The Solvation of Anions in Propylene Carbonate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol Over Fe-Mn Double Metal Cyanide Catalyst
Reaction Chemistry & Engineering Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol over Fe-Mn Double Metal Cyanide Catalyst Journal: Reaction Chemistry & Engineering Manuscript ID RE-ART-09-2019-000372.R1 Article Type: Paper Date Submitted by the 21-Oct-2019 Author: Complete List of Authors: Song, Ziwei; Yanshan University, Subramaniam, Bala; University of Kansas, Center for Environmentally Beneficial Catalysis Chaudhari, Raghunath; University of Kansas, Chemical & Petroleum Engineering Page 1 of 23 Reaction Chemistry & Engineering Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol over Fe-Mn Double Metal Cyanide Catalyst Ziwei Song, a,b,c Bala Subramaniam, a,b and Raghunath V. Chaudhari* a,b aCenter for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr. Lawrence, KS 66047, United States bDepartment of Chemical & Petroleum Engineering, University of Kansas, 1503 W 15th St. Lawrence, KS 66045, United States cDepartment of Chemical Engineering, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China *Corresponding author: [email protected] KEYWORDS: double metal cyanide, transesterification, dimethyl carbonate, microkinetic modeling 1 Reaction Chemistry & Engineering Page 2 of 23 Abstract Kinetic modeling of transesterification of propylene carbonate with methanol using Fe-Mn double metal cyanide catalyst has been investigated based on experimental data obtained under kinetically controlled conditions in a batch slurry reactor in the 140-200 °C range. A simple two-step power law model was found to represent the experimental data well. In addition, a detailed kinetic model based on a molecular level description of the reaction mechanism is also evaluated to provide better insight into the reaction mechanism. -
Propylene Carbonate Extraction for Recovery of Poly-3-Hydroxybutryate
1 Propylene Carbonate Extraction for Recovery of Poly-3-hydroxybutryate Abstract Propylene Carbonate Distillation Poly -3-hydroxybutryate (PHB) is a biopolymer produced Propylene Carbonate is an organic solvent produced as a storage molecule for energy and carbon under • Waste solution recovered after PHB by combining propylene oxide with carbon dioxide. It is poor growth conditions in certain organisms. PHB is a precipitation consisted of Propylene considered a polar aprotic solvent (no proton to donate) class of polyhydroxyalkanoates (PHAs), which have Carbonate and Ethanol Due to its characteristics (low vapor pressure, stability, similar properties to plastics derived from petroleum. PHB provides an environmentally friendly alternative to and high polarity) it is used in many applications. These include • Through distillation, both the Ethanol production of fibers and textiles, dyeing, personal care agents petroleum -based plastics due to its biodegradability and and Propylene Carbonate have been and cosmetics, and a component of some adhesives. It is also method of production. It can be produced by recovered. considered non-toxic making it more suitable to use at larger recombinant Escherichia coli, harvested from the cell, scales. and recovered. One of the major expenses of • Recovered 70% Propylene producing PHB is the extraction of the PHB from the Carbonate and nearly all Ethanol biomass. This study focused on evaluating different methods of PHB extraction for their ability to effectively • Preliminary experiments show no extract PHB from E. coli biomass and the feasibility of Propylene Carbonate Extraction Procedure Distillation apparatus to recover Propylene difference in the yield of PHB scaling up those processes. These processes provide a Carbonate and Ethanol from waste stream extracted with distilled Propylene 125 L Bioreactor way to produce PHB from growing E. -
US5349077.Pdf
|||||||||||||||| USOO5349077A United States Patent (19) 11 Patent Number: 5,349,077 Doya et al. 45 Date of Patent: Sep. 20, 1994 54 PROCESS FOR PRODUCING ALKYLENE 5,003,084 3/1991 Su et al. .............................. 549/230 CARBONATES FOREIGN PATENT DOCUMENTS 75 Inventors: Masaharu Doya; Takashi Ohkawa; Yutaka Kanbara; Aksushi Okamoto; 0443758 8/1991 European Pat. Off. Kenichi Kimizuka, all of Niigata, OTHER PUBLICATIONS Japan Chemical Abstracts, vol. 82, No. 23, Jun. 9, 1975, Co 73 Assignee: Mitsubishi Gas Chemical Company, lumbus, Ohio; Sergio Fumasoni et al. Inc., Tokyo, Japan Primary Examiner-José G. Dees 21 Appl. No.: 99,461 Assistant Examiner-Joseph M. Conrad, III 22 Filed: Jul. 30, 1993 Attorney, Agent, or Firm-Wenderoth, Lind & Ponack (30) Foreign Application Priority Data (57) ABSTRACT Jul. 31, 1992 JP Japan .................................. 4-205362 A process for producing alkylene carbonates which Jul. 31, 1992 (JP) Japan .......................... ... 4-205363 comprises reacting urea and glycols described by the Jul. 31, 1992 JP Japan .......................... ... 4-205364 general formula RCH(OH) CH2OH; wherein R repre Jun. 30, 1993 JP Japan .................................. 5-161857 sents hydrogen or an alkyl group containing 1 to 4 51) Int. Cl. .............................................. CO7C 69/96 carbons, using a catalyst containing zinc, magnesium, 52 U.S. Cl. .................................... 558/260; 549/229; lead or calcium at reduced pressures. The alkylene 549/230 carbonates are produced with high yield easily using 58 Field of Search ................. 558/260; 549/229, 230 raw materials which are comparatively inexpensive with a mild reaction that does not involve explosive or 56) References Cited hazardous materials. U.S. PATENT DOCUMENTS 2,773,881 12/1956 Dunn et al. -
Solvent Effects on the Thermodynamic Functions of Dissociation of Anilines and Phenols
University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1982 Solvent effects on the thermodynamic functions of dissociation of anilines and phenols Barkat A. Khawaja University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Khawaja, Barkat A., Solvent effects on the thermodynamic functions of dissociation of anilines and phenols, Master of Science thesis, Department of Chemistry, University of Wollongong, 1982. -
Solvation Structure of Ions in Water
International Journal of Thermophysics, Vol. 28, No. 2, April 2007 (© 2007) DOI: 10.1007/s10765-007-0154-6 Solvation Structure of Ions in Water Raymond D. Mountain1 Molecular dynamics simulations of ions in water are reported for solutions of varying solute concentration at ambient conditions for six cations and four anions in 10 solutes. The solutes were selected to show trends in properties as the size and charge density of the ions change. The emphasis is on how the structure of water is modified by the presence of the ions and how many water molecules are present in the first solvation shell of the ions. KEY WORDS: anion; cation; molecular dynamics; potential functions; solva- tion; water. 1. INTRODUCTION The behavior of aqueous solutions of salts is a topic of continuing interest [1–3]. In this note we examine how the structure of water,as reflected in the oxy- gen–oxygen pair function, is modified as the concentration of ions increases. The method of generating the pair functions is molecular dynamics using the SPC/E model for water [4] and various models for ion–water interactions taken from the literature. The solutes are LiCl, NaCl, KCl, RbCl, NaF, CaCl2, CaSO4,Na2SO4, NaNO3, and guanidinium chloride (GdmCl) [C(NH2)3Cl]. This work is an extension of earlier work [5] to a larger set of ions. The water molecules and ions interact through site–site pair interac- tions consisting of Lennard–Jones potentials and Coulomb interactions so that the interaction between a pair of sites labeled i, j and separated by an interatomic distance r is 12 6 φij (r) = 4ij (σij /r) − (σij /r) + qiqj /r (1) where qi is the charge on site i. -
Affinity of Small-Molecule Solutes to Hydrophobic, Hydrophilic, and Chemically Patterned Interfaces in Aqueous Solution
Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution Jacob I. Monroea, Sally Jiaoa, R. Justin Davisb, Dennis Robinson Browna, Lynn E. Katzb, and M. Scott Shella,1 aDepartment of Chemical Engineering, University of California, Santa Barbara, CA 93106; and bDepartment of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712 Edited by Peter J. Rossky, Rice University, Houston, TX, and approved November 17, 2020 (received for review September 30, 2020) Performance of membranes for water purification is highly influ- However, a molecular understanding that links membrane enced by the interactions of solvated species with membrane surface chemistry to solute affinity and hence membrane func- surfaces, including surface adsorption of solutes upon fouling. tional properties remains incomplete, due in part to the complex Current efforts toward fouling-resistant membranes often pursue interplay among specific interactions (e.g., hydrogen bonds, surface hydrophilization, frequently motivated by macroscopic electrostatics, dispersion) and molecular morphology (e.g., sur- measures of hydrophilicity, because hydrophobicity is thought to face and polymer configurations) that are difficult to disentangle increase solute–surface affinity. While this heuristic has driven di- (11–14). Chemically heterogeneous surfaces are even less un- verse membrane functionalization strategies, here we build on derstood but can affect fouling in complex ways. -
Green Chemistry
Green Chemistry View Article Online PAPER View Journal | View Issue The greening of peptide synthesis† Cite this: Green Chem., 2017, 19, Stefan B. Lawrenson, Roy Arav and Michael North* 1685 The synthesis of peptides by amide bond formation between suitably protected amino acids is a funda- mental part of the drug discovery process. However, the required coupling and deprotection reactions are routinely carried out in dichloromethane and DMF, both of which have serious toxicity concerns and generate waste solvent which constitutes the vast majority of the waste generated during peptide syn- thesis. In this work, propylene carbonate has been shown to be a green polar aprotic solvent which can be used to replace dichloromethane and DMF in both solution- and solid-phase peptide synthesis. Solution-phase chemistry was carried out with Boc/benzyl protecting groups to the tetrapeptide stage, no epimerisation occurred during these syntheses and chemical yields for both coupling and de- Received 20th January 2017, protection reactions in propylene carbonate were at least comparable to those obtained in conventional Accepted 1st March 2017 solvents. Solid-phase peptide synthesis was carried out using Fmoc protected amino acids on a DOI: 10.1039/c7gc00247e ChemMatrix resin and was used to prepare the biologically relevant nonapeptide bradykinin with compar- Creative Commons Attribution 3.0 Unported Licence. rsc.li/greenchem able purity to a sample prepared in DMF. Introduction methane mixtures.8 These issues are amplified in solid-phase peptide synthesis7,9 where large excesses of reagents are used Peptides are central compounds in the pharmaceutical indus- and resins are washed multiple times with toxic solvents. -
The Cloud Point Composition and Flory-Huggins Interaction Parameters of Polyethylene Glycol and Sodium Lignin Sulfonate in Water - Ethanol Mixture
AN ABSTRACT OF THE THESIS OF Luh, Song - Ping for the degree of Master of Science in Chemical Engineering presented on July 22, 1987 Title: The Cloud Point Composition and Flory - Huggins Interaction Parameters of Polyethylene Glycol and Sodium Lignin Sulfonate in Water - Ethanol Mixtures Redacted for Privacy Abstract Approved: Willi J. Frederick/Jr. In designing a solubility based separation process for solvent recovery of an organosolv pulping process, the phase behavior of polymeric lignin molecules in alcohol - water mixed solvent should be known. In this study, sodium lignin sulfonates (NaLS) samples were fractionated into three different molecular weight fractions using a partial dissolution method. The cloud point compositions of each of the three fractions were determined by a cloud point titration method. The experimental data were correlated using the three component Flory - Huggins equation of the Gibbs free energy change of mixing. The binary interaction parameter between water and that between ethanol and NaLSwere found to be a weak function of the NaLS volume fraction, while that between water and ethanol was strongly depend on the solvent composition. The Cloud Point Composition and Flory - Huggins Interaction Parameters of Polyethylene Glycol and Sodium Lignin Sulfonate in Water - Ethanol Mixtures by Luh, Song - Ping A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed July 22, 1987 Commencement June 1988 APPROVED: Redacted for Privacy Associate P fessor of Chemi401 Engineering in charge of major Redacted for Privacy Head of Department of dlemical Engineering Redacted for Privacy Dean of Gradu School (I Date thesis is presented July 22, 1987 Typed by Luh, Song - Ping for Luh, Song - Ping TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 1. -
Role of Solvation in Drug Design As Revealed by the Statistical Mechanics Integral Equation Theory of Liquids Norio Yoshida*
Review Cite This: J. Chem. Inf. Model. 2017, 57, 2646-2656 pubs.acs.org/jcim Role of Solvation in Drug Design as Revealed by the Statistical Mechanics Integral Equation Theory of Liquids Norio Yoshida* Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan ABSTRACT: Recent developments and applications in theoretical methods focusing on drug design and particularly on the solvent effect in molecular recognition based on the three-dimensional reference interaction site model (3D-RISM) theory are reviewed. Molecular recognition, a fundamental molecular process in living systems, is known to be the functional mechanism of most drugs. Solvents play an essential role in molecular recognition processes as well as in ligand−protein interactions. The 3D-RISM theory is derived from the fundamental statistical mechanics theory, which reproduces all solvation thermodynamics naturally and has some advantages over conventional solvation methods, such as molecular simulation and the continuum model. Here, we review the basics of the 3D-RISM theory and methods of molecular recognition in its applications toward drug design. KEYWORDS: Drug design, Molecular recognition, Solvation, 3D-RISM ■ INTRODUCTION ΔGG=Δconf +Δ G int +Δ G solv (2) Molecular recognition is one of the most important where ΔGconf, ΔGint, and ΔGsolv denote the changes in the fundamental processes in biological systems and is known to 1 conformational energy, the interaction energy between ligand be the functional mechanism of most drugs. This is defined as a molecular process in which a ligand molecule is bound at a and protein, and the solvation free energy, respectively. -
Calculating the Partition Coefficients of Organic Solvents in Octanol/Water and Octanol/Air
Article Cite This: J. Chem. Inf. Model. XXXX, XXX, XXX−XXX pubs.acs.org/jcim Calculating the Partition Coefficients of Organic Solvents in Octanol/ Water and Octanol/Air † ‡ § ∥ Miroslava A. Nedyalkova,*, Sergio Madurga, Marek Tobiszewski, and Vasil Simeonov † Inorganic Chemistry Department, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria ‡ Departament de Ciencià de Materials i Química Física and Institut de Química Teoricà i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain § Department of Analytical Chemistry, Faculty of Chemistry, Gdansḱ University of Technology (GUT), 80-233 Gdansk,́ Poland ∥ Analytical Chemistry Department, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria *S Supporting Information ABSTRACT: Partition coefficients define how a solute is distributed between two immiscible phases at equilibrium. The experimental estimation of partition coefficients in a complex system can be an expensive, difficult, and time-consuming process. Here a computa- tional strategy to predict the distributions of a set of solutes in two relevant phase equilibria is presented. The octanol/water and octanol/air partition coefficients are predicted for a group of polar solvents using density functional theory (DFT) calculations in combination with a solvation model based on density (SMD) and are in excellent agreement with experimental data. Thus, the use of quantum-chemical calculations to predict partition coefficients from free energies should be a valuable alternative for unknown solvents. The obtained results indicate that the SMD continuum model in conjunction with any of the three DFT functionals (B3LYP, M06-2X, and M11) agrees with the observed experimental values. The highest correlation to experimental data for the octanol/water partition coefficients was reached by the M11 functional; for the octanol/air partition coefficient, the M06-2X functional yielded the best performance. -
These Two Workbooks Are Provided by As a Convenient Introduc
These two workbooks are provided by www.hansen-solubility.com as a convenient introduc They are Copyright © 2013 Prof Steven Abbott If you find bugs/issues or would like extra functionality, please email Steven Abbott [email protected] ction to some of the basic HSP methods HSP Sphere dD dP dH R Good 11 18.4 9.7 8.0 7.1 Bad 11 Test Value 16 7 8 Total 22 Delta 2.4 11.4 10.4 Distance 5.5 RED 0.77 Solvents dD dP dH MVol Score Distance Acetone 15.5 10.4 7 73.8 1 5.915773 Acetonitrile 15.3 18 6.1 52.9 0 10.52754 n-Amyl Acetate 15.8 3.3 6.1 148 0 n-Amyl Alcohol 15.9 5.9 13.9 108.6 0 Benzene 18.4 0 2 52.9 0 11.38507 Benzyl Alcohol 18.4 6.3 13.7 103.8 0 Benzyl Benzoate 20 5.1 5.2 190.3 0 1-Butanol 16 5.7 15.8 92 0 2-Butanol 15.8 5.7 14.5 92 0 n-Butyl Acetate 15.8 3.7 6.3 132.6 0 t-Butyl Acetate 15 3.7 6 134.8 0 t-Butyl Alcohol 15.2 5.1 14.7 96 0 Butyl Benzoate 18.3 5.6 5.5 178.1 0 Butyl Diglycol Acetate 16 4.1 8.2 208.2 0 Butyl Glycol Acetate 15.3 7.5 6.8 171.2 0 n-Butyl Propionate 15.7 5.5 5.9 149.3 0 Caprolactone (Epsilon) 19.7 15 7.4 110.8 0 Chloroform 17.8 3.1 5.7 80.5 1 7.075453 m-Cresol 18.5 6.5 13.7 105 1 6.563973 Cyclohexane 16.8 0 0.2 108.9 0 12.82752 Cyclohexanol 17.4 4.1 13.5 105.7 0 Cyclohexanone 17.8 8.4 5.1 104.2 0 Di-isoButyl Ketone 16 3.7 4.1 177.4 0 Diacetone Alcohol 15.8 8.2 10.8 124.3 0 Diethyl Ether 14.5 2.9 4.6 104.7 0 10.87429 Diethylene Glycol Monobut 16 7 10.6 170.4 0 Dimethyl Cyclohexane 16.1 0 1.1 140 0 Dimethyl Sulfoxide (DMSO) 18.4 16.4 10.2 71.3 1 7.066692 1,4-Dioxane 17.5 1.8 9 85.7 0 8.160898 1,3-Dioxolane -
Calculation of the Water-Octanol Partition Coefficient of Cholesterol for SPC, TIP3P, and TIP4P Water
Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water Cite as: J. Chem. Phys. 149, 224501 (2018); https://doi.org/10.1063/1.5054056 Submitted: 29 August 2018 . Accepted: 13 November 2018 . Published Online: 11 December 2018 Jorge R. Espinosa, Charlie R. Wand, Carlos Vega , Eduardo Sanz, and Daan Frenkel COLLECTIONS This paper was selected as an Editor’s Pick ARTICLES YOU MAY BE INTERESTED IN Common microscopic structural origin for water’s thermodynamic and dynamic anomalies The Journal of Chemical Physics 149, 224502 (2018); https://doi.org/10.1063/1.5055908 Improved general-purpose five-point model for water: TIP5P/2018 The Journal of Chemical Physics 149, 224507 (2018); https://doi.org/10.1063/1.5070137 Comparison of simple potential functions for simulating liquid water The Journal of Chemical Physics 79, 926 (1983); https://doi.org/10.1063/1.445869 J. Chem. Phys. 149, 224501 (2018); https://doi.org/10.1063/1.5054056 149, 224501 © 2018 Author(s). THE JOURNAL OF CHEMICAL PHYSICS 149, 224501 (2018) Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water Jorge R. Espinosa,1 Charlie R. Wand,2,3 Carlos Vega,1 Eduardo Sanz,1 and Daan Frenkel2 1Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain 2Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom 3School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom (Received 29 August 2018; accepted 13 November 2018; published online 11 December 2018) We present a numerical study of the relative solubility of cholesterol in octanol and water.