Calculation of the Gibbs Free Energy of Solvation and Dissociation of Hcl in Water Via Monte Carlo Simulations and Continuum

Total Page:16

File Type:pdf, Size:1020Kb

Calculation of the Gibbs Free Energy of Solvation and Dissociation of Hcl in Water Via Monte Carlo Simulations and Continuum PCCP View Article Online PAPER View Journal | View Issue Calculation of the Gibbs free energy of solvation and Cite this: Phys. Chem. Chem. Phys., 2013, dissociation of HCl in water via Monte Carlo 15, 13578 simulations and continuum solvation models Matthew J. McGrath,*ab I-F. Will Kuo,c Brice F. Ngouana W.,de Julius N. Ghogomu,d Christopher J. Mundy,f Aleksandr V. Marenich,b Christopher J. Cramer,b Donald G. Truhlarb and J. Ilja Siepmannbg The Gibbs free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation/quantum chemical approach at four temperatures between T = 300 and 450 K. The Gibbs free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state Gibbs free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated Received 24th April 2013, using Gibbs ensemble Monte Carlo simulations using either Kohn–Sham density functional theory or a Accepted 21st June 2013 molecular mechanics force field to determine the system’s potential energy. The latter Gibbs free energy DOI: 10.1039/c3cp51762d contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation Gibbs free energies www.rsc.org/pccp agree very well with available experimental data. 1 Introduction Studies of the thermophysical properties of HCl dissolution in water were performed early in the last century using electro- The interaction between hydrogen chloride and water has been chemical cells,7,8 and the structures of both dilute and concen- studied for many years due to the importance of HCl as a strong trated HCl solutions have been probed in neutron and X-ray acid (including acid dissociation in very cold nanoclusters1) 9,10 Published on 21 June 2013. Downloaded by University of Minnesota - Twin Cities 14/08/2013 03:48:12. diffraction experiments, including studies on the chloride ion and of HCl–ice systems and chloride ions at the air/water solvation structure.11 Experimental measurements of the vapor interface in atmospheric chemistry.2–5 Interest has also been pressures of HCl over water have been reported for various shown in the supercritical water–HCl system, as supercritical concentrations and temperatures,12–19 including vapor- and water is becoming increasingly popular for applications such as liquid-phase mole fractions of HCl as functions of tempera- waste disposal; the nature of supercritical water, however, ture.20 Equations to predict the HCl vapor pressure,21–25 as well drastically alters the behavior of strong acids.6 as its Henry’s law constants,26 have also been developed based on previous experimental data. There is some disagreement in the literature concerning the a Laboratoire des Sciences du Climat et de l’Environnement, value of the acid dissociation constant of HCl in aqueous 27 CEA-Orme des Merisiers, F-91191 Gif-sur-Yvette CEDEX, France. solution (Ka,aq). Ruaya and Seward report values for a wide E-mail: [email protected] range of temperatures, including a value of 0.71 at T = 298 K, b Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, showing good agreement with some previous studies. However, University of Minnesota, Minneapolis, Minnesota 55455, USA c Physical and Life Sciences Directorate, Lawrence Livermore National Livermore, a value of Ka,aq less than unity would imply a significant California 94550, USA amount of undissociated HCl at room temperature, which is d Department of Chemistry, University of Dschang, B.P. 67, Dschang, Cameroon unexpected at low temperatures for a strong acid, and Ruaya e Laboratoire Subatech, 4 rue Alfred Kastler, La Chantrerie BP 20722, and Seward27 mention other values that are about an order of 44307 Nantes CEDEX 3, France f magnitude larger. Much larger values make more intuitive sense Physical Sciences Division, Pacific Northwest National Livermore, P.O. Box 999, 23,24,28,29 Richland, Washington 99352, USA and have been reported by various research groups. It 24 g Department of Chemical Engineering and Materials Science, is also of interest to note that Clegg and Brimblecombe University of Minnesota, Minneapolis, Minnesota 55455, USA recommended using a form of Henry’s law constant that avoids 13578 Phys. Chem. Chem. Phys., 2013, 15, 13578--13585 This journal is c the Owner Societies 2013 View Article Online Paper PCCP the need to know ‘‘inaccessible parameters’’ including the acid various other techniques. Among these are QM/MM methods50,51 dissociation constant, and commented on the difficulty in deter- and calculation from experimental data,52 such as gas-phase 30 53 mining its true value. Balbuena et al. report the Gibbs free energy proton affinities and aqueous pKa,aq values. The structure of of HCl dissociation in water along the water saturation curve below concentrated HCl solutions has also been determined by empiri- the critical temperature, ranging from about À11 kcal molÀ1 at cally fitting X-ray scattering data.54 T = 300 K to around À5 kcal molÀ1 near T =500K(basedon In the above molecular simulation studies, no effort was experimentally measured acid dissociation constants31). Ho et al.32 made to compute the Gibbs free energy of aqueous solvation for give a formula to estimate Ka,aq at elevated temperatures as a HCl or its Henry’s law constant. The goal of the current study is function of the solvent density and temperature. At T =473K to compute these thermodynamic properties across a tempera- (the lowest temperature at which their formula is valid), this ture range of 150 K (T = 300–450 K), through the use of first formula predicts log(Ka,aq) = 0.55, which gives a Gibbs free energy principles Monte Carlo simulations and quantum mechanical À1 28 of acid dissociation, DGa,aq, of 1.2 kcal mol .Robinson, continuum solvation approaches. The chemical equilibria for 23 33 Marsh and McElroy, and Pokrovskii all give values of DGa,aq = the solvation and dissociation of gaseous HCl are given by: À8.4 kcal molÀ1 at T = 298 K. Pokrovskii33 points out a discrepancy HCl 2 H + +Cl À (1) between their values and those of Ruaya and Seward,27 and argues (g) (aq) (aq) that the data used by the latter group can be interpreted in 2 HCl(g) HCl(aq) (2) multiple ways. 2 + À In contrast, the Henry’s law constant of HCl in water appears to HCl(aq) H(aq) +Cl(aq) (3) be less ambiguous. Clegg and Brimblecombe34 report a value of 6 2 À2 À1 with the Henry’s law constant of KH =1.84Â 10 mol kg atm under ambient conditions. The 24 c þ c À following year, Clegg and Brimblecombe reported values around K ¼ H Cl g 2 (4) 6 2 À2 À1 H HCl 2.0 Â 10 mol kg atm for concentrations of HCl in solution pHCl between 0 and 200 mol kgÀ1 by using data from a variety of 26 where cX is the concentration of species X in the aqueous phase, sources, while Brimblecombe and Clegg recommend a value of + À 6 2 À2 À1 23 g is the geometric mean activity coefficient of H and Cl in 2.04 Â 10 mol kg atm at T = 298 K. Marsh and McElroy HCl solution, and p is the partial pressure of HCl over the calculated equilibrium constants for both the transfer of mole- HCl solution.26 It should be noted that other definitions of K can cular HCl from the vapor to aqueous phase (dimensionless) and H 3 be found in the literature. Eqn (4) can be rewritten in terms of the dissociation of HCl in water (in units of mole dmÀ ). Combin- the Gibbs free energy changes associated with eqn (2) and (3): ing these values (via eqn (11) in their paper) and converting units 6 2 À2 À1 results in KH =1.85Â 10 mol kg atm , which is very close to DG ðÞcÉ 2 24 K ¼ exp À comb (5) previous values, although Clegg and Brimblecombe note that H RT pÉ the disagreement grows at lower temperatures. The simulation literature surrounding the HCl–water system is o DGcomb = DGtrans + DGa,aq (6) just as extensive; in the interest of brevity, the following summary o will only be concerned with calculations involving the bulk aqueous where DGtrans, DGa,aq,andDGcomb are the Gibbs free energy of transfer of molecular HCl (obtained from the ratio of number Published on 21 June 2013. Downloaded by University of Minnesota - Twin Cities 14/08/2013 03:48:12. system and bulk solvation (i.e., studies dealing only with clusters or ice will be ignored). Molecular simulations of hydrogen chloride in densities), the standard-state Gibbs free energy of acid dissociation water have mostly been performed with the molecular dynamics in aqueous solution, and the Gibbs free energy of the combined ~ ~ technique, including simulations from first-principles35–41 and solvation–acid dissociation process, respectively. p and c are the using empirical force fields,30,42–45 including a study of HCl at standard pressure and the standard concentration, respectively. the air–water interface using QM/MM techniques.46 Some of these In this work, particle-based Monte Carlo simulations are 30,42,43 studies compute the pKa,aq of HCl in water, others compute carried out to compute DGtrans, and continuum solvation models 44 o the potential of mean force, while the rest examine the structure are used to compute DGa,aq.NoticethatDGtrans is not equivalent to of the solvating water molecules around the ions.
Recommended publications
  • Solution Is a Homogeneous Mixture of Two Or More Substances in Same Or Different Physical Phases. the Substances Forming The
    CLASS NOTES Class:12 Topic: Solutions Subject: Chemistry Solution is a homogeneous mixture of two or more substances in same or different physical phases. The substances forming the solution are called components of the solution. On the basis of number of components a solution of two components is called binary solution. Solute and Solvent In a binary solution, solvent is the component which is present in large quantity while the other component is known as solute. Classification of Solutions Solubility The maximum amount of a solute that can be dissolved in a given amount of solvent (generally 100 g) at a given temperature is termed as its solubility at that temperature. The solubility of a solute in a liquid depends upon the following factors: (i) Nature of the solute (ii) Nature of the solvent (iii) Temperature of the solution (iv) Pressure (in case of gases) Henry’s Law The most commonly used form of Henry’s law states “the partial pressure (P) of the gas in vapour phase is proportional to the mole fraction (x) of the gas in the solution” and is expressed as p = KH . x Greater the value of KH, higher the solubility of the gas. The value of KH decreases with increase in the temperature. Thus, aquatic species are more comfortable in cold water [more dissolved O2] rather than Warm water. Applications 1. In manufacture of soft drinks and soda water, CO2 is passed at high pressure to increase its solubility. 2. To minimise the painful effects (bends) accompanying the decompression of deep sea divers. O2 diluted with less soluble.
    [Show full text]
  • Solvent Effects on the Thermodynamic Functions of Dissociation of Anilines and Phenols
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1982 Solvent effects on the thermodynamic functions of dissociation of anilines and phenols Barkat A. Khawaja University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Khawaja, Barkat A., Solvent effects on the thermodynamic functions of dissociation of anilines and phenols, Master of Science thesis, Department of Chemistry, University of Wollongong, 1982.
    [Show full text]
  • Physical Chemistry
    Subject Chemistry Paper No and Title 10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Module No and Title 10, Free energy functions and Partial molar properties Module Tag CHE_P10_M10 CHEMISTRY Paper No. 10: Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Module No. 10: Free energy functions and Partial molar properties TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 3. Free energy functions 4. The effect of temperature and pressure on free energy 5. Maxwell’s Relations 6. Gibbs-Helmholtz equation 7. Partial molar properties 7.1 Partial molar volume 7.2 Partial molar Gibb’s free energy 8. Question 9. Summary CHEMISTRY Paper No. 10: Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Module No. 10: Free energy functions and Partial molar properties 1. Learning outcomes After studying this module you shall be able to: Know about free energy functions i.e. Gibb’s free energy and work function Know the dependence of Gibbs free energy on temperature and pressure Learn about Gibb’s Helmholtz equation Learn different Maxwell relations Derive Gibb’s Duhem equation Determine partial molar volume through intercept method 2. Introduction Thermodynamics is used to determine the feasibility of the reaction, that is , whether the process is spontaneous or not. It is used to predict the direction in which the process will be spontaneous. Sign of internal energy alone cannot determine the spontaneity of a reaction. The concept of entropy was introduced in second law of thermodynamics. Whenever a process occurs spontaneously, then it is considered as an irreversible process.
    [Show full text]
  • Solvation Structure of Ions in Water
    International Journal of Thermophysics, Vol. 28, No. 2, April 2007 (© 2007) DOI: 10.1007/s10765-007-0154-6 Solvation Structure of Ions in Water Raymond D. Mountain1 Molecular dynamics simulations of ions in water are reported for solutions of varying solute concentration at ambient conditions for six cations and four anions in 10 solutes. The solutes were selected to show trends in properties as the size and charge density of the ions change. The emphasis is on how the structure of water is modified by the presence of the ions and how many water molecules are present in the first solvation shell of the ions. KEY WORDS: anion; cation; molecular dynamics; potential functions; solva- tion; water. 1. INTRODUCTION The behavior of aqueous solutions of salts is a topic of continuing interest [1–3]. In this note we examine how the structure of water,as reflected in the oxy- gen–oxygen pair function, is modified as the concentration of ions increases. The method of generating the pair functions is molecular dynamics using the SPC/E model for water [4] and various models for ion–water interactions taken from the literature. The solutes are LiCl, NaCl, KCl, RbCl, NaF, CaCl2, CaSO4,Na2SO4, NaNO3, and guanidinium chloride (GdmCl) [C(NH2)3Cl]. This work is an extension of earlier work [5] to a larger set of ions. The water molecules and ions interact through site–site pair interac- tions consisting of Lennard–Jones potentials and Coulomb interactions so that the interaction between a pair of sites labeled i, j and separated by an interatomic distance r is 12 6 φij (r) = 4ij (σij /r) − (σij /r) + qiqj /r (1) where qi is the charge on site i.
    [Show full text]
  • Affinity of Small-Molecule Solutes to Hydrophobic, Hydrophilic, and Chemically Patterned Interfaces in Aqueous Solution
    Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution Jacob I. Monroea, Sally Jiaoa, R. Justin Davisb, Dennis Robinson Browna, Lynn E. Katzb, and M. Scott Shella,1 aDepartment of Chemical Engineering, University of California, Santa Barbara, CA 93106; and bDepartment of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712 Edited by Peter J. Rossky, Rice University, Houston, TX, and approved November 17, 2020 (received for review September 30, 2020) Performance of membranes for water purification is highly influ- However, a molecular understanding that links membrane enced by the interactions of solvated species with membrane surface chemistry to solute affinity and hence membrane func- surfaces, including surface adsorption of solutes upon fouling. tional properties remains incomplete, due in part to the complex Current efforts toward fouling-resistant membranes often pursue interplay among specific interactions (e.g., hydrogen bonds, surface hydrophilization, frequently motivated by macroscopic electrostatics, dispersion) and molecular morphology (e.g., sur- measures of hydrophilicity, because hydrophobicity is thought to face and polymer configurations) that are difficult to disentangle increase solute–surface affinity. While this heuristic has driven di- (11–14). Chemically heterogeneous surfaces are even less un- verse membrane functionalization strategies, here we build on derstood but can affect fouling in complex ways.
    [Show full text]
  • Simple Mixtures
    Simple mixtures Before dealing with chemical reactions, here we consider mixtures of substances that do not react together. At this stage we deal mainly with binary mixtures (mixtures of two components, A and B). We therefore often be able to simplify equations using the relation xA + xB = 1. A restriction in this chapter – we consider mainly non-electrolyte solutions – the solute is not present as ions. The thermodynamic description of mixtures We already considered the partial pressure – the contribution of one component to the total pressure, when we were dealing with the properties of gas mixtures. Here we introduce other analogous partial properties. Partial molar quantities: describe the contribution (per mole) that a substance makes to an overall property of mixture. The partial molar volume, VJ – the contribution J makes to the total volume of a mixture. Although 1 mol of a substance has a characteristic volume when it is pure, 1 mol of a substance can make different contributions to the total volume of a mixture because molecules pack together in different ways in the pure substances and in mixtures. Imagine a huge volume of pure water. When a further 1 3 mol H2O is added, the volume increases by 18 cm . When we add 1 mol H2O to a huge volume of pure ethanol, the volume increases by only 14 cm3. 18 cm3 – the volume occupied per mole of water molecules in pure water. 14 cm3 – the volume occupied per mole of water molecules in virtually pure ethanol. The partial molar volume of water in pure water is 18 cm3 and the partial molar volume of water in pure ethanol is 14 cm3 – there is so much ethanol present that each H2O molecule is surrounded by ethanol molecules and the packing of the molecules results in the water molecules occupying only 14 cm3.
    [Show full text]
  • The Cloud Point Composition and Flory-Huggins Interaction Parameters of Polyethylene Glycol and Sodium Lignin Sulfonate in Water - Ethanol Mixture
    AN ABSTRACT OF THE THESIS OF Luh, Song - Ping for the degree of Master of Science in Chemical Engineering presented on July 22, 1987 Title: The Cloud Point Composition and Flory - Huggins Interaction Parameters of Polyethylene Glycol and Sodium Lignin Sulfonate in Water - Ethanol Mixtures Redacted for Privacy Abstract Approved: Willi J. Frederick/Jr. In designing a solubility based separation process for solvent recovery of an organosolv pulping process, the phase behavior of polymeric lignin molecules in alcohol - water mixed solvent should be known. In this study, sodium lignin sulfonates (NaLS) samples were fractionated into three different molecular weight fractions using a partial dissolution method. The cloud point compositions of each of the three fractions were determined by a cloud point titration method. The experimental data were correlated using the three component Flory - Huggins equation of the Gibbs free energy change of mixing. The binary interaction parameter between water and that between ethanol and NaLSwere found to be a weak function of the NaLS volume fraction, while that between water and ethanol was strongly depend on the solvent composition. The Cloud Point Composition and Flory - Huggins Interaction Parameters of Polyethylene Glycol and Sodium Lignin Sulfonate in Water - Ethanol Mixtures by Luh, Song - Ping A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed July 22, 1987 Commencement June 1988 APPROVED: Redacted for Privacy Associate P fessor of Chemi401 Engineering in charge of major Redacted for Privacy Head of Department of dlemical Engineering Redacted for Privacy Dean of Gradu School (I Date thesis is presented July 22, 1987 Typed by Luh, Song - Ping for Luh, Song - Ping TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 1.
    [Show full text]
  • Role of Solvation in Drug Design As Revealed by the Statistical Mechanics Integral Equation Theory of Liquids Norio Yoshida*
    Review Cite This: J. Chem. Inf. Model. 2017, 57, 2646-2656 pubs.acs.org/jcim Role of Solvation in Drug Design as Revealed by the Statistical Mechanics Integral Equation Theory of Liquids Norio Yoshida* Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan ABSTRACT: Recent developments and applications in theoretical methods focusing on drug design and particularly on the solvent effect in molecular recognition based on the three-dimensional reference interaction site model (3D-RISM) theory are reviewed. Molecular recognition, a fundamental molecular process in living systems, is known to be the functional mechanism of most drugs. Solvents play an essential role in molecular recognition processes as well as in ligand−protein interactions. The 3D-RISM theory is derived from the fundamental statistical mechanics theory, which reproduces all solvation thermodynamics naturally and has some advantages over conventional solvation methods, such as molecular simulation and the continuum model. Here, we review the basics of the 3D-RISM theory and methods of molecular recognition in its applications toward drug design. KEYWORDS: Drug design, Molecular recognition, Solvation, 3D-RISM ■ INTRODUCTION ΔGG=Δconf +Δ G int +Δ G solv (2) Molecular recognition is one of the most important where ΔGconf, ΔGint, and ΔGsolv denote the changes in the fundamental processes in biological systems and is known to 1 conformational energy, the interaction energy between ligand be the functional mechanism of most drugs. This is defined as a molecular process in which a ligand molecule is bound at a and protein, and the solvation free energy, respectively.
    [Show full text]
  • Chapter 9 Ideal and Real Solutions
    2/26/2016 CHAPTER 9 IDEAL AND REAL SOLUTIONS • Raoult’s law: ideal solution • Henry’s law: real solution • Activity: correlation with chemical potential and chemical equilibrium Ideal Solution • Raoult’s law: The partial pressure (Pi) of each component in a solution is directly proportional to the vapor pressure of the corresponding pure substance (Pi*) and that the proportionality constant is the mole fraction (xi) of the component in the liquid • Ideal solution • any liquid that obeys Raoult’s law • In a binary liquid, A-A, A-B, and B-B interactions are equally strong 1 2/26/2016 Chemical Potential of a Component in the Gas and Solution Phases • If the liquid and vapor phases of a solution are in equilibrium • For a pure liquid, Ideal Solution • ∆ ∑ Similar to ideal gas mixing • ∆ ∑ 2 2/26/2016 Example 9.2 • An ideal solution is made from 5 mole of benzene and 3.25 mole of toluene. (a) Calculate Gmixing and Smixing at 298 K and 1 bar. (b) Is mixing a spontaneous process? ∆ ∆ Ideal Solution Model for Binary Solutions • Both components obey Rault’s law • Mole fractions in the vapor phase (yi) Benzene + DCE 3 2/26/2016 Ideal Solution Mole fraction in the vapor phase Variation of Total Pressure with x and y 4 2/26/2016 Average Composition (z) • , , , , ,, • In the liquid phase, • In the vapor phase, za x b yb x c yc Phase Rule • In a binary solution, F = C – p + 2 = 4 – p, as C = 2 5 2/26/2016 Example 9.3 • An ideal solution of 5 mole of benzene and 3.25 mole of toluene is placed in a piston and cylinder assembly.
    [Show full text]
  • Calculating the Partition Coefficients of Organic Solvents in Octanol/Water and Octanol/Air
    Article Cite This: J. Chem. Inf. Model. XXXX, XXX, XXX−XXX pubs.acs.org/jcim Calculating the Partition Coefficients of Organic Solvents in Octanol/ Water and Octanol/Air † ‡ § ∥ Miroslava A. Nedyalkova,*, Sergio Madurga, Marek Tobiszewski, and Vasil Simeonov † Inorganic Chemistry Department, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria ‡ Departament de Ciencià de Materials i Química Física and Institut de Química Teoricà i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain § Department of Analytical Chemistry, Faculty of Chemistry, Gdansḱ University of Technology (GUT), 80-233 Gdansk,́ Poland ∥ Analytical Chemistry Department, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria *S Supporting Information ABSTRACT: Partition coefficients define how a solute is distributed between two immiscible phases at equilibrium. The experimental estimation of partition coefficients in a complex system can be an expensive, difficult, and time-consuming process. Here a computa- tional strategy to predict the distributions of a set of solutes in two relevant phase equilibria is presented. The octanol/water and octanol/air partition coefficients are predicted for a group of polar solvents using density functional theory (DFT) calculations in combination with a solvation model based on density (SMD) and are in excellent agreement with experimental data. Thus, the use of quantum-chemical calculations to predict partition coefficients from free energies should be a valuable alternative for unknown solvents. The obtained results indicate that the SMD continuum model in conjunction with any of the three DFT functionals (B3LYP, M06-2X, and M11) agrees with the observed experimental values. The highest correlation to experimental data for the octanol/water partition coefficients was reached by the M11 functional; for the octanol/air partition coefficient, the M06-2X functional yielded the best performance.
    [Show full text]
  • 9.2 Raoult's Law and Henry's
    Chapter 9 The Behavior of Solutions 1 9.2 Raoult’s Law and Henry’s Law (1) Initially evacuated vessel at T liq. A (2) spontaneously evaporate until P in the vessel ° reaches the saturated vapor pressure of liq. A, p A, at T (3) a dynamic equilibrium established between the rate of evaporation of liq. A & the rate of condensation of vapor A. 2 9.2 Raoult’s Law and Henry’s Law • re(A) α the # of A atoms in the vapor phase, ° thus, rc(A) = kp A , and at equilibrium (9.1) • Similarly, pure liquid B (9.2) re(A) rc(A) liq. A 3 9.2 Raoult’s Law and Henry’s Law (A) the effect of the small addition of liquid B to liquid A Assume (1) the composition of the surface of the liquid = that of the bulk liquid, XA, (2) the sizes of A & B atoms comparable (9.3) (9.4) 4 9.2 Raoult’s Law and Henry’s Law • From (9.1) and (9.3) gives (9.5) and from (9.2) and (9.4) gives (9.6) • Raoult’s law: the vapor pressure exerted by a component i in a solution = (the mole fraction of i in the solution) X (the saturated vapor pressure of pure liquid i ) at T of the solution. 5 9.2 Raoult’s Law and Henry’s Law • Requirements: the intrinsic rates of evaporation of A and B ≠ f(comp. of the solution) i.e., the magnitudes of the A-A, B-B, and A-B bond energies in the solution are identical 6 9.2 Raoult’s Law and Henry’s Law (B) If A-B >> A-A and B-B and a solution of A in B is sufficiently dilute: A atom at the surface surrounded only by B, A in a deeper potential E well than are the A atoms at the surface of pure liq… difficult to be lifted to vapor, evaporation rate is decreased to re(A) to re’(A) 7 9.2 Raoult’s Law and Henry’s Law (9.7) re(A) > re’(A) (9.8) ’ (9.9) • A similar consideration of dilute solutions of B in A gives ’ (9.10) • (9.9),(9.10) : Henry’ law 8 9.2 Raoult’s Law and Henry’s Law Beyond a critical value of XA, re’(A) becomes composition- dependent.
    [Show full text]
  • Calculation of the Water-Octanol Partition Coefficient of Cholesterol for SPC, TIP3P, and TIP4P Water
    Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water Cite as: J. Chem. Phys. 149, 224501 (2018); https://doi.org/10.1063/1.5054056 Submitted: 29 August 2018 . Accepted: 13 November 2018 . Published Online: 11 December 2018 Jorge R. Espinosa, Charlie R. Wand, Carlos Vega , Eduardo Sanz, and Daan Frenkel COLLECTIONS This paper was selected as an Editor’s Pick ARTICLES YOU MAY BE INTERESTED IN Common microscopic structural origin for water’s thermodynamic and dynamic anomalies The Journal of Chemical Physics 149, 224502 (2018); https://doi.org/10.1063/1.5055908 Improved general-purpose five-point model for water: TIP5P/2018 The Journal of Chemical Physics 149, 224507 (2018); https://doi.org/10.1063/1.5070137 Comparison of simple potential functions for simulating liquid water The Journal of Chemical Physics 79, 926 (1983); https://doi.org/10.1063/1.445869 J. Chem. Phys. 149, 224501 (2018); https://doi.org/10.1063/1.5054056 149, 224501 © 2018 Author(s). THE JOURNAL OF CHEMICAL PHYSICS 149, 224501 (2018) Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water Jorge R. Espinosa,1 Charlie R. Wand,2,3 Carlos Vega,1 Eduardo Sanz,1 and Daan Frenkel2 1Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain 2Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom 3School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom (Received 29 August 2018; accepted 13 November 2018; published online 11 December 2018) We present a numerical study of the relative solubility of cholesterol in octanol and water.
    [Show full text]