Agency of the Republic of Slovenia, 2001 ISBN 961-6324-17-9 I. -
Head Anatomy of Adult Nevrorthus Apatelios and Basal Splitting Events in Neuroptera (Neuroptera: Nevrorthidae)
72 (2): 111 – 136 27.7.2014 © Senckenberg Gesellschaft für Naturforschung, 2014. Head anatomy of adult Nevrorthus apatelios and basal splitting events in Neuroptera (Neuroptera: Nevrorthidae) Susanne Randolf *, 1, 2, Dominique Zimmermann 1, 2 & Ulrike Aspöck 1, 2 1 Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010 Vienna, Austria — 2 University of Vienna, Department of In- tegrative Zoology, Althanstrasse 14, 1090 Vienna, Austria; Susanne Randolf * [[email protected]]; Dominique Zimmermann [[email protected]]; Ulrike Aspöck [[email protected]] — * Corresponding author Accepted 22.v.2014. Published online at www.senckenberg.de/arthropod-systematics on 18.vii.2014. Abstract External and internal features of the head of adult Nevrorthus apatelios are described in detail. The results are compared with data from literature. The mouthpart muscle M. stipitalis transversalis and a hypopharyngeal transverse ligament are newly described for Neuroptera and herewith reported for the first time in Endopterygota. A submental gland with multiporous opening is described for Nevrorthidae and Osmylidae and is apparently unique among insects. The parsimony analysis indicates that Sisyridae is the sister group to all remaining Neuroptera. This placement is supported by the development of 1) a transverse division of the galea in two parts in all Neuroptera exclud ing Sisyridae, 2) the above mentioned submental gland in Nevrorthidae and Osmylidae, and 3) a poison system in all neuropteran larvae except Sisyridae. Implications for the phylogenetic relationships from the interpretation of larval character evolution, specifically the poison system, cryptonephry and formation of the head capsule are discussed. Key words Head anatomy, cladistic analysis, phylogeny, M. -
The New Fossil Lacewings of Grammolingiidae (Neuroptera) from the Jurassic of Central Asia and Mongolia, with Notes on Biogeography of the Family
Zootaxa 3478: 297–308 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:5EA14648-EF42-4CE2-9C68-CA0892C24E3E The new fossil lacewings of Grammolingiidae (Neuroptera) from the Jurassic of Central Asia and Mongolia, with notes on biogeography of the family ALEXANDER V. KHRAMOV Paleontological institute of the Russian Academy of Science, Profsouznaya str. 123, 117997, Moscow, Russia. [email protected] Abstract A new genus and three new species of the family Grammolingiidae are described: Protolingia mira gen. et sp. nov. and Litholingia longa sp. nov. from the Sai-Sagul locality (Kyrgyzstan, upper Lower Jurassic–lower Middle Jurassic) and Lep- tolingia oblonga sp. nov. from the Houtiyn-Hotgor locality (Mongolia, Upper Jurassic). Grammolingiidae are recorded from the Karatau locality (Kazakhstan, Upper Jurassic). This fossil lacewing family occurred in the South of Central Asia and in East Asia during the Middle and Upper Jurassic; its distribution was limited by Mongol-Okhotsk and Turgai seas. Grammolingiidae from Sai-Sagul is the oldest record of this family. They demonstrate unusual characteristics for the fam- ily, such as the pectinate CuP and the distal fusion of Sc and R1. Key words: Neuroptera, Grammolingiidae, Jurassic, Mongol-Okhotsk sea Introduction Grammolingiidae is an extinct Jurassic family of Neuroptera, which currently includes four genera and fourteen species. Thirteen species came from the Middle Jurassic Daohugou locality, China, Inner Mongolia (Ren 2002; Shi et al. 2011; Liu et al. 2011; Shi et al. 2012), and only one was found outside Daohugou, in the Upper Jurassic Shar- Teg locality, Mongolia (Khramov 2010). -
The Ascalaphidae of the Afrotropical Region (Neurop Tera)
The Ascalaphidae of the Afrotropical Region (Neuroptera) 1. External morphology and bionomics of the family Ascalaphidae, and taxonomy of the subfamily Haplogleniinae including the tribes Proctolyrini n. tribe, Melambrotini n. tribe, Campylophlebini n. tribe, Tmesibasini n. tribe, Allocormodini n. tribe, and Ululomyiini n. tribe of Ascalaphinae Contents Tjeder, B. T: The Ascalaphidae of the Afrotropical Region (Neuroptera). 1. External morphology and bionomics of the family Ascalaphidae, and taxonomy of the subfamily Haplogleniinae including the tribes Proctolyrini n. tribe, Melambro- tinin. tribe, Campylophlebinin. tribe, Tmesibasini n. tribe, Allocormodini n. tribe, and Ululomyiini n. tribe of Ascalaphinae ............................................................................. 3 Tjeder, B t &Hansson,Ch.: The Ascalaphidaeof the Afrotropical Region (Neuroptera). 2. Revision of the hibe Ascalaphini (subfam. Ascalaphinae) excluding the genus Ascalaphus Fabricius ... .. .. .. .. .. .... .. .... .. .. .. .. .. .. .. .. .. 17 1 Contents Proctolyrini n. tribe ................................... .. .................60 Proctolyra n . gen .............................................................61 Introduction .........................................................................7 Key to species .............................................................62 Family Ascalaphidae Lefebvre ......................... ..... .. ..... 8 Proctolyra hessei n . sp.......................................... 63 Fossils ............................. -
Research Article Selection of Oviposition Sites by Libelloides
Hindawi Publishing Corporation Journal of Insects Volume 2014, Article ID 542489, 10 pages http://dx.doi.org/10.1155/2014/542489 Research Article Selection of Oviposition Sites by Libelloides coccajus (Denis & Schiffermüller, 1775) (Neuroptera: Ascalaphidae), North of the Alps: Implications for Nature Conservation Markus Müller,1 Jürg Schlegel,2 and Bertil O. Krüsi2 1 SKK Landschaftsarchitekten, Lindenplatz 5, 5430 Wettingen, Switzerland 2 Institute of Natural Resource Sciences, ZHAW Zurich University of Applied Sciences, Gruental,8820W¨ adenswil,¨ Switzerland Correspondence should be addressed to Markus Muller;¨ [email protected] Received 27 November 2013; Accepted 18 February 2014; Published 27 March 2014 Academic Editor: Jose´ A. Martinez-Ibarra Copyright © 2014 Markus Muller¨ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (1) The survival of peripheral populations is often threatened, especially in a changing environment. Furthermore, such populations frequently show adaptations to local conditions which, in turn, may enhance the ability of a species to adapt to changing environmental conditions. In conservation biology, peripheral populations are therefore of particular interest. (2) In northern Switzerland and southern Germany, Libelloides coccajus is an example of such a peripheral species. (3) Assuming that suitable oviposition sites are crucial to its long-term survival, we compared oviposition sites and adjacent control plots with regard to structure and composition of the vegetation. (4) Vegetation structure at and around oviposition sites seems to follow fairly stringent rules leading to at least two benefits for the egg clutches: (i) reduced risk of contact with adjacent plants, avoiding delayed drying after rainfall or morning dew and (ii) reduced shading and therefore higher temperatures. -
Neuroptera, Myrmeleontidae)
Zootaxa 3835 (3): 364–370 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3835.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:55CF6CD3-B628-40F3-92F2-DFA48D6966A7 The larva of Tricholeon relictus Hölzel & Monserrat, 2002 a synanthropic antlion (Neuroptera, Myrmeleontidae) FERNANDO ACEVEDO1, DAVIDE BADANO2 & VÍCTOR J. MONSERRAT1 1Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, C/Jose Antonio Novais, 2, 28040 Madrid, Spain. E-mail: [email protected]; [email protected] 2Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche (ISE–CNR), Traversa la Crucca 3, Regione Baldinca, I–07100 Li Punti SS, Italy & Sezione di Entomologia e Patologia Vegetale, Dipartimento di Agraria, Università degli Studi, via Enrico De Nicola, I–07100 Sassari SS, Italy; presently at Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche (IBAF-CNR), Via Salaria km 29,3000, I-0015 Monterotondo Scalo RM, Italy & Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale “Bosco Fontana", Strada Mantova 29, I-46045 Marmirolo (MN), Italy, E-mail: [email protected] Abstract The larva of Tricholeon relictus, a Spanish endemic antlion of Afrotropical affinities, is described and illustrated for the first time also providing a comparison with the only other European member of the tribe Dendroleontini, Dendroleon pan- therinus. The larva of this species is synanthropic but probably originally lived in cave-like habitats. Key words: larval morphology, Neuropterida, Myrmeleontiformia, Mediterranean, Iberian peninsula Introduction The tribe Dendroleontini Banks, 1899 includes 35 genera of antlions distributed in Eurasia, Africa and Australia, where its maximum diversity is attained, but comprising very few species in North America (Stange 2004). -
Universidade Federal De Santa Catarina Centro De Ciências Agrárias Departamento De Fitotecnia
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA Controle biológico com Coleoptera: Coccinellidae das cochonilhas (Homoptera: Diaspididae, Dactylopiidae), pragas da “palma forrageira”. Ícaro Daniel Petter FLORIANÓPOLIS, SANTA CATARINA NOVEMBRO DE 2010 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA Controle biológico com Coleoptera: Coccinellidae das cochonilhas (Homoptera: Diaspididae, Dactylopiidae), pragas da “palma forrageira”. Relatório do Estágio de Conclusão do Curso de Agronomia Graduando: Ícaro Daniel Petter Orientador: César Assis Butignol FLORIANÓPOLIS, SANTA CATARINA NOVEMBRO DE 2010 ii Aos meus pais, por tudo, minha mais profunda gratidão e consideração. iii AGRADECIMENTOS À UFSC e à Embrapa (CPATSA) pelo apoio na realização do estágio. Ao Professor César Assis Butignol pela orientação. A todos que, de alguma forma, contribuíram positivamente na minha graduação, meus sinceros agradecimentos. iv RESUMO Neste trabalho relata-se o programa de controle biológico das cochonilhas, Diaspis echinocacti Bouché, 1833 (Homoptera: Diaspididae) e Dactylopius opuntiae Cockerell, 1896 (Homoptera: Dactylopiidae), pragas da “palma forrageira” (Opuntia ficus-indica (Linnaeus) Mill, e Nopalea cochenillifera Salm- Dyck) (Cactaceae), no semi-árido nordestino, atualmente desenvolvido pela Embrapa Semi-Árido (CPATSA) em Petrolina (PE). Os principais trabalhos foram com duas espécies de coccinelídeos predadores, a exótica Cryptolaemus montrouzieri Mulsant, -
Efficiency of Antlion Trap Construction
3510 The Journal of Experimental Biology 209, 3510-3515 Published by The Company of Biologists 2006 doi:10.1242/jeb.02401 Efficiency of antlion trap construction Arnold Fertin* and Jérôme Casas Université de Tours, IRBI UMR CNRS 6035, Parc Grandmont, 37200 Tours, France *Author for correspondence (e-mail: [email protected]) Accepted 21 June 2006 Summary Assessing the architectural optimality of animal physical constant of sand that defines the steepest possible constructions is in most cases extremely difficult, but is slope. Antlions produce efficient traps, with slopes steep feasible for antlion larvae, which dig simple pits in sand to enough to guide preys to their mouths without any attack, catch ants. Slope angle, conicity and the distance between and shallow enough to avoid the likelihood of avalanches the head and the trap bottom, known as off-centring, were typical of crater angles. The reasons for the paucity of measured using a precise scanning device. Complete attack simplest and most efficient traps such as theses in the sequences in the same pits were then quantified, with animal kingdom are discussed. predation cost related to the number of behavioural items before capture. Off-centring leads to a loss of architectural efficiency that is compensated by complex attack Supplementary material available online at behaviour. Off-centring happened in half of the cases and http://jeb.biologists.org/cgi/content/full/209/18/3510/DC1 corresponded to post-construction movements. In the absence of off-centring, the trap is perfectly conical and Key words: animal construction, antlion pit, sit-and-wait predation, the angle is significantly smaller than the crater angle, a physics of sand, psammophily. -
GIS-Based Modelling Reveals the Fate of Antlion Habitats in the Deliblato Sands Danijel Ivajnšič1,2 & Dušan Devetak1
www.nature.com/scientificreports OPEN GIS-based modelling reveals the fate of antlion habitats in the Deliblato Sands Danijel Ivajnšič1,2 & Dušan Devetak1 The Deliblato Sands Special Nature Reserve (DSSNR; Vojvodina, Serbia) is facing a fast successional process. Open sand steppe habitats, considered as regional biodiversity hotspots, have drastically decreased over the last 25 years. This study combines multi-temporal and –spectral remotely sensed data, in-situ sampling techniques and geospatial modelling procedures to estimate and predict the potential development of open habitats and their biota from the perspective of antlions (Neuroptera, Myrmeleontidae). It was confrmed that vegetation density increased in all parts of the study area between 1992 and 2017. Climate change, manifested in the mean annual precipitation amount, signifcantly contributes to the speed of succession that could be completed within a 50-year period. Open grassland habitats could reach an alarming fragmentation rate by 2075 (covering 50 times less area than today), according to selected global climate models and emission scenarios (RCP4.5 and RCP8.5). However, M. trigrammus could probably survive in the DSSNR until the frst half of the century, but its subsequent fate is very uncertain. The information provided in this study can serve for efective management of sand steppes, and antlions should be considered important indicators for conservation monitoring and planning. Palaearctic grasslands are among the most threatened biomes on Earth, with one of them – the sand steppe - being the most endangered1,2. In Europe, sand steppes and dry grasslands have declined drastically in quality and extent, owing to agricultural intensifcation, aforestation and abandonment3–6. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
The First Green Lacewings from the Late Eocene Baltic Amber
The first green lacewings from the late Eocene Baltic amber VLADIMIR N. MAKARKIN, SONJA WEDMANN, and THOMAS WEITERSCHAN Makarkin, V.N., Wedmann, S., and Weiterschan, T. 2018. The first green lacewings from the late Eocene Baltic amber. Acta Palaeontologica Polonica 63 (3): 527–537. Pseudosencera baltica gen. et sp. nov. of Chrysopinae (Chrysopidae, Neuroptera) is described from Baltic amber. Additionally, another species, Nothochrysa? sp. (Nothochrysinae), is left in the open nomenclature. Pseudosencera bal- tica gen. et sp. nov. represents the oldest confident record of Chrysopinae. The new genus lacks the apparent forewing intramedian cell, and possesses three character states not found in other Chrysopinae: the simple AA1, the short basal crossvein between M and Cu, and 5‒6 rings of setae on the antennal flagellomeres. This genus is probably a special- ised form in a basal branch of Chrysopinae, that could not be attributed to any of the known tribes. The specimen of Nothochrysa? sp. consists only of fragments of the forewings. The late Eocene Baltic amber represents the oldest horizon where Chrysopinae and Nothochrysinae are found to coexist. It is highly likely that Chrysopidae were extremely rare in these forests. Key words: Neuroptera, Chrysopinae, Nothochrysinae, Cenozoic, Baltic amber. Vladimir N. Makarkin [[email protected]], Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia. Sonja Wedmann [[email protected]], Senckenberg Forschungsstation Grube Messel, Markstrasse 35, D-64409 Messel, Germany. Thomas Weiterschan [[email protected]], Forsteler Strasse 1, 64739 Höchst Odw., Germany. Received 16 May 2018, accepted 5 July 2018, available online 23 July 2018. -
Prey Recognition in Larvae of the Antlion Euroleon Nostras (Neuroptera, Myrrneleontidae)
Acta Zool. Fennica 209: 157-161 ISBN 95 1-9481-54-0 ISSN 0001-7299 Helsinki 6 May 1998 O Finnish Zoological and Botanical Publishing Board 1998 Prey recognition in larvae of the antlion Euroleon nostras (Neuroptera, Myrrneleontidae) Bojana Mencinger Mencinger, B., Department of Biology, University ofMaribor, Koro&a 160, SLO-2000 Maribor, Slovenia Received 14 July 1997 The behavioural responses of the antlion larva Euroleon nostras to substrate vibrational stimuli from three species of prey (Tenebrio molitor, Trachelipus sp., Pyrrhocoris apterus) were studied. The larva reacted to the prey with several behavioural patterns. The larva recognized its prey at a distance of 3 to 15 cm from the rim of the pit without seeing it, and was able to determine the target angle. The greatest distance of sand tossing was 6 cm. Responsiveness to the substrate vibration caused by the bug Pyrrhocoris apterus was very low. 1. Introduction efficient motion for antlion is to toss sand over its back (Lucas 1989). When the angle between the The larvae of the European antlion Euroleon head in resting position and the head during sand nostras are predators as well as the adults. In loose tossing is 4S0, the section of the sand tossing is substrate, such as dry sand, they construct coni- 30" (Koch 1981, Koch & Bongers 1981). cal pits. At the bottom of the pit they wait for the Sensitivity to vibration in sand has been stud- prey, which slides into the trap. Only the head ied in a few arthropods, e.g. in the nocturnal scor- and sometimes the pronotum of the larva are vis- pion Paruroctonus mesaensis and the fiddler crab ible; the other parts of the body are covered with Uca pugilator.