MATH FILE -Mathematical Reviews Online

Total Page:16

File Type:pdf, Size:1020Kb

MATH FILE -Mathematical Reviews Online Notices of the American Mathematical Society November 1984, Issue 237 Volume 31 , Number 7, Pages 737- 840 Providence, Rhode Island ·USA JSSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet­ ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the o(fice of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING# DATE PLACE ABSTRACT DEADLINE ISSUE 816 January 9-13, 1985 Anaheim, California EXPIRED January (91st Annual Meeting) 817 March 22-23, 1985 Chicago, Illinois January 23 March 818 April 12-13, 1985 Tucson, Arizona January 25 March 819 April 20-21, 1985 Worcester, Massachusetts January 28 March 820 May 3-4, 1985 Mobile, Alabama January 30 March 821 August 12-15, 1985 Laramie, Wyoming (89th Summer Meeting) October 26-27, 1985 Amherst, Massachusetts November 1-2, 1985 Columbia, Missouri January 7-11, 1986 iNew Orleans, Louisiana (92nd Annual Meeting) January 21-25, 1987 San Antonio, Texas (93rd Annual Meeting) January 6-11, 1988 Atlanta, Georgia (94th Annual Meeting) August 8-12, 1988 Providence, Rhode Island (AMS Centennial Celebration l DEADLINES: Advertising Uanuary 1985 Issue) November 15, 1984 (March 1985 Issue) February 7, 1985 News/Special Meetings Uanuary 1985 Issue) October 29, 1984 (March 1985 Issue) january 25, 1985 Other Events Sponsored by the Society January 7-8, 1985, AMS Short Course: Fair Allocation, Anaheim, California. May 1985, Symposium on Some Mathematical Questions in Biology, Plant Biology, Los Angeles, California. June 23-August 31, 1985, Joint Summer Research Conferences in the Mathematical Sciences, Humboldt State University, Arcata, California. June 30-July 13, 1985, AMS-SIAM Summer Seminar on Reacting Flows: Combustion and Chemical Re­ actors, Cornell University, Ithaca, New York. July 8-26, 1985, AMS Summer Research Institute on Algebraic Geometry, Bowdoin College, Brunswick, Maine. Substribers' changa of address should be reported well in advance to avoid disruption of service: address labels are prepared four to six -ks in advance of the date of mailing. Requests for a change of address should always include the member or subscriber code and preferably a copy of the entire mailing label. Members are reminded that U. S. Postel Service change-of­ address forms are not adequate for this purpose, since they make no provision for several important items of information which are essential for the AMS records. Suitable forms are published from time to time in the Notices (e.g. June 198•, page 421). Send change of address notices to the Society at Post Office Box 6248, Providence, RI 02~0. (Notices is published eight times a year (January, February, April, June, August, October, November, December) by the American Mathematical Society at 201 Charles Street, Providence, RI 02904. Second class postage paid at Providence, RI and additional mailing offices. POSTMASTER: Send address change notices to Membership and Sales Department, American Mathematical Society, Post Office Box 6248, Providence, RI 02~0.] Publication here of the Society's street address, and the other information in brackets above, is a technical requirement of the U. S. Postal Service. The street address should never be used by correspondents, unless they plan to deliver their messaga by hand. Members ara strongly urged to notify the Society themselves of address changes (in the manner described above), since (as explained above) reliance on the postal service change-of-address forms is liable to cause delays in processing such requests in the AMS office. Notices of the American Mathematical Society Volume 31, Number 7, November 1984 EDITORIAL COMMITTEE Paul F. Baum, Ralph P. Boas Raymond L. johnson, Mary Ellen Rudin Bertram Walsh, Daniel Zelinsky 739 L-Series of Elliptic Curves, the Birch-Swinnerton­ Everett Pitcher (Chairman) Dyer Conjecture, and the Class Number Problem of MANAGING EDITOR Gauss, Lincoln K. Durst D. Zagier ASSOCIATE EDITORS 744 28th Annual AMS Survey Hans Samelson, Queries Ronald L. Graham, Special Articles Faculty Salaries, Tenure, Women, 744 SUBSCRIPTION INFORMATION Salaries of New Doctorates, 749 Subscription prices for Volume 31 (1984) 1984 Survey of New Doctorates, 754 are $50 list; $25 member. (The subscrip· Doctoral Degrees Conferred in 1983-1984, 757 tion price for members is included in the (1982-1983 Supplement, 770} annual dues.) A late charge of 10% of the subscription price will be imposed upon 771 Mathematics Salaries: Up and Competitive, orders received from nonmembers after R. D. Anderson january 1 of the subscription year. Sub­ 772 Mathematics and Technology, scribers outside the United States and India must pay a postage surcharge of Robert Hermann $5; subscribers in India must pay a 774 News and Announcements postage surcharge of $15. Subscrip- 778 Letters to the Editor tions and orders for AMS publications should be addressed to the American 783 NSF News & Reports Mathematical Society, P.O. Box 1571, 784 Queries Annex Station, Providence, Rl 02901. All orders must be prepaid. 786 AMS Elections of 1984 787 Future Meetings of the Society ORDERS FOR AMS BOOKS AND INQUIRIES ABOUT SALES, SUBSCRIP­ Anaheim, january 9-73, 787 TIONS, AND DUES may be made by Chicago, March 22-23, 790 calling Carol-Ann Blackwood at Tucson, April 72-73, 791 800-556-7774 (toll free in U.S.) between Worcester, April 20-27, 793 8:00a.m. and 4:15p.m. eastern time, Monday through Friday. Tucson, May 3-4, 795 Invited Speakers and Special Sessions, 796 INFORMATION ABOUT ADVERTISING 798 Joint Summer Research Conference Series in the Notices may be obtained from Wahlene Siconio at 401-272-9500. 799 1985 AMS-SIAM Summer Seminar CORRESPONDENCE, including changes 800 Special Meetings of address should be sent to American 804 New AMS Publications Mathematical Society, P.O. Box 6248, 806 Miscellaneous Providence, Rl 02940. Personal Items, 806; Deaths, 806; Second class postage paid at Providence, Rl, and additional mailing Visiting Mathematicians (Supplement}, 806; offices. Copyright © 1984 by the Application Deadlines, 807 American Mathematical Society. 809 Advertisements Printed in the United States of America. 834 Preregistration Forms The paper used in this journal is acid-free and falls within the guidelines established Employment Register, 834, 835, 836 to ensure permanence and durability. Anaheim Preregistration and Housing, 837, 838 The following article is the eighth in the series of Special Articles published in the Notices. Its author, DoN ZAGIER, studied at M.I.T. as an undergraduate (B.S. in mathematics and B.S. in physics, in 1968) and did graduate work at Oxford (D.Phil., 1972) where he worked with Atiyah and Hirzebruch. Since that time he has worked at Bonn, ETH (Zurich), IHES (Bures-sur-Yvette) and Harvard. Since 1979 he has been a professor at the University of Maryland; he is also a member of the Max Planck Institute for Mathematics in Bonn. His primary research interests are number theory and the theory of modular forms. The series of Special Articles was created to provide a place for articles on mathematical subjects of interest to the general membership of the Society. The Editorial Committee of the Notices is especially interested in the quality of exposition and intends to maintain the highest standards in order to assure that the Special Articles will be accessible to mathematicians in all fields. The articles must be interesting and mathematically sound. They are first refereed for accuracy and (if approved) accepted or rejected on the basis of the breadth of their appeal to the general mathematical public. Items for this series are solicited and, if accepted, will be paid for at the rate of $250 per page up to a maximum of $750. Manuscripts to be considered for this series should be sent to Ronald L. Graham, Associate Editor for Special Articles, Notices of the American Mathematical Society, Post Office Box 6248, Providence, Rhode Island 02940. L-Series of Elliptic Curves, the Birch-Swinnerton-Dyer Conjecture, and the Class Number Problem of Gauss by D. Zagier 1. Elliptic curves over Q. Consider a Diophan­ these agree. It is known exactly what groups 1 tine equation in two variables, i.e., a polynomial can occur: 1 has the structure Z/(2n-1)Z, Z/2nZ, equation f(x, y) = 0 with rational coefficients or Z/2Z X Z/2nZ for some n EN, depending on which we want to solve in rational numbers. whether 4x3 - ax- b in (1) has 0, 1, or 3 rational Already in the works of Diophantus it is clear roots (this is elementary), and a deep theorem of that the level of difficulty of this problem is Mazur (1977) says that n is then ~ 5, ~ 6, or ~ 4, very different for different classes of polynomials respectively, all fifteen cases occurring infinitely f.
Recommended publications
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • Ζ−1 Using Theorem 1.2
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Ihara zeta functions of irregular graphs Permalink https://escholarship.org/uc/item/3ws358jm Author Horton, Matthew D. Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Ihara zeta functions of irregular graphs A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Matthew D. Horton Committee in charge: Professor Audrey Terras, Chair Professor Mihir Bellare Professor Ron Evans Professor Herbert Levine Professor Harold Stark 2006 Copyright Matthew D. Horton, 2006 All rights reserved. The dissertation of Matthew D. Horton is ap- proved, and it is acceptable in quality and form for publication on micro¯lm: Chair University of California, San Diego 2006 iii To my wife and family Never hold discussions with the monkey when the organ grinder is in the room. |Sir Winston Churchill iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . vii List of Tables . viii Acknowledgements . ix Vita ...................................... x Abstract of the Dissertation . xi 1 Introduction . 1 1.1 Preliminaries . 1 1.2 Ihara zeta function of a graph . 4 1.3 Simplifying assumptions . 8 2 Poles of the Ihara zeta function . 10 2.1 Bounds on the poles . 10 2.2 Relations among the poles . 13 3 Recovering information . 17 3.1 The hope . 17 3.2 Recovering Girth . 18 3.3 Chromatic polynomials and Ihara zeta functions . 20 4 Relations among Ihara zeta functions .
    [Show full text]
  • LMS – EPSRC Durham Symposium
    LMS – EPSRC Durham Symposium Anthony Byrne Grants and Membership Administrator 12th July 2016, Durham The work of the LMS for mathematics The charitable aims of the Society: Funding the advancement of mathematical knowledge Encouraging mathematical research and collaboration ’, George Legendre Celebrating mathematical 30 Pieces achievements Publishing and disseminating mathematical knowledge Advancing and promoting mathematics The attendees of the Young Researchers in Mathematics Conference 2015, held at Oxford Historical Moments of the London Mathematical Society 1865 Foundation of LMS at University College London George Campbell De Morgan organised the first meeting, and his father, Augustus De Morgan became the 1st President 1865 First minute book list of the 27 original members 1866 LMS moves to Old Burlington House, Piccadilly J.J. Sylvester, 2nd President of the Society. 1866 Julius Plûcker Thomas Hirst Plûcker Collection of boxwood models of quartic surfaces given to Thomas Archer Hirst, Vice- President of LMS, and donated to the Society 1870 Move to Asiatic Society, 22 Albemarle Street William Spottiswoode, President 1874 Donation of £1,000 from John William Strutt (Lord Rayleigh) Generous donation enabled the Society to publish volumes of the Proceedings of the London Mathematical Society. J.W. Strutt (Lord Rayleigh), LMS President 1876-78 1881 First women members Charlotte Angas Scott and Christine Ladd 1884 First De Morgan medal awarded to Arthur Cayley 1885 Sophie Bryant First woman to have a paper published in LMS Proceedings 1916 Return to Burlington House the home of LMS until 1998 1937 ACE ’s Automatic Turing LMS Proceedings, 1937 Computing Engine, published Alan Turing’s first paper 1950 On Computable Numbers 1947 Death of G.H.
    [Show full text]
  • 336737 1 En Bookfrontmatter 1..24
    Universitext Universitext Series editors Sheldon Axler San Francisco State University Carles Casacuberta Universitat de Barcelona Angus MacIntyre Queen Mary University of London Kenneth Ribet University of California, Berkeley Claude Sabbah École polytechnique, CNRS, Université Paris-Saclay, Palaiseau Endre Süli University of Oxford Wojbor A. Woyczyński Case Western Reserve University Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 W. Frank Moore • Mark Rogers Sean Sather-Wagstaff Monomial Ideals and Their Decompositions 123 W. Frank Moore Sean Sather-Wagstaff Department of Mathematics School of Mathematical and Statistical Wake Forest University Sciences Winston-Salem, NC, USA Clemson University Clemson, SC, USA Mark Rogers Department of Mathematics Missouri State University Springfield, MO, USA ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN 978-3-319-96874-2 ISBN 978-3-319-96876-6 (eBook) https://doi.org/10.1007/978-3-319-96876-6 Library of Congress Control Number: 2018948828 Mathematics Subject Classification (2010): 13-01, 05E40, 13-04, 13F20, 13F55 © Springer Nature Switzerland AG 2018 This work is subject to copyright.
    [Show full text]
  • Fall 2020 Issue
    MATHEMATICS + BERKELEY Fall 2020 IN THIS ISSUE Letter from the Chair 2 Department News 4 Happy Hours, New Horizons 3 Grad and Undergrad News 5 Prize New Faculty and Staff 7 Chair Michael Hutchings (PhD, Harvard, 1998) has been a member of the math faculty since 2001. His research is in low dimension- al and symplectic geometry and topology. He became Chair in Fall 2019. Dear Friends of Berkeley Math, Due to Covid-19, this last year has been quite extraordinary for almost everyone. I have been deeply moved by the enormous efforts of members of our department to make the most of the The department’s weekly afternoon tea in virtual 1035 Evans Hall on gather.town. Some attendees are dressed as vampires and pumpkins, others are playing pictionary. circumstances and continue our excellence in teaching and research. rejoined the department as an Assistant Teaching Professor. Yingzhou Li, who works in Applied Mathematics, and Ruix- We switched to remote teaching in March with just two days iang Zhang, who works in Analysis, will join the department of preparation time, and for the most part will be teaching as Assistant Professors in Spring and Fall 2021, respectively. remotely at least through Spring 2021. As anyone who teach- es can probably tell you, teaching online is no easier than And we need to grow our faculty further, in order to meet very teaching in person, and often much more difficult. However, high teaching demand. In Spring 2020 we had over 900 mathe- developing online courses has also given us an opportunity to matics majors, and we awarded a record 458 undergraduate de- rethink how we can teach and interact with students.
    [Show full text]
  • Ihara Zeta Functions
    Audrey Terras 2/16/2004 fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion Introduction The Riemann zeta function for Re(s)>1 ∞ 1 −1 ζ ()sp== 1 −−s . ∑ s ∏ () n=1 n pprime= Riemann extended to all complex s with pole at s=1. Functional equation relates value at s and 1-s Riemann hypothesis duality between primes and complex zeros of zeta See Davenport, Multiplicative Number Theory. 1 Audrey Terras 2/16/2004 Graph of |Zeta| Graph of z=| z(x+iy) | showing the pole at x+iy=1 and the first 6 zeros which are on the line x=1/2, of course. The picture was made by D. Asimov and S. Wagon to accompany their article on the evidence for the Riemann hypothesis as of 1986. A. Odlyzko’s Comparison of Spacings of Zeros of Zeta and Eigenvalues of Random Hermitian Matrix. See B. Cipra, What’s Happening in Math. Sciences, 1998-1999. 2 Audrey Terras 2/16/2004 Dedekind zeta of an We’ll algebraic number field F, say where primes become prime more ideals p and infinite product of about number terms field (1-Np-s)-1, zetas Many Kinds of Zeta Np = norm of p = #(O/p), soon O=ring of integers in F but not Selberg zeta Selberg zeta associated to a compact Riemannian manifold M=G\H, H = upper half plane with arc length ds2=(dx2+dy2)y-2 , G=discrete group of real fractional linear transformations primes = primitive closed geodesics C in M of length −+()()sjν C ν(C), Selberg Zs()=− 1 e (primitive means only go Zeta = ∏ ∏( ) around once) []Cj≥ 0 Reference: A.T., Harmonic Analysis on Symmetric Duality between spectrum ∆ on M & lengths closed geodesics in M Spaces and Applications, I.
    [Show full text]
  • Notices of the American Mathematical Society
    • ISSN 0002-9920 March 2003 Volume 50, Number 3 Disks That Are Double Spiral Staircases page 327 The RieITlann Hypothesis page 341 San Francisco Meeting page 423 Primitive curve painting (see page 356) Education is no longer just about classrooms and labs. With the growing diversity and complexity of educational programs, you need a software system that lets you efficiently deliver effective learning tools to literally, the world. Maple® now offers you a choice to address the reality of today's mathematics education. Maple® 8 - the standard Perfect for students in mathematics, sciences, and engineering. Maple® 8 offers all the power, flexibility, and resources your technical students need to manage even the most complex mathematical concepts. MapleNET™ -- online education ,.u A complete standards-based solution for authoring, nv3a~ _r.~ .::..,-;.-:.- delivering, and managing interactive learning modules \~.:...br *'r¥'''' S\l!t"AaITI(!\pU;; ,"", <If through browsers. Derived from the legendary Maple® .Att~~ .. <:t~~::,/, engine, MapleNefM is the only comprehensive solution "f'I!hlislJer~l!'Ct"\ :5 -~~~~~:--r---, for distance education in mathematics. Give your institution and your students cornpetitive edge. For a FREE 3D-day Maple® 8 Trial CD for Windows®, or to register for a FREE MapleNefM Online Seminar call 1/800 R67.6583 or e-mail [email protected]. ADVANCING MATHEMATICS WWW.MAPLESOFT.COM I [email protected]\I I WWW.MAPLEAPPS.COM I NORTH AMERICAN SALES 1/800 267. 6583 © 2003 Woter1oo Ma')Ir~ Inc Maple IS (J y<?glsterc() crademork of Woterloo Maple he Mar)leNet so troc1ema'k of Woter1oc' fV'lop'e Inr PII other trcde,nork$ (ye property o~ their respective ('wners Generic Polynomials Constructive Aspects of the Inverse Galois Problem Christian U.
    [Show full text]
  • THÔNG TIN TOÁN HỌC Tháng 9 Năm 2014 Tập 18 Số 3 Thông Tin Toán Học (Lưu Hành Nội Bộ)
    Hội Toán Học Việt Nam THÔNG TIN TOÁN HỌC Tháng 9 Năm 2014 Tập 18 Số 3 Thông Tin Toán Học (Lưu hành nội bộ) Tổng biên tập Bản tin Thông Tin Toán Học nhằm ∙ ∙ Ngô Việt Trung mục đích phản ánh các sinh hoạt chuyên môn trong cộng đồng toán học Phó tổng biên tập Việt Nam và quốc tế. Bản tin ra thường ∙ kỳ 4 số trong một năm. Nguyễn Thị Lê Hương Thư ký tòa soạn ∙ Đoàn Trung Cường Thể lệ gửi bài: Bài viết bằng tiếng Việt. ∙ Tất cả các bài, thông tin về sinh hoạt Ban biên tập ∙ toán học ở các khoa (bộ môn) toán, Trần Nguyên An về hướng nghiên cứu hoặc trao đổi về Đào Phương Bắc phương pháp nghiên cứu và giảng dạy Trần Nam Dũng đều được hoan nghênh. Bản tin cũng Trịnh Thanh Đèo nhận đăng các bài giới thiệu tiềm năng Đào Thị Thu Hà khoa học của các cơ sở cũng như các Đoàn Thế Hiếu bài giới thiệu các nhà toán học. Bài viết Nguyễn An Khương xin gửi về tòa soạn theo email hoặc địa Lê Công Trình chỉ ở trên. Nếu bài được đánh máy tính, xin gửi kèm theo file với phông chữ Nguyễn Chu Gia Vượng unicode. Địa chỉ liên hệ ∙ Bản tin: Thông Tin Toán Học Viện Toán Học 18 Hoàng Quốc Việt, 10307 Hà Nội Email: [email protected] Trang web: http://www.vms.org.vn/ttth/ttth.htm c Hội Toán Học Việt Nam ○ Ảnh bìa 1. Xem trang 25 Trang web của Hội Toán học: Nguồn: Internet http://www.vms.org.vn 1 Cảm nhận về Đại hội Toán học Quốc tế tại Seoul Ngô Việt Trung (Viện Toán học) Năm 2009 GS Lovasz và GS Groetschel, - Tiến hành các nỗ lực đặc biệt nhằm vận Chủ tịch và Tổng thư ký Liên đoàn toán động mọi công dân trong mọi tổ chức, học thế giới đến thăm Việt Nam.
    [Show full text]
  • The Jones-Witten Invariants of Knots Astérisque, Tome 189-190 (1990), Séminaire Bourbaki, Exp
    Astérisque MICHAEL ATIYAH The Jones-Witten invariants of knots Astérisque, tome 189-190 (1990), Séminaire Bourbaki, exp. no 715, p. 7-16 <http://www.numdam.org/item?id=SB_1989-1990__32__7_0> © Société mathématique de France, 1990, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Seminaire BOURBAKI novembre 1989 42eme annee, 1989-90, n° 715 THE JONES-WITTEN INVARIANTS OF KNOTS par Michael ATIYAH 1. INTRODUCTION One of the most remarkable developments of recent years has been the work initiated by Vaughan Jones [2] [3] on knot invariants. This has all the hallmarks of great mathematics. It produces simple new invariants which solve classical problems and it involves a very wide range of ideas and techniques from practically all branches of mathematics and physics. Here is a list of the areas which have been significantly involved in the theory up to the present : combinatorics, group representations, algebraic geom- etry, differential geometry, differential equations, topology, Von Neumann algebras, statistical mechanics, quantum field theory..Moreover the subject continues to develop rapidly and a final picture has not yet emerged. Given this very wide field I have to be very selective for a one-hour presentation. I will concentrate on some aspects and I shall have to omit all the technicalities.
    [Show full text]
  • Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published By
    titelbild_2008:Layout 1 26.01.2009 20:19 Seite 1 Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published by Mathematisches Forschungsinstitut Oberwolfach Direktor Gert-Martin Greuel Gesellschafter Gesellschaft für Mathematische Forschung e.V. Adresse Mathematisches Forschungsinstitut Oberwolfach gGmbH Schwarzwaldstr. 9-11 D-77709 Oberwolfach-Walke Germany Kontakt http://www.mfo.de [email protected] Tel: +49 (0)7834 979 0 Fax: +49 (0)7834 979 38 Das Mathematische Forschungsinstitut Oberwolfach ist Mitglied der Leibniz-Gemeinschaft. © Mathematisches Forschungsinstitut Oberwolfach gGmbH (2009) JAHRESBERICHT 2008 / ANNUAL REPORT 2008 INHALTSVERZEICHNIS / TABLE OF CONTENTS Vorwort des Direktors / Director’s Foreword ......................................................................... 6 1. Besondere Beiträge / Special contributions 1.1 Das Jahr der Mathematik 2008 / The year of mathematics 2008 ................................... 10 1.1.1 IMAGINARY - Mit den Augen der Mathematik / Through the Eyes of Mathematics .......... 10 1.1.2 Besuch / Visit: Bundesministerin Dr. Annette Schavan ............................................... 17 1.1.3 Besuche / Visits: Dr. Klaus Kinkel und Dr. Dietrich Birk .............................................. 18 1.2 Oberwolfach Preis / Oberwolfach Prize ....................................................................... 19 1.3 Oberwolfach Vorlesung 2008 .................................................................................... 27 1.4 Nachrufe ..............................................................................................................
    [Show full text]
  • Graphs: Random, Chaos, and Quantum
    Graphs: Random, Chaos, and Quantum Matilde Marcolli Fields Institute Program on Geometry and Neuroscience and MAT1845HS: Introduction to Fractal Geometry and Chaos University of Toronto, March 2020 Matilde Marcolli Graphs: Random, Chaos, and Quantum Some References Alex Fornito, Andrew Zalesky, Edward Bullmore, Fundamentals of Brain Network Analysis, Elsevier, 2016 Olaf Sporns, Networks of the Brain, MIT Press, 2010 Olaf Sporns, Discovering the Human Connectome, MIT Press, 2012 Fan Chung, Linyuan Lu, Complex Graphs and Networks, American Mathematical Society, 2004 L´aszl´oLov´asz, Large Networks and Graph Limits, American Mathematical Society, 2012 Matilde Marcolli Graphs: Random, Chaos, and Quantum Graphs G = (V ; E;@) • V = V (G) set of vertices (nodes) • E = E(G) set of edges (connections) • boundary map @ : E(G) ! V (G) × V (G), boundary vertices @(e) = fv; v 0g • directed graph (oriented edges): source and target maps s : E(G) ! V (G); t : E(G) ! V (G);@(e) = fs(e); t(e)g • looping edge: s(e) = t(e) starts and ends at same vertex; parallel edges: e 6= e0 with @(e) = @(e0) • simplifying assumption: graphs G with no parallel edges and no looping edges (sometimes assume one or the other) • additional data: label functions fV : V (G) ! LV and fE : E(G) ! LE to sets of vertex and edge labels LV and LE Matilde Marcolli Graphs: Random, Chaos, and Quantum Examples of Graphs Matilde Marcolli Graphs: Random, Chaos, and Quantum Network Graphs (Example from Facebook) Matilde Marcolli Graphs: Random, Chaos, and Quantum Increasing Randomness rewiring
    [Show full text]
  • Finite Models for Arithmetical Quantum Chaos
    Finite Models for Arithmetical Quantum Chaos Audrey Terras Math. Dept., U.C.S.D., San Diego, Ca 92093-0112 Abstract. Physicists have long studied spectra of Schrödinger operators and random matrices thanks to the implications for quantum mechanics. Analo- gously number theorists and geometers have investigated the statistics of spec- tra of Laplacians on Riemannian manifolds. This has been termed by Sarnak “arithmetic quantum chaos” when the manifolds are quotients of a symmet- ric space modulo an arithmetic group such as the modular group SL(2, Z). Equivalently one seeks the statistics of the zeros of Selberg zeta functions. Parallels with the statistics of the zeros of the Riemann zeta function have been evident to physicists for some time. Here we survey what may be called “finite quantum chaos” seeking connections with the continuous theory. We will also discuss discrete analogue of Selberg’s trace formula as well as Ihara zeta functions of graphs. Part 1 Lecture 1. Finite Models 1. Introduction This is a story of a tree related to the spectral theory of operators on Hilbert spaces. The tree has three branches as in Figure 1. The left branch is that of quantum physics: the statistics of energy levels of quantum mechanical systems; i.e. the eigenvalues of the Schrödinger operator φn = λnφn. The middle branch is that of geometry and number theory. In the middleL we see the spectrum of the Laplace operator = ∆ on a Riemannian manifold M such as the fundamental L domain of the modular group SL(2, Z) of 2 2 integer matrices with determinant 1.
    [Show full text]