Streamflow Depletion by Wells—Understanding and Managing the Effects of Groundwater Pumping on Streamflow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Karst Features — Where and What Are They?
Karst Features — Where and What are They? This story was made with Esri's Story Map Journal. Read the interactive version on the web at https://arcg.is/jCmza. Iowa Geological and Water Survey Bureau completed a detailed mapping project of bedrock geologic units, key subsurface horizons, and surficial karst features in the Iowa portion of the Upper Iowa River Watershed in 2011. In the report, they note that “One of the primary goals of the study was to gain more thorough understanding of relationships between bedrock geology and karst features within the watershed.” Black River Falls photo courtesy of Larry Reis. Sinkholes Esri, HERE, Garmin, FAO, USGS, NGA, EPA, NPS According to the GIS data from the Iowa DNR, the UIR Watershed has 6,649 known sinkholes in the Iowa portion of the watershed. Although this number is very precise, sinkhole development is actually an active process in the UIR Watershed so the actual number of sinkholes changes over time as some are filled in through natural or human processes and others are formed. One of the most numerous karst features found in the UIR Watershed, sinkholes are formed when specific types of underlying bedrock are gradually dissolved, creating voids in the subsurface. When soils and other materials above these voids can no longer bridge the gap created in the bedrock, a collapse occurs. Photo Courtesy of USGS Sinkholes vary in size and shape and can and do occur in any type of land use in the UIR Watershed, from row crop to forest, and even in roads. According to the Iowa Geologic Survey, sinkholes are often connected to underground bedrock fractures and conduits, from minor fissures to enlarged caverns, which allow for rapid movement of water from sinkholes vertically and laterally through the subsurface. -
Analysis of Streamflow Variability and Trends in the Meta River, Colombia
water Article Analysis of Streamflow Variability and Trends in the Meta River, Colombia Marco Arrieta-Castro 1, Adriana Donado-Rodríguez 1, Guillermo J. Acuña 2,3,* , Fausto A. Canales 1,* , Ramesh S. V. Teegavarapu 4 and Bartosz Ka´zmierczak 5 1 Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Atlántico, Colombia; [email protected] (M.A.-C.); [email protected] (A.D.-R.) 2 Department of Civil and Environmental Engineering, Instituto de Estudios Hidráulicos y Ambientales, Universidad del Norte, Km.5 Vía Puerto Colombia, Barranquilla 081007, Colombia 3 Programa de Ingeniería Ambiental, Universidad Sergio Arboleda, Escuela de Ciencias Exactas e Ingeniería (ECEI), Calle 74 #14-14, Bogotá D.C. 110221, Colombia 4 Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; [email protected] 5 Department of Water Supply and Sewerage Systems, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; [email protected] * Correspondence: [email protected] (F.A.C.); [email protected] (G.J.A.); Tel.: +57-5-3362252 (F.A.C.) Received: 29 March 2020; Accepted: 13 May 2020; Published: 20 May 2020 Abstract: The aim of this research is the detection and analysis of existing trends in the Meta River, Colombia, based on the streamflow records from seven gauging stations in its main course, for the period between June 1983 to July 2019. The Meta River is one of the principal branches of the Orinoco River, and it has a high environmental and economic value for this South American country. -
“I Care for Počitelj”
“I care for Počitelj” - “I care for Stolac” 07 – 15 July 2016 This unique medieval settlement, on the list to be declared a cultural heritage by UNESCO, is situated in the valley of the Neretva River, twenty five kilometers from Mostar, on the way to the Adriatic Sea. In the 1960s, Počitelj began to grow as an art center, promoted also by the famous writer - Nobel Prize winner Ivo Andrić. Počitelj, with its jumble of medieval stone buildings, ancient tower overlooking the river and proximity to the seaside, giving artists and will give you the peaceful and scenic place to work and stay. In the year 2000, the Government of the Federation of Bosnia and Herzegovina initiated the Programme of the permanent protection of Počitelj. This includes protection of cultural heritage from deterioration, reconstruction of damaged and destroyed buildings, encouraging the return of the refugees and displaced persons to their homes as well as long-term preservation and revitalization of Počitelj historic urban area. The Programm is on-going. But a lot of maintenance services in public spaces and along the stone paths of the old town require voluntary action of few inhabitants. photo: Alberto Sartori Structure and Activities of the Camp Planned activities are: 1. “Active citizenship” actions: working activities in Počitelj and Stolac 2. Other events: public conference – sightseeing of surroundings 1. Active citizenship actions - working activities - Cleaning the environment around the old tower (citadel) and public areas in the old town of Počitelj, pruning -
Stream Discharge (Streamflow)
The Importance of Streamflow in California’s Southern Sierra Nevada Mountains Kings River Experimental Watersheds Because 55 to 65 percent of California’s developed water comes from small streams in the Sierra Nevada, it is important to under- stand the role the snowpack has in the distribution and quantity of stream discharge (streamflow). In the southern Sierra, more than 80 percent of precipitation falls December through April. However, owing to the delay in snowmelt, there is a lag in runoff until the spring. At higher elevation sites, the spring melt does not peak until May or even June. This makes mountain water available to California during the summer months. The Kings River Experi- mental Watersheds (KREW) sites demonstrate that precipitation in the form of snow generates greater yearly discharge in a given watershed. The difference in discharge between the KREW Provi- dence site and Bull site is as much as 20 percent per year. C. Hunsaker Research Area Figure 1—KREW’s double flume system. The large flume KREW is a watershed-level, integrated ecosystem project for (background) accurately captures high flows, and the small flume headwater streams in the Sierra Nevada. Eight watersheds at two is successful at measuring lower base flows. study sites are fully instrumented to monitor ecosystem changes. Stream discharge data, just one component of the project, have been collected since 2002 from the Providence site and since 2003 from the Bull site. What is Stream Discharge? Discharge is the amount of water leaving each watershed within the stream channel. It is represented as a rate of flow such as cubic feet per second (cfs), gallons per minute (gpm), or acre-feet per year. -
Ground Water Introduction and Demonstration
Ground Water Introduction and Demonstration Page Content By Kimberly Mullen, CPG http://www.ngwa.org/Fundamentals/teachers/Pages/Ground-Water-Introduction-and- Demonstration.aspx Objective Students will be able to define terms pertaining to groundwater such as permeability, porosity, unconfined aquifer, confined aquifer, drawdown, cone of depression, recharge rate, Darcy’s law, and artesian well. Students will be able to illustrate environmental problems facing groundwater, (such as chemical contamination, point source and nonpoint source contamination, sediment control, and overuse). Introduction Looking at satellite photographs of the planet Earth can illustrate the fact that the majority of the Earth’s surface is covered with water. Earth is known as the “Blue Planet.” Seventy-one percent of the Earth’s surface is covered with water. There also is water beneath the surface of the Earth. Yet, with all of the water present on Earth, water is still a finite source, cycling from one form to another. This cycle, known as the hydrologic cycle, is an important concept to help understand the water found on Earth. In addition to understanding the hydrologic cycle, you must understand the different places that water can be found—primarily above the ground (as surface water) and below the ground (as groundwater). Today, we will be starting to understand water below the ground. General definitions and discussion points “What is groundwater?” Groundwater is defined as water that is found beneath the water table under Earth’s surface. “Why is groundwater important?” Groundwater, makes up about 98 percent of all the usable fresh water on the planet, and it is about 60 times as plentiful as fresh water found in lakes and streams. -
From the River to You: USGS Real-Time Streamflow Information …From the National Streamflow Information Program
From the River to You: USGS Real-Time Streamflow Information …from the National Streamflow Information Program This Fact Sheet is one in a series that highlights information or recent research findings from the USGS National Streamflow Information Program (NSIP). The investigations and scientific results reported in this series require a nationally consistent streamgaging network with stable long-term monitoring sites and a rigorous program of data, quality assurance, management, archiving, and synthesis. NSIP produces multipurpose, unbiased surface-water information that is readily accessible to all. Introduction Collecting and Transmitting data are stored in a data logger in Streamflow Information the gagehouse. As part of the National Stream- On a preset schedule, typically flow Information Program, the U.S. The streamflow information every 1 to 4 hours, the streamgage Geological Survey (USGS) operates collected at most streamgages transmits all the stage information more than 7,400 streamgages nation- is stream stage (also called gage recorded since the last transmission to wide to provide streamflow informa- height). This is the height of the a Geostationary Operational Envi- tion for a wide variety of uses. These water surface above a reference level ronmental Satellite (GOES). Many uses include prediction of floods, or datum. Stream stage is measured streamgages have predetermined management and allocation of water by a variety of methods including stage thresholds. When these thresh- resources, design and operation of floats, pressure transducers, and olds are exceeded, the time between engineering structures, scientific acoustic or optical sensors (fig. 1). transmissions to the satellite will research, operation of locks and Stage data are measured at the decrease from 1 to 4 hours to every dams, and for recreational safety and time interval necessary to monitor the 15 minutes to provide more timely enjoyment. -
Hydrogeology of Harrison County, Indiana
HYDROGEOLOGY OF HARRISON COUNTY, INDIANA BULLETIN 40 STATE OF INDIANA DEPARTMENT OF NATURAL RESOURCES DIVISION OF WATER 2006 HYDROGEOLOGY OF HARRISON COUNTY, INDIANA By Gerald A. Unterreiner STATE OF INDIANA DEPARTMENT OF NATURAL RESOURCES DIVISION OF WATER Bulletin 40 Printed by Authority of the State of Indiana Indianapolis, Indiana: 2006 CONTENTS Page Introduction................................................................................................................................ 1 Purpose and Background ........................................................................................................... 1 Climate....................................................................................................................................... 1 Physiography.............................................................................................................................. 4 Bedrock Geology ....................................................................................................................... 5 Bedrock Topography ................................................................................................................. 8 Surficial Geology....................................................................................................................... 8 Karst Hydrology and Springs..................................................................................................... 11 Hydrogeology and Ground Water Availability......................................................................... -
Distributed Hydrologic Modeling for Streamflow Prediction at Ungauged Basins
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2008 Distributed Hydrologic Modeling For Streamflow Prediction At Ungauged Basins Christina Bandaragoda Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Civil and Environmental Engineering Commons Recommended Citation Bandaragoda, Christina, "Distributed Hydrologic Modeling For Streamflow Prediction At Ungauged Basins" (2008). All Graduate Theses and Dissertations. 62. https://digitalcommons.usu.edu/etd/62 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DISTRIBUTED HYDROLOGIC MODELING FOR STREAMFLOW PREDICTION AT UNGAUGED BASINS by Christina Bandaragoda A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Civil and Environmental Engineering UTAH STATE UNIVERSITY Logan, UT 2007 ii ABSTRACT Distributed Hydrologic Modeling for Prediction of Streamflow at Ungauged Basins by Christina Bandaragoda, Doctor of Philosophy Utah State University, 2008 Major Professor: Dr. David G. Tarboton Department: Civil and Environmental Engineering Hydrologic modeling and streamflow prediction of ungauged basins is an unsolved scientific problem as well as a policy-relevant science theme emerging as a major -
Introduction and Characteristics of Flow
Introduction and Characteristics of Flow By James W. LaBaugh and Donald O. Rosenberry Chapter 1 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods Chapter 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction.....................................................................................................................................................5 Purpose and Scope .......................................................................................................................................6 Characteristics of Water Exchange Between Surface Water and Ground Water .............................7 Characteristics of Near-Shore Sediments .......................................................................................8 Temporal and Spatial Variability of Flow .........................................................................................10 Defining the Purpose for Measuring the Exchange of Water Between Surface Water and Ground Water ..........................................................................................................................12 Determining Locations of Water Exchange ....................................................................................12 Measuring Direction of Flow ............................................................................................................15 Measuring the Quantity of Flow .......................................................................................................15 -
An Assessment of the Applicability of the Heat Pulse Method Toward the Determination of Infiltration Rates in Karst Losing-Stream Reaches
T. Dogwiler, C.M. Wicks, and E. Jenzen – An assessment of the applicability of the heat pulse method toward the determination of infiltration rates in karst losing-stream reaches. Journal of Cave and Karst Studies, v. 69, no. 2, p. 237–242. AN ASSESSMENT OF THE APPLICABILITY OF THE HEAT PULSE METHOD TOWARD THE DETERMINATION OF INFILTRATION RATES IN KARST LOSING-STREAM REACHES TOBY DOGWILER1,CAROL M. WICKS2, AND ETHAN JENZEN3 Abstract: Quantifying the rate at which water infiltrates through sediment-choked losing stream reaches into underlying karstic systems is problematic, yet critically important. Using the one-dimensional heat pulse method, we determined the rate at which water infiltrated vertically downward through an estimated 600 m by 2 m sediment-choked losing-stream reach in the Devil’s Icebox Karst System of Central Missouri. The 25 26 21 infiltration rate ranged from 4.9 3 10 to 1.9 3 10 ms , and the calculated discharge 22 23 3 21 through the reach ranged from 5.8 3 10 to 2.3 3 10 m s . The heat pulse-derived discharges for the losing reach bracketed the median discharge measured at the outlet to the karst system. Our accuracy was in part affected by significant precipitation in the karst basin during the study period that contributed flow to the outlet from recharge areas other than the investigated losing reach. Additionally, the results could be improved by future studies that deal with identifying areas of infiltration in losing reaches and how that area varies in relation to changing flow conditions. However, the heat pulse method appears useful in providing reasonable estimates of the rate of infiltration and discharge of water through sediment-choked losing reaches. -
Chapter 5 Streamflow Data
Part 630 Hydrology National Engineering Handbook Chapter 5 Streamflow Data (210–VI–NEH, Amend. 76, November 2015) Chapter 5 Streamflow Data Part 630 National Engineering Handbook Issued November 2015 The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, em- ployees, and applicants for employment on the bases of race, color, national origin, age, disabil- ity, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual’s income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Pro- gram Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/com- plaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. You may also write a letter containing all of the information requested in the form. Send your completed complaint form or letter to us by mail at U.S. Department of Agriculture, Director, Office of Adju- dication, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, by fax (202) 690-7442 or email at [email protected] Individuals who are deaf, hard of hearing or have speech disabilities and you wish to file either an EEO or program complaint please contact USDA through the Federal Relay Service at (800) 877- 8339 or (800) 845-6136 (in Spanish). -
Modeling of Solute Transport and Retention in Upper Amite River Hoonshin Jung Louisiana State University and Agricultural and Mechanical College
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2008 Modeling of solute transport and retention in Upper Amite River Hoonshin Jung Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons Recommended Citation Jung, Hoonshin, "Modeling of solute transport and retention in Upper Amite River" (2008). LSU Master's Theses. 2006. https://digitalcommons.lsu.edu/gradschool_theses/2006 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MODELING OF SOLUTE TRANSPORT AND RETENTION IN UPPER AMITE RIVER A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in The Department of Civil and Environmental Engineering by Hoonshin Jung B.S., Inha University, 1996 M.S., Inha University, 1998 December, 2008 ACKNOWLEDGEMENTS I would like to take this opportunity to express my deepest appreciation to Dr. Zhi-Qiang Deng, who is my graduate advisor and the chair on my committee. Dr. Deng has continuously supported and encouraged me throughout my graduate program. Most significantly, Dr. Deng has provided tremendous help upon development and completion of this master thesis. Again, his extensive help, support, and advice are highly recognized and appreciated.