An Anatomical Study of the Hawaiian Fern Adenophorus Sarmentosus'

Total Page:16

File Type:pdf, Size:1020Kb

An Anatomical Study of the Hawaiian Fern Adenophorus Sarmentosus' An Anatomical Study of the Hawaiian Fern Adenophorus sarmentosus' KENNETH A. WILSON2 and FRED R. RICKSON:; THE ENDEMIC HAWAIIAN FERN, Adenopborus tative means of propagation is known not only sarm entosus ( Brack.) K. A. Wilson, occurs on in A. sarmentosus, but also in the closely re­ all of the major islands, growing on moss­ lated A. haalilioanus, and should be looked for covered trees and occasionally also on mossy in the rare A. pimlatifidus. Similar reproductive rocks. As a representative of the large but poorly behavior has been reported recently in Asple­ understood fern family Grammitidaceae, A. sat­ nium plenum of Florida (Wagner, 1963). mentosus was chosen for anatomical studies in The petioles are short, less than 2 em long, order to contribute some information on the crowded on the rhizome, and bearing simple or family which may be of value in later systematic branched deciduous, reddish-brown hairs. The .studies of the group. Anatomical or morpho­ blades are pinnatifid, elliptic-lanceolate, 8-15 cm logical studies of the grammitids are rare. A long, 1-2 .5 cm wide, and narrowing gradually series of recent papers by Nozu (1958-1960) at both ends, often becoming prolonged into a presents the only anatomical investigation of long caudate apex (Fig. 1, 3) . The venation is members of this family except for a few notes pinnate, with free simple (rarely branched ) published earlier by Ogura (19 38) . veins with clavate or punctiform ends which do The plant material used was collected at W ai­ not extend to the margins of the blade ( Figs. anae Iki on the island of Oahu in 1954 by Earl 1, 3 and 4). T. Ozaki. A voucher specimen has been de­ The outline of the stem is almost a perfect posited in the herbarium of San Fernando Val­ circle in cross-section. The vascular cylinder is ley State College. The fern was killed and fixed prorostelic in the young stages and becomes in F.A.A.; sectioning was done according to solenostelic in older portions of the rhizome. standard paraffin techniques. Leaves were cleared During the transition from the prorosrele, a by the sodium hydroxide technique (Foster, parenchymatous pith develops ( Fig. 2, 1 ), 1949 ) and stained in tannic acid and ferric within which a central phloem strand differen­ chloride (W ilson, 1958 ). tiates in slightly later stages ( Figs. 2, 2 and 3 ). In the older portions of the stem the inner OBSERVATIONS phloem of the solenostele is cylindrical and sur­ The rhizome of A. sarmentosus is erect or rounds a central pith (Figs. 2, 13-17). The single ascending, short, usually less than 1 em in length, leaf traces which arise from the main stele and Qj-l mm thick, and clothed in reddish-brown, lead to the leaves are surrounded by the scleren­ concolorous, linear -lanceolate scales (Fig. 1, 8). chyma of the cortex which extends into the The roots are wiry, dark brown, and few­ petiole itself. Each leaf trace is generally asso­ branched, often bearing propagules which de­ ciated with two root traces which arise either velop into new plants (Fig. 1, 2) . This vege- below the juncture of the leaf trace with the stelar gap (Figs. 2, 2-5) or somewhat above this level (Figs. 2, 7, 29, 30). One instance was 1 This project was supported by a grant from the Nati onal Science Foundation and by a summ er re­ observed in which a leaf gap was associated with search grant to the junior auth or from the California only a single root trace which arose directly Foundation for Biochemical Research. Manuscript re­ oppos ite the gap rather than perpendicular to ceived October 19, 1964 . the plane of the gap ( Fig. 2, 21). Not all 2 Department of Biology, San Fernando Valley State roots, however, arise in association with leaf College, Northridge, California. 3 Present address : Department of Botany, Un iversity traces. Pairs of root traces were observed de­ of California, Berkeley, California. parting from the main stele in regions between 114 Anatomy of Adenophorus sarmentosus- WILSON and RICKSON 11) FIG. 1. Adenophorus sarmentosus. 1, Habit X Y3 ; 2, habit showing vegetative reproduction by root prop­ agules, X Y3 ; 3, frond, X ~ ; 4, porti on of frond showing venati on, X 3 J;2 ; 5, cross-section of stele" of rhizome X 100; 6, cross-section of stele of root, X 100 ; 7, cross-section of stele of petiole, X 100; 8, rhizome scale, X 17; 9, cross-section of lamina, X 100 (stippled porti ons indicate cut sur faces); 10, upp er epidermal cells, X 100; 11, lower epiderm al cells, X 100; 12, epidermal hairs, X 100. successive leaf traces, showing no particular spicuous, bright-staining Casparian strips on the relation with the vascular supply to the leaf radial walls. In all of our material the stele is (Figs. 2, 13-16). The orientation of the root pulled away from the outer tissues of the stem traces is horizontal as they arise from the stele at the region of the endodermis (Fig. 1, 5 ). as well as during their course through the cortex. This separation results in the destruction of The leaf gaps do not become closed in all cases most of the endodermal cells and apparently before the departure of the next leaf trace. In is caused by the differential action of killing our material the gap was observed to close in and fixing agents on the tissues of the stele the lower portion of the rhizome (Figs. 2, uersus the surrounding cortical tissues. 10-12), while in the upper portions no such The cortex is composed of 10-12 layers of closure was observed ( Figs. 2, 19-31). cells. The cells of the innermost 5- 7 layers con­ The stele is surrounded by an endodermis sist of heavily thickened , often completely oc­ composed of small, thin-walled cells with con- cluded, sclerenchyma cells. Howe ver, patches 116 PACIFIC SCIENCE, VAI. XX, January 1966 400 lJ so SI ~ I I 1-31 , h s sarmentosus. FIG. 2. Adenop oru d root traces. on. gln. of leaf traces an . lIed rotoplast-conta ~ning h outer rnargiin of the xylemI of slightly thinner-wa ll'yPdirectly opposite a tive areas on t e therefore, is apparent y lIs often occur, usua 2 or 3 cortical ce f The outer cylinder. The xylem' r der of xylem, the cells departing lea trace. d of uniformly large exarch. Within the cy 10 . ally two-layered d or occasion cell layers are composeII of the single-rowed of the one-Iayere d in most instances ells The ce s hI re separate II parenchyma c .. aIled internal p oem a I of parenchyma ce s epidermis are thin-w . f om one to three cells from the xylem by a ay~r cells of the central The xylem cylinder IS rf relatively uniform similar in structure t~ t a; enchyma also occurs thick Its tracheids are ch .ds are only about pith. Another layer 0 dPthe outer phloem. The . lem trac ei I size. The protoxy erage metaxylem e e- between the xylem anhloem are conspicuously . of the av d' . Y2 the diameter d in more or less isnnc- cells of the outer pf the inner phloem and ments and are groupe smaller than those 0 Anatomy of Adenophorus sarmentosus-WILSON and RICKSON 117 have a diameter of only Y2-!0 of the average four-celled, uniseriate, simple or frequently of the elements of the inner phl oem. In the branched, and with a large, redd ish-brown ter­ outermost tissue of the stele, outside the narrow minal cell ( Fig. 1,12 ) . strip of outer phloem, occur the numerous large In cross section, the cells of the upper epi­ cells of the pericycle (Fig. 1, 5 ) . dermi s are seen to have irregular vertica l pro ­ The stele of the petiole is circular in cross jections which reach below the epidermal layer section and is surrounded by flat endod ermal itself and come in contact with the spongy tis­ cells which separate it from the heavily sclerified sue of the leaf ( Fig. 1, 9) . The lower epider­ layers of the cortex. The center part of the stele mal cells rarely display such projections. The is occupied by the single xylem strand which, mesophyll is composed enti rely of irregular, in cross section, is roughly ren iform ( Fig. loosely arranged, spo ngy parench yma cells with 1, 7). The proroxylem elements are in groups large intercellular spaces. The round sari are of about six at each of two points forming the borne terminally on the veins. The sporangia adaxial lobes of the strand. The xylem is sep­ have a single row of cells at the base of the arated from the phloem by two or three layers stalk, and an annulus with 11-13 thickened of irregularly shaped, nucleated parenchyma bow cells (W ilson, 1959a). The spores are cells. The phloem area is made up of one or green, tetrahedral, trile te, without exospore, and two rows of tiny, thin-walled cells, and sur­ have an average measurement of 34 X 12 p­ round s the entire xylem core except at its (Selling, 1946). protoxylem poles. Between the phl oem and the The roots have a diarch stele with two pro­ endodermis occur the large, nucleated, thin­ roxylern group s, one at each end of the xylem walled cells of the pericycle containing plastids. tract ( Fig. 1, 6 ) . The one- or two-layered The cortex is clearly differentiated from the phl oem surrounds the xylem except at the pro­ epid ermis and is composed of six to eight layers roxylern poles, and is separated from it by a of thick-walled sclerenchyma cells.
Recommended publications
  • Spores of Serpocaulon (Polypodiaceae): Morphometric and Phylogenetic Analyses
    Grana, 2016 http://dx.doi.org/10.1080/00173134.2016.1184307 Spores of Serpocaulon (Polypodiaceae): morphometric and phylogenetic analyses VALENTINA RAMÍREZ-VALENCIA1,2 & DAVID SANÍN 3 1Smithsonian Tropical Research Institute, Center of Tropical Paleocology and Arqueology, Grupo de Investigación en Agroecosistemas y Conservación de Bosques Amazonicos-GAIA, Ancón Panamá, Republic of Panama, 2Laboratorio de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, 3Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia Caquetá, Colombia Abstract The morphometry and sculpture pattern of Serpocaulon spores was studied in a phylogenetic context. The species studied were those used in a published phylogenetic analysis based on chloroplast DNA regions. Four additional Polypodiaceae species were examined for comparative purposes. We used scanning electron microscopy to image 580 specimens of spores from 29 species of the 48 recognised taxa. Four discrete and ten continuous characters were scored for each species and optimised on to the previously published molecular tree. Canonical correspondence analysis (CCA) showed that verrucae width/verrucae length and verrucae width/spore length index and outline were the most important morphological characters. The first two axes explain, respectively, 56.3% and 20.5% of the total variance. Regular depressed and irregular prominent verrucae were present in derived species. However, the morphology does not support any molecular clades. According to our analyses, the evolutionary pathway of the ornamentation of the spores is represented by depressed irregularly verrucae to folded perispore to depressed regular verrucae to irregularly prominent verrucae. Keywords: character evolution, ferns, eupolypods I, canonical correspondence analysis useful in phylogenetic analyses of several other Serpocaulon is a fern genus restricted to the tropics groups of ferns (Wagner 1974; Pryer et al.
    [Show full text]
  • PLANT ANATOMY Lecture 15 - Stele and Bundle Types
    Jim Bidlack - BIO 5354/4354 PLANT ANATOMY Lecture 15 - Stele and Bundle Types I. Types of steles (stellar types); stele refers to the central vascular network if the shoot and the root (includes outermost phloem and everything to the inside of it) A. Protostele 1. No pith and usually no separate vascular bundles 2. First pattern (phylogenetically) that appeared in vascular plants 3. Predominant pattern found in roots of almost all plants and shoots of lower vascular plants 4. Types of protostele a) Haplostele - xylem is a circular mass b) Actinostele - xylem margin is not smooth; it "undulates" c) Plectostele - xylem not one mass; series of plates B. Siphonostele 1. Has a pith and can have separate vascular bundles (primary growth) 2. More advanced plants 3. Found in shoots of seed plants and in roots having a broad stele (monocots) 4. Types of siphonostele a) Amphiphloic - phloem found on both sides of the xylem 1) Solenostele - very few or little leaf gaps widely separated (continuous cylinder) 2) Dictyostele - leaf gaps are abundant b) Ectophloic - phloem found only to outside of the xylem 1) Eustele (dicots) - one ring of vascular bundles surround a pith 2) Atactostele (monocots) - scattered bundle arrangement II. Stellar patterns at the node (Nodal pattern) A. Different because this is where leaves and buds are attached B. Area above & behind the leaf or bud is the leaf gap C. Area showing where the leaf (bundle(s)) attaches to stem is called leaf trace D. Examples of patterns: 1. Unilacunar, 1 trace; unilacunar, 3 trace; trilacunar, 3 trace III.
    [Show full text]
  • Effect of Stele Type in the Growth Rotation of Dalbergia Melanoxylon
    International Journal of Plant and Forestry Sciences Vol. 2, No. 3, May 2015, pp. 1 -10 Available online at http://ijpfs.com/ Research article Effect of Stele type in the growth rotation of Dalbergia melanoxylon. Dr. Washa B. Washa Mkwawa University College of Education Private Bag, MUCE Iringa Tanzania. E-mail: [email protected], +255 752 356 709 This work is licensed under a Creative Commons Attribution 4.0 International License. _____________________________________________________________________________________________ Abstract Examination of the effect of stele type in Dalbergia melanoxylon growth was conducted. Examination of stems to observe stele type and tissue water potential of Barreveld Faux, Cupressus sempervirens and Dalbergia melanoxylon was carried between 2nd – 23rd April 2015 at Mkwawa University Laboratories. About 120 stained stem sections were examined for stele type while other 120 stem pieces were incubated in Nacl solution for water potential. Forty (40) stained sections indicated ectophloic siphonostele in Barreveld Faux and C. sempervirens while 40 sections of D. melanoxylon indicated atactostele. Calculated water potential of Barreveld Faux was -0.01158597 bars and that of C. sempervirens was -0.01257201 bars while that of D. melanoxylon was -0.00320463 bars. Results found that, low water potential in D. melanoxylon is a factor for its slow growth rotation and this is due to the atactostele type existing in D. melanoxylon. A hard Blackwood and valued wood in D. melanoxylon is brought by this stele type. In order to initiate rapid growth rotation in D. melanoxylon is recommended to conduct genetic recombination of the D. melanoxylon with other species which have an easily growing wood although this can lower the hardwood quality and value of the D.
    [Show full text]
  • Stelar Evolution
    Stelar System of Plant: Definition and Types Definition of Stelar System: According to the older botanists, the vascular bundle is the fundamental unit in the vascular system of pteridophytes and higher plants. Van Tieghem and Douliot (1886) interpreted the plant body of vascular plant in the different way. According to them, the fundamental parts of a shoot are the cortex and a central cylinder, is known as stele. Thus the stele is defined as a central vascular cylinder, with or without pith and delimited the cortex by endodermis. The term stele has been derived from a Greek word meaning pillar. Van Tieghem and Douliot (1886) recognized only three types of steles. They also thought that the monostelic shoot were rare in comparison of polystelic shoots. It is an established fact that all shoots are monostelic and polystelic condition rarely occurs. The stele of the stem remains connected with that of leaf by a vascular connection known as the leaf supply. Types of Steles: 1. Protostele: Jeffrey (1898), for the first time pointed out the stelar theory from the point of view of the phylogeny. According to him, the primitive type of stele is protostele. In protostele, the vascular tissue is a solid mass and the central core of the xylem is completely surrounded by the strand of phloem. This is the most primitive and simplest type of stele. There are several forms of protostele: (a) Haplostele: This is the most primitive type of protostele. Here the central solid smooth core of xylem remains surrounded by phloem (e.g., in Selaginella spp.).
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Downloadable PDF Format On
    Checklist of the New Zealand Flora Ferns and Lycophytes 2019 A New Zealand Plant Names Database Report © Landcare Research New Zealand Limited 2019 This copyright work is licensed under the Creative Commons Attribution 4.0 International license. Attribution if redistributing to the public without adaptation: "Source: Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Landcare Research" DOI: 10.26065/6s30-ex64 CATALOGUING IN PUBLICATION Checklist of the New Zealand flora : ferns and lycophytes [electronic resource] / Allan Herbarium. – [Lincoln, Canterbury, New Zealand] : Landcare Research Manaaki Whenua, 2017- . Online resource Annual August 2017- ISSN 2537-9054 I.Manaaki Whenua-Landcare Research New Zealand Ltd. II. Allan Herbarium. Citation and Authorship Schönberger, I.; Wilton, A.D.; Brownsey, P.J.; Perrie, L.R.; Boardman, K.F.; Breitwieser, I.; de Pauw, B.; Ford, K.A.; Gibb, E.S.; Glenny, D.S.; Korver, M.A.; Novis, P.M.; Prebble, J.M.; Redmond, D.N.; Smissen, R.D.; Tawiri, K. (2019) Checklist of the New Zealand Flora – Ferns and Lycophytes. Lincoln, Manaaki Whenua-Landcare Research. http://dx.doi.org/10.26065/6s30-ex64 This report is generated using an automated system and is therefore authored by the staff at the Allan Herbarium and collaborators who currently contribute directly to the development and maintenance of the New Zealand Plant Names Database (PND). Authors are listed alphabetically after the fourth author. Authors have contributed as follows: Leadership: Wilton, Breitwieser Database editors: Wilton, Schönberger, Gibb Taxonomic and nomenclature research and review for the PND: Schönberger, Wilton, Gibb, Breitwieser, Brownsey, de Lange, Ford, Fife, Glenny, Novis, Perrie, Prebble, Redmond, Smissen Information System development: Wilton, De Pauw, Cochrane Technical support: Boardman, Korver, Redmond, Tawiri Contents Introduction.......................................................................................................................................................
    [Show full text]
  • 9:00 Am PLACE
    CARTY S. CHANG INTERIM CHAIRPERSON DAVID Y. IGE BOARD OF LAND AND NATURAL RESOURCES GOVERNOR OF HAWAII COMMISSION ON WATER RESOURCE MANAGEMENT KEKOA KALUHIWA FIRST DEPUTY W. ROY HARDY ACTING DEPUTY DIRECTOR – WATER AQUATIC RESOURCES BOATING AND OCEAN RECREATION BUREAU OF CONVEYANCES COMMISSION ON WATER RESOURCE MANAGEMENT STATE OF HAWAII CONSERVATION AND COASTAL LANDS CONSERVATION AND RESOURCES ENFORCEMENT DEPARTMENT OF LAND AND NATURAL RESOURCES ENGINEERING FORESTRY AND WILDLIFE HISTORIC PRESERVATION POST OFFICE BOX 621 KAHOOLAWE ISLAND RESERVE COMMISSION LAND HONOLULU, HAWAII 96809 STATE PARKS NATURAL AREA RESERVES SYSTEM COMMISSION MEETING DATE: April 27, 2015 TIME: 9:00 a.m. PLACE: Department of Land and Natural Resources Boardroom, Kalanimoku Building, 1151 Punchbowl Street, Room 132, Honolulu. AGENDA ITEM 1. Call to order, introductions, move-ups. ITEM 2. Approval of the Minutes of the June 9, 2014 N atural Area Reserves System Commission Meeting. ITEM 3. Natural Area Partnership Program (NAPP). ITEM 3.a. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $663,600 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Kapunakea Preserve Long Range Management Plan, TMK 4-4-7:01, 4-4-7:03, Lahaina, Maui. ITEM 3.b. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $470,802 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Pelekunu Long Range Management Plan, TMK 5-4- 3:32, 5-9-6:11, Molokai.
    [Show full text]
  • Fern Classification
    16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.
    [Show full text]
  • Fern Gazette
    ISSN 0308-0838 THE FERN GAZETTE VOLUME ELEVEN PART SIX 1978 THE JOURNAL OF THE BRITISH PTERIDOLOGICAL SOCIETY THE FERN GAZETTE VOLUME 11 PART6 1978 CONTENTS Page MAIN ARTICLES A tetraploid cytotype of Asplenium cuneifolium Viv. in Corisca R. Deschatres, J.J. Schneller & T. Reichstein 343 Further investigations on Asplenium cuneifolium in the British Isles - Anne Sleep, R.H. Roberts, Ja net I. Souter & A.McG. Stirling 345 The pteridophytes of Reunion Island -F. Badni & Th . Cadet 349 A new Asplenium from Mauritius - David H. Lorence 367 A new species of Lomariopsis from Mauritius- David H. Lorence Fire resistance in the pteridophytes of Zambia - Jan Kornas 373 Spore characters of the genus Cheilanthes with particular reference to Southern Australia -He/en Quirk & T. C. Ch ambers 385 Preliminary note on a fossil Equisetum from Costa Rica - L.D. Gomez 401 Sporoderm architecture in modern Azolla - K. Fo wler & J. Stennett-Willson · 405 Morphology, anatomy and taxonomy of Lycopodiaceae of the Darjeeling , Himalayas- Tuhinsri Sen & U. Sen . 413 SHORT NOTES The range extension of the genus Cibotium to New Guinea - B.S. Parris 428 Notes on soil types on a fern-rich tropical mountain summit in Malaya - A.G. Piggott 428 lsoetes in Rajasthan, India - S. Misra & T. N. Bhardwaja 429 Paris Herbarium Pteridophytes - F. Badre, 430 REVIEWS 366, 37 1, 399, 403, 404 [T HE FERN GAZETTE Volume 11 Part 5 was published 12th December 1977] Published by THE BRITISH PTERIDOLOGICAL SOCI ETY, c/o Oepartment of Botany, British Museum (Natural History), London SW7 5BD. FERN GAZ. 11(6) 1978 343 A TETRAPLOID CYTOTYPE OF ASPLENIUM CUNEIFOLIUM VIV.
    [Show full text]
  • Alansmia, a New Genus of Grammitid Ferns (Polypodiaceae) Segregated from Terpsichore
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Alansmia, a new genus of grammitid ferns (Polypodiaceae) segregated from Terpsichore 1 2,3 4 MICHAEL KESSLER ,ANA LAURA MOGUEL VELÁZQUEZ ,MICHAEL SUNDUE , 5 AND PAULO H. LABIAK 1 Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland; e-mail: [email protected] 2 Department of Systematic Botany, Albrecht-von-Haller-Institute of Plant Sciences, Georg-August- University, Untere Karspüle 2, 37073, Göttingen, Germany 3 Present Address: Pfefferackerstr. 22, 45894, Gelsenkirchen, Germany; e-mail: [email protected] 4 The New York Botanical Garden, 200th St. and Southern Blvd., Bronx, NY 10458, USA; e-mail: [email protected] 5 Departamento de Botânica, Universidade Federal do Paraná, Caixa Postal 19031( 81531-980, Curitiba, PR, Brazil; e-mail: [email protected] Abstract. Alansmia, a new genus of grammitid ferns is described and combinations are made for the 26 species known to belong to it. Alansmia is supported by five morphological synapomorphies: setae present on the rhizomes, cells of the rhizome scales turgid, both surfaces of the rhizome scales ciliate, laminae membranaceous, and sporangial capsules setose. Other diagnostic characters include pendent fronds with indeterminate growth, concolorous, orange to castaneous rhizome scales with ciliate or sometimes glandular margins, hydathodes often cretaceous, and setae simple, paired or stellate. The group also exhibits the uncommon characteristic of producing both trilete and apparently monolete spores, sometimes on the same plant. New combinations are made for Alansmia alfaroi, A. bradeana, A. canescens, A. concinna, A.
    [Show full text]
  • Department of the Interior Fish and Wildlife Service
    Friday, April 5, 2002 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Revised Determinations of Prudency and Proposed Designations of Critical Habitat for Plant Species From the Island of Molokai, Hawaii; Proposed Rule VerDate Mar<13>2002 12:44 Apr 04, 2002 Jkt 197001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\05APP2.SGM pfrm03 PsN: 05APP2 16492 Federal Register / Vol. 67, No. 66 / Friday, April 5, 2002 / Proposed Rules DEPARTMENT OF THE INTERIOR the threats from vandalism or collection materials concerning this proposal by of this species on Molokai. any one of several methods: Fish and Wildlife Service We propose critical habitat You may submit written comments designations for 46 species within 10 and information to the Field Supervisor, 50 CFR Part 17 critical habitat units totaling U.S. Fish and Wildlife Service, Pacific RIN 1018–AH08 approximately 17,614 hectares (ha) Islands Office, 300 Ala Moana Blvd., (43,532 acres (ac)) on the island of Room 3–122, P.O. Box 50088, Honolulu, Endangered and Threatened Wildlife Molokai. HI 96850–0001. and Plants; Revised Determinations of If this proposal is made final, section Prudency and Proposed Designations 7 of the Act requires Federal agencies to You may hand-deliver written of Critical Habitat for Plant Species ensure that actions they carry out, fund, comments to our Pacific Islands Office From the Island of Molokai, Hawaii or authorize do not destroy or adversely at the address given above. modify critical habitat to the extent that You may view comments and AGENCY: Fish and Wildlife Service, the action appreciably diminishes the materials received, as well as supporting Interior.
    [Show full text]
  • Polypodiaceae (Polypodiales, Filicopsida, Tracheophyta)
    Hoehnea 44(2): 251-268, 4 fig., 2017 http://dx.doi.org/10.1590/2236-8906-95/2016 Ferns of Viçosa, Minas Gerais State, Brazil: Polypodiaceae (Polypodiales, Filicopsida, Tracheophyta) Andreza Gonçalves da Silva1 and Pedro B. Schwartsburd1,2 Received: 10.11.2016; accepted: 11.04.2017 ABSTRACT - (Ferns of Viçosa, Minas Gerais State, Brazil: Polypodiaceae (Polypodiales, Filicopsida, Tracheophyta). As part of an ongoing project treating the ferns and lycophytes from the region of Viçosa, MG, Brazil, we here present the taxonomic treatment of Polypodiaceae. We performed field expeditions in remaining forest patches and disturbed sites from 2012 to 2016. We also revised the Polypodiaceae collection of VIC herbarium. In the region of Viçosa, 19 species of Polypodiaceae occur: Campyloneurum centrobrasilianum, C. decurrens, C. lapathifolium, C. phyllitidis, Cochlidium punctatum, Microgramma crispata, M. percussa, M. squamulosa, M. vacciniifolia, Niphidium crassifolium, Pecluma filicula, P. plumula, P. truncorum, Phlebodium areolatum, P. decumanum, Pleopeltis astrolepis, P. minima, Serpocaulon fraxinifolium, and S. menisciifolium. Among them, six are endemic to the Atlantic Forest. During our search in VIC, we found an isotype of Campyloneurum centrobrasilianum. We present keys, descriptions, illustrations, examined materials, and comments of all taxa. Keywords: epiphytic ferns, Flora, Pteridophyta, southeastern Brazil RESUMO - (Samambaias de Viçosa, MG, Brasil: Polypodiaceae (Polypodiales, Filicopsida, Tracheophyta)). Como parte de um projeto em andamento que trata da Flora de samambaias e licófitas da região de Viçosa, MG, Brasil, é aqui apresentado o tratamento taxonômico de Polypodiaceae. Foram realizadas expedições de campo em remanescentes florestais e áreas alteradas, entre 2012 e 2016. Foi também revisada a coleção de Polypodiaceae do herbário VIC.
    [Show full text]