9.13 Geomorphic Controls on Hyporheic Exchange Across Scales - Watersheds to Particles 2 3 Steven M

Total Page:16

File Type:pdf, Size:1020Kb

9.13 Geomorphic Controls on Hyporheic Exchange Across Scales - Watersheds to Particles 2 3 Steven M Wondzell and Gooseff: Treatise in Fluvial Geomorpholgy – Geomorphic Controls on Hyporheic Exchange 1 9.13 Geomorphic Controls on Hyporheic Exchange Across Scales - Watersheds to Particles 2 3 Steven M. Wondzell 4 U.S. Forest Service, 5 Pacific Northwest Research Station, 6 Olympia Forest Sciences Laboratory, 7 Olympia, WA 98512 USA. 8 Phone: 360-753-7691 9 E-mail: [email protected] 10 11 Michael N. Gooseff 12 Civil & Environmental Engineering Department, 13 Pennsylvania State University, 14 University Park, PA 16802 USA 15 Phone: 814- 867-0044 16 E-mail: [email protected] 1 Wondzell and Gooseff: Treatise in Fluvial Geomorpholgy – Geomorphic Controls on Hyporheic Exchange 17 Abstract 18 19 We examined the relationship between fluvial geomorphology and hyporheic exchange flows. 20 We use geomorphology as a framework to understand hyporheic process and how these 21 processes change with location within a stream network, and over time in response to changes in 22 stream discharge and catchment wetness. We focus primarily on hydostatic and hydrodynamic 23 processes – the processes where linkages to fluvial geomorphology are most direct. Hydrostatic 24 processes result from morphologic features that create elevational head gradients whereas 25 hydrodynamic processes result from the interaction between stream flow and channel 26 morphologic features. We provide examples of the specific morphologic features that drive or 27 enable hyporheic exchange and we examine how these processes interact in real stream networks 28 to create complex subsurface flow nets through the hyporheic zone. 29 30 31 Key words 32 33 Hyporheic, step-pool sequence, pool-riffle sequence, meander bends, back channels, floodplain 34 spring brooks, mid-channel islands, stream bedforms, pumping exchange, saturated hydraulic 35 conductivity. 2 Wondzell and Gooseff: Treatise in Fluvial Geomorpholgy – Geomorphic Controls on Hyporheic Exchange 36 9.13.1. Introduction 37 38 Hyporheic exchange flow (HEF) is the movement of stream water from the surface channel into 39 the subsurface and back to the stream (Figure 1). Stream water in hyporheic flow paths may mix 40 with groundwater so that the relative proportion of stream-source water in the hyporheic zone is 41 highly variable, ranging from 100% stream water to nearly 100% groundwater. Also the 42 residence time distribution of stream water in the hyporheic zone tends to be highly skewed, with 43 most of the stream water moving along short flow paths and thus having short residence times 44 (hours), but some water either moving on long flow paths or encountering relatively immobile 45 regions having very extended residence times (weeks to months, or longer). The boundaries of 46 the hyporheic zone are arbitrary, usually defined by the amount of stream-source water present in 47 the subsurface. Triska et al. (1989) set a threshold of 10% stream-source water to define the 48 limits of the hyporheic zone so that regions with <10% stream-source water were defined as 49 groundwater. Alternatively, the extent of the hyporheic zone can be delimited by water residence 50 time, for example, the subsurface zone delineated by hyporheic exchange flows with residence 51 times less than 24 hours (the 24-h hyporheic zone; Gooseff, in press). 52 53 The objective of this chapter is to examine the relation between geomorphology and hyporheic 54 processes. The two primary controls on hyporheic exchange are the gradients in total head 55 established along and across streambeds and the hydraulic conductivity of the streambed and 56 adjacent aquifer, both of which are significantly influenced by geomorphology. Total head (also 57 known as potential) is the sum of pressure head, elevation head, and velocity head. Pressure head 58 represents height of a column of fluid to produce pressure. Velocity head represents the vertical 59 distance needed for the fluid to fall freely (neglecting friction) to reach a particular velocity from 60 rest. Elevation head represents the potential energy of a fluid particle in terms of its height from 61 reference datum. Hydrostatic head is referred to as the sum of elevation and pressure head. 62 Groundwater tables in unconfined aquifers represent the spatial gradients in hydrostatic head. A 63 number of processes either drive or enable HEF, several of which are based on changes in head 64 gradients. We follow the organizational structure presented by Käser et al. (2009), who divided 65 these processes into five distinct classes: 66 3 Wondzell and Gooseff: Treatise in Fluvial Geomorpholgy – Geomorphic Controls on Hyporheic Exchange 67 1. Transient exchange – the temporary movement of stream water into stream banks due to 68 short-term increases in stream stage (i.e., bank storage processes due to changes in 69 hydrostatic head gradients between stream and lateral riparian aquifer; Lewandowski et al. 70 2009; Sawyer et al. 2009a). 71 72 2. Turn-over exchange – the trapping of stream water in the streambed during times of 73 significant bed mobility (Elliot and Brooks, 1997b; Packman and Brooks 2001). 74 75 3. Turbulent diffusion – exchange driven by slip velocity that is created at the surface of the 76 porous medium of the bed where streamwise velocity vectors continue to propagate into the 77 surface layers of the bed (Packman and Bencala, 2000). 78 79 4. Hydrostatic-driven exchange – exchange driven by static hydraulic gradients which are 80 determined by changes in water surface elevation (Harvey and Bencala, 1993), spatial 81 heterogeneity in saturated hydraulic conductivity, or changes in the saturated cross-sectional 82 area of floodplain alluvium through which hyporheic flow occurs. 83 84 5. Hydrodynamic-driven exchange – exchange driven by the velocity head component of the 85 total head gradient on the bed surface (i.e., pumping exchange; Elliott and Brooks, 1997a,b) 86 and exchange induced by momentum gradients across beds and banks. 87 88 These classes of HEF processes are coupled to geomorphic processes in many ways. This is most 89 obvious for hydrostatic effects, which are directly dependent on channel and valley-floor 90 morphology and the depositional environment that controls spatial heterogeneity in saturated 91 hydraulic conductivity (K). However, turnover of streambed sediment is also related to fluvial 92 geomorphic processes. Similarly, hydrodynamic effects result from the interaction of flow over 93 stream bedforms. Geomorphic processes build stream bedforms and determine channel 94 morphology, especially longitudinal gradient, bed roughness, and water depth all of which 95 influence flow velocity. The relationship between geomorphology and the other classes of 96 processes is less direct, but still plays a role in controlling these processes through channel form 97 and the size distribution of sediment that makes up the streambed. This chapter focuses primarily 4 Wondzell and Gooseff: Treatise in Fluvial Geomorpholgy – Geomorphic Controls on Hyporheic Exchange 98 on the hydostatic and hydrodynamic processes where linkages to geomorphic processes are most 99 direct. 100 101 We organize our discussion of the interactions between geomorphology and HEF using a 102 hierarchical scaling framework developed for river networks (Frissell et al. 1986; Bisson and 103 Montgomery, 1996), starting at the whole network, through the stream segment, to the stream 104 reach, to the channel unit, and down to the sub-channel unit scale. We recognize that describing 105 any given process or related flow path at a single “scale” is somewhat arbitrary because of the 106 nested structure of the hyporheic flow net and dispersion among HEF flow paths. Despite that, 107 the concept of scale is an important heuristic tool to organize our understanding of hyporheic 108 processes. In many senses, the reach scale is the most informative scale at which to consider 109 HEF. A single reach, by definition, has characteristic channel morphology so that the factors 110 driving HEF within the reach are relatively consistent. However, only a few of the geomorphic 111 factors driving HEF actually operate at this scale. Most of the drivers work at the channel unit or 112 smaller scales. And to understand the importance of HEF in stream ecosystem processes, the 113 cumulative effects of HEF must be evaluated at scales much larger than a single reach. 114 115 9.13.2. The effect of geomorphology on hyporheic exchange flows 116 117 9.13.2.1. The whole network to segment scale 118 119 The geologic setting of the stream network is an important factor determining the likely 120 occurrence of HEF, but there have been few attempts to study HEF at this broad scale. Rather, 121 our expectations are pieced together by drawing comparisons among HZ studies that have been 122 conducted in widely varying geologic settings, at different locations in the stream network, or 123 under widely varying flow conditions. We expect that geomorphic-hyporheic relationships will 124 differ substantially among different geologic settings. 125 126 Fluvial geomorphic studies have examined the factors that determine the types of channel 127 morphologies present within stream networks (Montgomery and Buffington, 1997; Wohl and 128 Merritt, 2005; Brardinoni and Hassan, 2007). Montgomery and Buffington (1997) presented one 5 Wondzell and Gooseff: Treatise in Fluvial Geomorpholgy – Geomorphic Controls on Hyporheic Exchange 129 such description of the distribution of channel morphologies typical of many mountainous 130 landscapes. They showed that catchment
Recommended publications
  • Karst Features — Where and What Are They?
    Karst Features — Where and What are They? This story was made with Esri's Story Map Journal. Read the interactive version on the web at https://arcg.is/jCmza. Iowa Geological and Water Survey Bureau completed a detailed mapping project of bedrock geologic units, key subsurface horizons, and surficial karst features in the Iowa portion of the Upper Iowa River Watershed in 2011. In the report, they note that “One of the primary goals of the study was to gain more thorough understanding of relationships between bedrock geology and karst features within the watershed.” Black River Falls photo courtesy of Larry Reis. Sinkholes Esri, HERE, Garmin, FAO, USGS, NGA, EPA, NPS According to the GIS data from the Iowa DNR, the UIR Watershed has 6,649 known sinkholes in the Iowa portion of the watershed. Although this number is very precise, sinkhole development is actually an active process in the UIR Watershed so the actual number of sinkholes changes over time as some are filled in through natural or human processes and others are formed. One of the most numerous karst features found in the UIR Watershed, sinkholes are formed when specific types of underlying bedrock are gradually dissolved, creating voids in the subsurface. When soils and other materials above these voids can no longer bridge the gap created in the bedrock, a collapse occurs. Photo Courtesy of USGS Sinkholes vary in size and shape and can and do occur in any type of land use in the UIR Watershed, from row crop to forest, and even in roads. According to the Iowa Geologic Survey, sinkholes are often connected to underground bedrock fractures and conduits, from minor fissures to enlarged caverns, which allow for rapid movement of water from sinkholes vertically and laterally through the subsurface.
    [Show full text]
  • “I Care for Počitelj”
    “I care for Počitelj” - “I care for Stolac” 07 – 15 July 2016 This unique medieval settlement, on the list to be declared a cultural heritage by UNESCO, is situated in the valley of the Neretva River, twenty five kilometers from Mostar, on the way to the Adriatic Sea. In the 1960s, Počitelj began to grow as an art center, promoted also by the famous writer - Nobel Prize winner Ivo Andrić. Počitelj, with its jumble of medieval stone buildings, ancient tower overlooking the river and proximity to the seaside, giving artists and will give you the peaceful and scenic place to work and stay. In the year 2000, the Government of the Federation of Bosnia and Herzegovina initiated the Programme of the permanent protection of Počitelj. This includes protection of cultural heritage from deterioration, reconstruction of damaged and destroyed buildings, encouraging the return of the refugees and displaced persons to their homes as well as long-term preservation and revitalization of Počitelj historic urban area. The Programm is on-going. But a lot of maintenance services in public spaces and along the stone paths of the old town require voluntary action of few inhabitants. photo: Alberto Sartori Structure and Activities of the Camp Planned activities are: 1. “Active citizenship” actions: working activities in Počitelj and Stolac 2. Other events: public conference – sightseeing of surroundings 1. Active citizenship actions - working activities - Cleaning the environment around the old tower (citadel) and public areas in the old town of Počitelj, pruning
    [Show full text]
  • Ground Water Introduction and Demonstration
    Ground Water Introduction and Demonstration Page Content By Kimberly Mullen, CPG http://www.ngwa.org/Fundamentals/teachers/Pages/Ground-Water-Introduction-and- Demonstration.aspx Objective Students will be able to define terms pertaining to groundwater such as permeability, porosity, unconfined aquifer, confined aquifer, drawdown, cone of depression, recharge rate, Darcy’s law, and artesian well. Students will be able to illustrate environmental problems facing groundwater, (such as chemical contamination, point source and nonpoint source contamination, sediment control, and overuse). Introduction Looking at satellite photographs of the planet Earth can illustrate the fact that the majority of the Earth’s surface is covered with water. Earth is known as the “Blue Planet.” Seventy-one percent of the Earth’s surface is covered with water. There also is water beneath the surface of the Earth. Yet, with all of the water present on Earth, water is still a finite source, cycling from one form to another. This cycle, known as the hydrologic cycle, is an important concept to help understand the water found on Earth. In addition to understanding the hydrologic cycle, you must understand the different places that water can be found—primarily above the ground (as surface water) and below the ground (as groundwater). Today, we will be starting to understand water below the ground. General definitions and discussion points “What is groundwater?” Groundwater is defined as water that is found beneath the water table under Earth’s surface. “Why is groundwater important?” Groundwater, makes up about 98 percent of all the usable fresh water on the planet, and it is about 60 times as plentiful as fresh water found in lakes and streams.
    [Show full text]
  • Hydrogeology of Harrison County, Indiana
    HYDROGEOLOGY OF HARRISON COUNTY, INDIANA BULLETIN 40 STATE OF INDIANA DEPARTMENT OF NATURAL RESOURCES DIVISION OF WATER 2006 HYDROGEOLOGY OF HARRISON COUNTY, INDIANA By Gerald A. Unterreiner STATE OF INDIANA DEPARTMENT OF NATURAL RESOURCES DIVISION OF WATER Bulletin 40 Printed by Authority of the State of Indiana Indianapolis, Indiana: 2006 CONTENTS Page Introduction................................................................................................................................ 1 Purpose and Background ........................................................................................................... 1 Climate....................................................................................................................................... 1 Physiography.............................................................................................................................. 4 Bedrock Geology ....................................................................................................................... 5 Bedrock Topography ................................................................................................................. 8 Surficial Geology....................................................................................................................... 8 Karst Hydrology and Springs..................................................................................................... 11 Hydrogeology and Ground Water Availability.........................................................................
    [Show full text]
  • An Assessment of the Applicability of the Heat Pulse Method Toward the Determination of Infiltration Rates in Karst Losing-Stream Reaches
    T. Dogwiler, C.M. Wicks, and E. Jenzen – An assessment of the applicability of the heat pulse method toward the determination of infiltration rates in karst losing-stream reaches. Journal of Cave and Karst Studies, v. 69, no. 2, p. 237–242. AN ASSESSMENT OF THE APPLICABILITY OF THE HEAT PULSE METHOD TOWARD THE DETERMINATION OF INFILTRATION RATES IN KARST LOSING-STREAM REACHES TOBY DOGWILER1,CAROL M. WICKS2, AND ETHAN JENZEN3 Abstract: Quantifying the rate at which water infiltrates through sediment-choked losing stream reaches into underlying karstic systems is problematic, yet critically important. Using the one-dimensional heat pulse method, we determined the rate at which water infiltrated vertically downward through an estimated 600 m by 2 m sediment-choked losing-stream reach in the Devil’s Icebox Karst System of Central Missouri. The 25 26 21 infiltration rate ranged from 4.9 3 10 to 1.9 3 10 ms , and the calculated discharge 22 23 3 21 through the reach ranged from 5.8 3 10 to 2.3 3 10 m s . The heat pulse-derived discharges for the losing reach bracketed the median discharge measured at the outlet to the karst system. Our accuracy was in part affected by significant precipitation in the karst basin during the study period that contributed flow to the outlet from recharge areas other than the investigated losing reach. Additionally, the results could be improved by future studies that deal with identifying areas of infiltration in losing reaches and how that area varies in relation to changing flow conditions. However, the heat pulse method appears useful in providing reasonable estimates of the rate of infiltration and discharge of water through sediment-choked losing reaches.
    [Show full text]
  • Modeling of Solute Transport and Retention in Upper Amite River Hoonshin Jung Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2008 Modeling of solute transport and retention in Upper Amite River Hoonshin Jung Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons Recommended Citation Jung, Hoonshin, "Modeling of solute transport and retention in Upper Amite River" (2008). LSU Master's Theses. 2006. https://digitalcommons.lsu.edu/gradschool_theses/2006 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MODELING OF SOLUTE TRANSPORT AND RETENTION IN UPPER AMITE RIVER A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in The Department of Civil and Environmental Engineering by Hoonshin Jung B.S., Inha University, 1996 M.S., Inha University, 1998 December, 2008 ACKNOWLEDGEMENTS I would like to take this opportunity to express my deepest appreciation to Dr. Zhi-Qiang Deng, who is my graduate advisor and the chair on my committee. Dr. Deng has continuously supported and encouraged me throughout my graduate program. Most significantly, Dr. Deng has provided tremendous help upon development and completion of this master thesis. Again, his extensive help, support, and advice are highly recognized and appreciated.
    [Show full text]
  • Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology
    Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology By Charles J. Taylor and Earl A. Greene Chapter 3 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction...................................................................................................................................................75 Hydrogeologic Characteristics of Karst ..........................................................................................77 Conduits and Springs .........................................................................................................................77 Karst Recharge....................................................................................................................................80 Karst Drainage Basins .......................................................................................................................81 Hydrogeologic Characterization ...............................................................................................................82 Area of the Karst Drainage Basin ....................................................................................................82 Allogenic Recharge and Conduit Carrying Capacity ....................................................................83 Matrix and Fracture System Hydraulic Conductivity ....................................................................83
    [Show full text]
  • Backpacking: Bird Knob
    1 © 1999 Troy R. Hayes. All rights reserved. Preface As a new Scoutmaster, I wanted to take my troop on different kinds of adventure. But each trip took a tremendous amount of preparation to discover what the possibilities were, to investigate them, to pick one, and finally make the detailed arrangements. In some cases I even made a reconnaissance trip in advance in order to make sure the trip worked. The Pathfinder is an attempt to make this process easier. A vigorous outdoor program is a key element in Boy Scouting. The trips described in these pages range from those achievable by eleven year olds to those intended for fourteen and up (high adventure). And remember what the Irish say: The weather determines not whether you go, but what clothing you should wear. My Scouts have camped in ice, snow, rain, and heat. The most memorable trips were the ones with "bad" weather. That's when character building best occurs. Troy Hayes Warrenton, VA [Preface revised 3-10-2011] 2 Contents Backpacking Bird Knob................................................................... 5 Bull Run - Occoquan Trail.......................................... 7 Corbin/Nicholson Hollow............................................ 9 Dolly Sods (2 day trip)............................................... 11 Dolly Sods (3 day trip)............................................... 13 Otter Creek Wilderness............................................. 15 Saint Mary's Trail ................................................ ..... 17 Sherando Lake .......................................................
    [Show full text]
  • Quantifying Stream Flow Loss to Groundwater on Alluvial Valley Streams in Sonoma County
    Quantifying stream flow loss to groundwater on alluvial valley streams in Sonoma County Kelly Janes & Jose Carrasco LA 222 Term Project Abstract Surface flow is a crucial factor for the ecology of a stream. River-groundwater interactions, in turn, are crucial for these flows, as they determine whether streams are gaining or loosing surface flow. Gill Creek, in California’s wine county, is a prime case study of these river- aquifer interactions, and their ecological and social implications. We took flow measurements at various places along the longitudinal profile of Gill Creek, with the purpose of finding if discharge decreases as the creek passes through an alluvial fan formation in Alexander Valley, Sonoma County, and if so at what rates. Results suggest Gill Creek is a “losing stream,” and conclusions are that further studies of the stream and its relation to the aquifer are needed to more adequately address the prevention of stranding of anadromous fish species. Introduction In the Russian River, river-ground water interactions influence the timing and magnitude of surface stream flows and therefore are key processes that determine the habitat suitability for endangered and threatened salmonids found there (URRSA, 2009). For example, juvenile steelhead rear in Russian River tributary streams before outmigrating to the ocean as smolts (URRSA, 2009). In the Russian River watershed anadromous fish species, including juvenile steelhead, use spawning and rearing habitats usually found in its tributaries upstream of and within alluvial fans, and adequate flow is important to creating quality rearing habitat for juvenile steelhead. (URRSA, 2009). Numerous tributary streams drain to the Russian River from steep canyons across the alluvial fans that occur at the creeks’ canyon outlets (URRSA, 2009).
    [Show full text]
  • DRAFT 8/8/2013 Updates at Chapter 59 -- Three Tales of Two St
    Chapter 59 -- Three Tales of Two St. Pauls Chute's Cave Let us briefly move to St. Paul's Minnesota's neighbor, Minneapolis. When S.H. Chute excavated a 2.5-meter tunnel to provide water to his Phoenix Four Mill in 1864, the project encountered a cave and was abandoned. A bulkhead built during 1875 excavation for a tailrace, however, made the suitable for sub-urban excursions. From the Saint Paul and Minneapolis Pioneer and Tribune, August 26 of the following year, Chute's Cave -- A Boat Ride of 2,000 Feet Under Main Street. The mouth of the "Chute's Cave" is just below the springs, and the bottom of this cave is covered with about eighteen inches of water. For the moderate sum of ten cents you can take a seat in a boat with a flaming torch at the bow, and with a trusty pilot sail up under Main street a distance of about 2,000 feet, between pure white sandstone, and under a limestone arch which forms the roof. It is an inexpensive and decidedly interesting trip to take. Stereopticon view showing a flat- bottomed boat and pole. Saint Paul and Minneapolis Pioneer and Tribune, December 1, 1889, But a few years ago not a day passed that did not bring in visitors. A stream of water ran the whole length of the cave, and for the small consideration of a dime, a grim, Charon-like individual would undertake to convey, in a rude sort of a boat, all visitors, who were inclined, for the distance of a quarter or a mile or thereabouts into the gloomy passage.
    [Show full text]
  • Estimated 100-Year Peak Flows and Flow Volumes in the Big Lost River and Birch Creek at the Idaho National Engineering Laboratory, Idaho
    Estimated 100-Year Peak Flows and Flow Volumes in the Big Lost River and Birch Creek at the Idaho National Engineering Laboratory, Idaho By L.C. Kjelstrom and Charles Berenbrock U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4163 Prepared in Cooperation with the U.S. Department of Energy Boise, Idaho 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL $URVEY Gordon P. Eaton, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Information Services 230 Collins Road Box 25286 Boise, ID 83702-4520 Federal Center Denver, CO 80225 CONTENTS Abstract................................................................................................................................................................................ 1 Introduction ..................................................................................................................................................................^ 1 Purpose and scope......................................................................................................................................................... 3 Description of study area.............................................................................................................................................. 3 Previous investigations ................................................................................................................................................
    [Show full text]
  • Gaining and Losing Stream Reaches Have Opposite Hydraulic Open Access Solid Earth Conductivity Distribution Patterns Solid Earth Discussions X
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geoscientific Geoscientific Model Development Model Development Discussions Open Access Open Access Hydrol. Earth Syst. Sci., 17, 2569–2579, 2013 Hydrology and Hydrology and www.hydrol-earth-syst-sci.net/17/2569/2013/ doi:10.5194/hess-17-2569-2013 Earth System Earth System © Author(s) 2013. CC Attribution 3.0 License. Sciences Sciences Discussions Open Access Open Access Ocean Science Ocean Science Discussions Open Access Gaining and losing stream reaches have opposite hydraulic Open Access Solid Earth conductivity distribution patterns Solid Earth Discussions X. Chen1, W. Dong1,2, G. Ou1, Z. Wang1, and C. Liu1 1 School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0996, USA Open Access Open Access 2Key Laboratory of Groundwater Resources and Environment of China Ministry of Education, Jilin University, Changchun, 130021, China The Cryosphere The Cryosphere Discussions Correspondence to: X. Chen ([email protected]) Received: 16 November 2012 – Published in Hydrol.
    [Show full text]