LED Color Mixing: Basics and Background

Total Page:16

File Type:pdf, Size:1020Kb

LED Color Mixing: Basics and Background CLD-AP38 REV 1D TECHNICAL ARTICLE LED Color Mixing: Basics and Background TABLE OF CONTENTS INTRODUCTION Introduction ...................................................................................1 This application note explains aspects of the theory and practice The Need for Color Consistency in LED Illumination ..................2 of creating color-consistent, LED-based illumination products LED Binning ...................................................................................3 and shows how to use Cree XLamp® LEDs to achieve this end. Colorimetry and Binning Basics ...................................................3 LEDs, as with all manufactured products, have material and Color-Space Basics .................................................................4 process variations that yield products with corresponding Idealized Illumination Colors – the Black Body Curve ..........7 variation in performance. LEDs are binned and packaged to MacAdam Ellipses: The Variability of Perception, Expressed balance the nature of the manufacturing process with the in Color Space .........................................................................9 needs of the lighting industry. Lighting-class LEDs are driven Partitioning the Color Space – Binning ................................11 by application requirements and industry standards, including Chromaticity Bins ..................................................................13 color consistency and color and lumen maintenance. Just as Flux Bins .................................................................................14 traditional lamps are sold by brightness (typically indicated by Using Colorimetry and Binning Information in Illumination wattage) and color (warm or cool white), LEDs are binned for Specification ................................................................................15 brightness (luminous flux) and color parameters (chromaticity). Additive Nature of Photometry and Colorimetry .................16 The Basic Approaches ..........................................................17 Three Approaches .......................................................................18 Use Cree EasyWhite Components........................................19 Color Mixing in the LED System ...........................................19 Examples ...............................................................................21 Photometric Dependencies .......................................................23 Conclusion ...................................................................................23 MP la OM/X C . cree . Copyright © 2010-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, XLamp® and Cree, Inc. WWW EasyWhite® are registered trademarks and the Cree logo is a trademark of Cree, Inc. ENERGY STAR® is a registered trademark of the U.S. Environmental 4600 Silicon Drive Protection Agency. This document is provided for informational purposes only and is not a warranty or a specification. For product specifications, Durham, NC 27703 please see the data sheets available at www.cree.com. For warranty information, please contact Cree Sales at [email protected]. USA Tel: +1.919.313.5300 LED COLOR MIXING THE NEED FOR COLOR CONSISTENCY IN LED ILLUMINATION Figure 1: The Need for Color Consistency Spans all Illumination There is nothing like a picture to illustrate a visual point such as color variation. The photograph in Figure 1 clearly shows the need for every illumination technology to deliver consistent color. ThisTechnologies photograph is an example of the challenges Cree, in conjunction with the lighting industry, is trying to meet for LED lighting applications. Figure 1: The need for color consistency spans all illumination technologies Figure 1 is a photograph of an array of high-intensity discharge (HID) lamps illuminating the facade of a building. It shows the undesirable results of inconsistent color temperature and the degradation of performance of luminaires as they age. Increasingly active industrial policy in the United States and throughout the world is resulting in a rigorous set of performance requirements for LED lighting applications. The first industrial policy that mandated illumination technology for LED lamp requirements was the 2007 document, “ENERGY STAR® Program Requirements for Solid State Lighting Luminaires.” This was followed by requirements for LED lamps, enumerated in the 2010 document “ENERGY STAR® Program Requirements for Integral LED Lamps”, which proposed stringent requirements, significantly above those for compact fluorescent lamp (CFL).1 Each of these documents contains requirements for correlated color temperature (CCT), color rendering index (CRI), lumen and color maintenance for an ENERGY-STAR-approved LED illumination product and have been subsequently revised2,3. CCT requirements are excerpted in Tables 1 and 2 below. 1 See www.energystar.gov/ia/partners/prod_development/revisions/downloads/cfls/Criteria_CFLs_V4.pdf 2 www.energystar.gov/ia/partners/product_specs/program_reqs/Integral_LED_Lamps_Program_Requirements.pdf 3 www.energystar.gov/ia/partners/product_specs/program_reqs/Final_Luminaires_V1_2.pdf?7b7d-2473 Copyright © 2010-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, XLamp® and EasyWhite® are registered trademarks and the Cree logo is a trademark of Cree, Inc. ENERGY STAR® is a registered trademark of the U.S. Environmental Protection Agency. This document is provided for informational purposes only and is not a warranty or a specification. For product specifications, please see the data sheets available at www.cree.com. For warranty information, please contact Cree Sales at [email protected]. 2 LED COLOR MIXING Table 1: ENERGY STAR requirements for integral LED lamps, per program requirements (V1.4) Reference Standard/Test Sample Size/ Characteristic Requirement Method Specific Requirements Lamp must have one of the following designated CCTs (per IES LM-79-08 10 units per model ANSI C78.377-2008) consistent with the 7-step chromaticity • 5 base-up quadrangles and Duv tolerances below. ANSI/NEMA/ • 5 base-down ANSLG C78.377-2008 At least 9 of the 10 samples must Nominal CCT Target CCT (K) and Target Duv and meet the specification CCT and Duv Tolerance Tolerance 2700 K 2725 ± 145 0.000 ± 0.006 3000 K 3045 ± 175 0.000 ± 0.006 3500 K 3465 ± 245 0.000 ± 0.006 4000 K 3985 ± 275 0.001 ± 0.006 Table 2: ENERGY STAR CCT requirements for indoor LED luminaires, per program requirements (V1.2) Characteristic Requirements CCT requirements: all indoor The luminaire (directional luminaires), or replaceable LED light engine or GU24 based integrated LED lamp (non-directional luminaires luminaires) shall have one of the following nominal CCTs: • 2700 Kelvin • 3000 Kelvin • 3500 Kelvin • 4000 Kelvin • 5000 Kelvin (commercial only) The luminaire, LED light engine or GU24 based integrated LED lamp shall also fall within the corresponding 7-step chromaticity quadrangles as defined in ANSI/NEMA/ANSLG C78.377-2008. These requirements highlight the need to achieve defined, repeatable results with the manufacturing output from an LED supplier. LED BINNING LEDs can be characterized in multiple ways. For color mixing, the two most important dimensions are color expressed as chromaticity (CCx, CCy), and luminous flux, measured in lumens (lm). These parameters are collected as part of the LED component manufacturing process and are the basis for the component binning discussed in this document. COLORIMETRY AND BINNING BASICS It is easier to explain the world of LED colorimetric binning and mixing by reviewing a bit of high-level color science. Colorimetry is the science of the human perception of color and contains a framework for analyzing both the spectral distribution of illumination and the human characteristics of color perception. Copyright © 2010-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, XLamp® and EasyWhite® are registered trademarks and the Cree logo is a trademark of Cree, Inc. ENERGY STAR® is a registered trademark of the U.S. Environmental Protection Agency. This document is provided for informational purposes only and is not a warranty or a specification. For product specifications, please see the data sheets available at www.cree.com. For warranty information, please contact Cree Sales at [email protected]. 3 LED COLOR MIXING Figure 17: Light is the visible portion of electromagnetic spectrum coved from 380 nm to 780 nm Figure 2: Light is the visible portion of electromagnetic spectrum ranging from 380 nm to 780 nm A lighting designer may seek to deliver a warm, neutral or cool illumination source. Knowledge about the lighting application will allow the designer to ensure the correct lighting decisions are made for that space. Understanding the following key concepts that relate colorimetry and LED binning will enable the designer to specify the proper LED solution. Copyright © 2009, pg. 18 1. ColorCree, space, Inc. the formalism to objectively describe any perceptible color. 2. Color temperature, more precisely the correlated color temperature, characterizes the hue of an illumination source as a temperature on the Kelvin scale. 3. The empirical data and models of human perception and variability in color and vision that provide additional framework for the way in which color bins are created. The perceptual psychologists’
Recommended publications
  • Color Theory for Painting Video: Color Perception
    Color Theory For Painting Video: Color Perception • http://www.ted.com/talks/lang/eng/beau_lotto_optical_illusions_show_how_we_see.html • Experiment • http://www.youtube.com/watch?v=y8U0YPHxiFQ Intro to color theory • http://www.youtube.com/watch?v=059-0wrJpAU&feature=relmfu Color Theory Principles • The Color Wheel • Color context • Color Schemes • Color Applications and Effects The Color Wheel The Color Wheel • A circular diagram displaying the spectrum of visible colors. The Color Wheel: Primary Colors • Primary Colors: Red, yellow and blue • In traditional color theory, primary colors can not be mixed or formed by any combination of other colors. • All other colors are derived from these 3 hues. The Color Wheel: Secondary Colors • Secondary Colors: Green, orange and purple • These are the colors formed by mixing the primary colors. The Color Wheel: Tertiary Colors • Tertiary Colors: Yellow- orange, red-orange, red-purple, blue-purple, blue-green & yellow-green • • These are the colors formed by mixing a primary and a secondary color. • Often have a two-word name, such as blue-green, red-violet, and yellow-orange. Color Context • How color behaves in relation to other colors and shapes is a complex area of color theory. Compare the contrast effects of different color backgrounds for the same red square. Color Context • Does your impression od the center square change based on the surround? Color Context Additive colors • Additive: Mixing colored Light Subtractive Colors • Subtractive Colors: Mixing colored pigments Color Schemes Color Schemes • Formulas for creating visual unity [often called color harmony] using colors on the color wheel Basic Schemes • Analogous • Complementary • Triadic • Split complement Analogous Color formula used to create color harmony through the selection of three related colors which are next to one another on the color wheel.
    [Show full text]
  • Cielab Color Space
    Gernot Hoffmann CIELab Color Space Contents . Introduction 2 2. Formulas 4 3. Primaries and Matrices 0 4. Gamut Restrictions and Tests 5. Inverse Gamma Correction 2 6. CIE L*=50 3 7. NTSC L*=50 4 8. sRGB L*=/0/.../90/99 5 9. AdobeRGB L*=0/.../90 26 0. ProPhotoRGB L*=0/.../90 35 . 3D Views 44 2. Linear and Standard Nonlinear CIELab 47 3. Human Gamut in CIELab 48 4. Low Chromaticity 49 5. sRGB L*=50 with RGB Numbers 50 6. PostScript Kernels 5 7. Mapping CIELab to xyY 56 8. Number of Different Colors 59 9. HLS-Hue for sRGB in CIELab 60 20. References 62 1.1 Introduction CIE XYZ is an absolute color space (not device dependent). Each visible color has non-negative coordinates X,Y,Z. CIE xyY, the horseshoe diagram as shown below, is a perspective projection of XYZ coordinates onto a plane xy. The luminance is missing. CIELab is a nonlinear transformation of XYZ into coordinates L*,a*,b*. The gamut for any RGB color system is a triangle in the CIE xyY chromaticity diagram, here shown for the CIE primaries, the NTSC primaries, the Rec.709 primaries (which are also valid for sRGB and therefore for many PC monitors) and the non-physical working space ProPhotoRGB. The white points are individually defined for the color spaces. The CIELab color space was intended for equal perceptual differences for equal chan- ges in the coordinates L*,a* and b*. Color differences deltaE are defined as Euclidian distances in CIELab. This document shows color charts in CIELab for several RGB color spaces.
    [Show full text]
  • Color Gamut of Halftone Reproduction*
    Color Gamut of Halftone Reproduction* Stefan Gustavson†‡ Department of Electrical Engineering, Linkøping University, S-581 83 Linkøping, Sweden Abstract tern then gets attenuated once more by the pattern of ink that resides on the surface, and the finally reflected light Color mixing by a halftoning process, as used for color is the result of these three effects combined: transmis- reproduction in graphic arts and most forms of digital sion through the ink film, diffused reflection from the hardcopy, is neither additive nor subtractive. Halftone substrate, and transmission through the ink film again. color reproduction with a given set of primary colors is The left-hand side of Fig. 2 shows an exploded view of heavily influenced not only by the colorimetric proper- the ink layer and the substrate, with the diffused reflected ties of the full-tone primaries, but also by effects such pattern shown on the substrate. The final viewed image as optical and physical dot gain and the halftone geom- is a view from the top of these two layers, as shown to etry. We demonstrate that such effects not only distort the right in Fig. 2. The dots do not really increase in the transfer characteristics of the process, but also have size, but they have a shadow around the edge that makes an impact on the size of the color gamut. In particular, a them appear larger, and the image is darker than what large dot gain, which is commonly regarded as an un- would have been the case without optical dot gain. wanted distortion, expands the color gamut quite con- siderably.
    [Show full text]
  • Color Mixing Ratios
    Colour Mixing: Ratios Color Theory with Tracy Moreau Learn more at DecoArt’s Art For Everyone Learning Center www.tracymoreau.net Primary Colours In painting, the three primary colours are yellow, red, and blue. These colors cannot be created by mixing other colours. They are called primary because all other colours are derived from them. Mixing Primary Colours Creates Secondary Colours If you combine two primary colours you get a secondary colour. For example, red and blue make violet, yellow and red make orange, and blue and yellow make green. If you mix all of the primary colours together you get black. The Mixing Ratio for Primary Colours To get orange, you mix the primary colours red and yellow. The mixing ratio of these two colours determines which shade of orange you will get after mixing. For example, if you use more red than yellow you will get a reddish-orange. If you add more yellow than red you will get a yellowish-orange. Experiment with the shades you have to see what you can create. Try out different combinations and mixing ratios and keep a written record of your results so that you can mix the colours again for future paintings. www.tracymoreau.net Tertiary Colours By mixing a primary and a secondary colour or two secondary colours you get a tertiary colour. Tertiary colours such as blue-lilac, yellow-green, green-blue, orange-yellow, red-orange, and violet-red are all created by combining a primary and a secondary colour. The Mixing Ratios of Light and Dark Colours If you want to darken a colour, you only need to add a small amount of black or another dark colour.
    [Show full text]
  • Preparing Images for Delivery
    TECHNICAL PAPER Preparing Images for Delivery TABLE OF CONTENTS So, you’ve done a great job for your client. You’ve created a nice image that you both 2 How to prepare RGB files for CMYK agree meets the requirements of the layout. Now what do you do? You deliver it (so you 4 Soft proofing and gamut warning can bill it!). But, in this digital age, how you prepare an image for delivery can make or 13 Final image sizing break the final reproduction. Guess who will get the blame if the image’s reproduction is less than satisfactory? Do you even need to guess? 15 Image sharpening 19 Converting to CMYK What should photographers do to ensure that their images reproduce well in print? 21 What about providing RGB files? Take some precautions and learn the lingo so you can communicate, because a lack of crystal-clear communication is at the root of most every problem on press. 24 The proof 26 Marking your territory It should be no surprise that knowing what the client needs is a requirement of pro- 27 File formats for delivery fessional photographers. But does that mean a photographer in the digital age must become a prepress expert? Kind of—if only to know exactly what to supply your clients. 32 Check list for file delivery 32 Additional resources There are two perfectly legitimate approaches to the problem of supplying digital files for reproduction. One approach is to supply RGB files, and the other is to take responsibility for supplying CMYK files. Either approach is valid, each with positives and negatives.
    [Show full text]
  • Digital Refocusing with Incoherent Holography
    Digital Refocusing with Incoherent Holography Oliver Cossairt Nathan Matsuda Northwestern University Northwestern University Evanston, IL Evanston, IL [email protected] [email protected] Mohit Gupta Columbia University New York, NY [email protected] Abstract ‘adding’ and ‘subtracting’ blur to the point spread functions (PSF) of different scene points, depending on their depth. In Light field cameras allow us to digitally refocus a pho- a conventional 2D image, while it is possible to add blur to tograph after the time of capture. However, recording a a scene point’s PSF, it is not possible to subtract or remove light field requires either a significant loss in spatial res- blur without introducing artifacts in the image. This is be- olution [10, 20, 9] or a large number of images to be cap- cause 2D imaging is an inherently lossy process; the angular tured [11]. In this paper, we propose incoherent hologra- information in the 4D light field is lost in a 2D image. Thus, phy for digital refocusing without loss of spatial resolution typically, if digital refocusing is desired, 4D light fields are from only 3 captured images. The main idea is to cap- captured. Unfortunately, light field cameras sacrifice spa- ture 2D coherent holograms of the scene instead of the 4D tial resolution in order to capture the angular information. light fields. The key properties of coherent light propagation The loss in resolution can be significant, up to 1-2 orders are that the coherent spread function (hologram of a single of magnitude. While there have been attempts to improve point source) encodes scene depths and has a broadband resolution by using compressive sensing techniques [14], spatial frequency response.
    [Show full text]
  • Dalmatian's Definitions
    T H E B L A C K & W H I T E P A P E R S D A L M A T I A N ’ S D E F I N I T I O N S 8 BIT A bit is the possible number of colors or tones assigned to each pixel. In 8 bit files, 1 of 256 tones is assigned to each pixel. 8-bit Jpeg is the default setting for most cameras; whenever possible set the camera to RAW capture for the best image capture possible. 16 BIT A bit is the possible number of colors or tones assigned to each pixel. In 16 bit files, 1 of 65,536 tones are assigned to each pixel. 16 bit files have the greatest range of tonalities and a more realistic interpretation of continuous tone. Note the increase in tonalities from 8 bit to 16 bit. If your aim is the quality of the image, then 16 bit is a must. ADOBE 1998 COLOR SPACE Adobe ‘98 is the preferred RGB color space that places the captured and therefore printable colors within larger parameters, rendering approximately 50% the visible color space of the human eye. Whenever possible, change the camera’s default sRGB setting to Adobe 1998 in order to increase available color capture. Whenever possible change this setting to Adobe 1998 in order to increase available color capture. When an image is captured in sRGB, it is best to leave the color space unchanged so color rendering is unaffected. ARCHIVAL Archival materials are those with a neutral pH balance that will not degrade over time and are resistant to UV fading.
    [Show full text]
  • Color Mixing Challenge
    COLOR MIXING CHALLENGE Target age group: any age Purpose of activity: to experiment with paint and discover color combinations that will make many different shades of the basic colors Materials needed: copies of the pattern page printed onto heavy card stock paper, small paint brushes, paper towels, paper plates to use as palettes (or half-sheets of card stock), a bowl of water to rinse brushes, acrylic paints in these colors: red, blue, yellow, and white (NOTE: Try to purchase the most “true” colors you can-- a royal blue, a true red, a medium yellow.) Time needed to complete activity: about 30 minutes (not including set-up and clean-up time) How to prepare: Copy (or print out) a pattern page for each student. Give each student a paper plate containing a marble-sized blob of red, blue, yellow and white. (Have a few spare plates available in case they run out of mixing space on their fi rst plate.) Also provide a paper towel and a bowl of rinse water. If a student runs out of a particular color of paint, give them a dab more. This will avoid wasting a lot of paint. (If you let the students fi ll their own paints, they will undoubtedly waste a lot of paint. In my experience, students almost always over-estimate how much paint they need.) What to do: It’s up to you (the adult in charge) how much instruction to give ahead of time. You may want to discuss color theory quite a bit, or you may want to emphasize the experimental nature of this activity and let the students discover color combinations for themselves.
    [Show full text]
  • Specification of Srgb
    How to interpret the sRGB color space (specified in IEC 61966-2-1) for ICC profiles A. Key sRGB color space specifications (see IEC 61966-2-1 https://webstore.iec.ch/publication/6168 for more information). 1. Chromaticity co-ordinates of primaries: R: x = 0.64, y = 0.33, z = 0.03; G: x = 0.30, y = 0.60, z = 0.10; B: x = 0.15, y = 0.06, z = 0.79. Note: These are defined in ITU-R BT.709 (the television standard for HDTV capture). 2. Reference display‘Gamma’: Approximately 2.2 (see precise specification of color component transfer function below). 3. Reference display white point chromaticity: x = 0.3127, y = 0.3290, z = 0.3583 (equivalent to the chromaticity of CIE Illuminant D65). 4. Reference display white point luminance: 80 cd/m2 (includes veiling glare). Note: The reference display white point tristimulus values are: Xabs = 76.04, Yabs = 80, Zabs = 87.12. 5. Reference veiling glare luminance: 0.2 cd/m2 (this is the reference viewer-observed black point luminance). Note: The reference viewer-observed black point tristimulus values are assumed to be: Xabs = 0.1901, Yabs = 0.2, Zabs = 0.2178. These values are not specified in IEC 61966-2-1, and are an additional interpretation provided in this document. 6. Tristimulus value normalization: The CIE 1931 XYZ values are scaled from 0.0 to 1.0. Note: The following scaling equations can be used. These equations are not provided in IEC 61966-2-1, and are an additional interpretation provided in this document. 76.04 X abs 0.1901 XN = = 0.0125313 (Xabs – 0.1901) 80 76.04 0.1901 Yabs 0.2 YN = = 0.0125313 (Yabs – 0.2) 80 0.2 87.12 Zabs 0.2178 ZN = = 0.0125313 (Zabs – 0.2178) 80 87.12 0.2178 7.
    [Show full text]
  • Computational RYB Color Model and Its Applications
    IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig.
    [Show full text]
  • Thanks for Downloading the Sample Chapters
    Thanks for Downloading the Sample Chapters Here are the chapters included. The Quick Start chapter, the first in the book, which identifies five quick ways to up the video and audio quality of your webinars and videoconferences. Chapter 5: Simple Lighting Techniques. The easiest way to significantly improve the quality of video produced by webcams and smartphones is to add lighting. You don’t have to spend a fortune; in fact, my go-to setup cost $30. You can read about this and more in this chapter. Chapter 9: Working With Audio on Android Devices. How to add and control a microphone on Android devices. Chapter 14: Working with Onstream Webinars. Audio and video adjustment controls available in Onstream Webinars. After the chapters, I’ve inserted the introduction to the book, and then the table of contents, so you can see what else is covered in the book. Thanks for having a look. Quick Start: Do This, Don’t Do That Figure a. Check your upload speed well in advance; don’t just pray for the best. This chapter contains highlights from various chapters in the book, both as a quick-start reference and as an introduction to the materials covered in the book. As you can see in Figure a, it’s better to check your outbound bandwidth with a tool called Speedtest than to simply pray that your bandwidth is sufficient. Chapter 1 has tables detailing the recommended bitrate for various conferencing and webinar applications, and other, related tips. Note that Speedtest is available as an app for both iOS and Android platforms, so you can check there as well.
    [Show full text]
  • HD-SDI, HDMI, and Tempus Fugit
    TECHNICALL Y SPEAKING... By Steve Somers, Vice President of Engineering HD-SDI, HDMI, and Tempus Fugit D-SDI (high definition serial digital interface) and HDMI (high definition multimedia interface) Hversion 1.3 are receiving considerable attention these days. “These days” really moved ahead rapidly now that I recall writing in this column on HD-SDI just one year ago. And, exactly two years ago the topic was DVI and HDMI. To be predictably trite, it seems like just yesterday. As with all things digital, there is much change and much to talk about. HD-SDI Redux difference channels suffice with one-half 372M spreads out the image information The HD-SDI is the 1.5 Gbps backbone the sample rate at 37.125 MHz, the ‘2s’ between the two channels to distribute of uncompressed high definition video in 4:2:2. This format is sufficient for high the data payload. Odd-numbered lines conveyance within the professional HD definition television. But, its robustness map to link A and even-numbered lines production environment. It’s been around and simplicity is pressing it into the higher map to link B. Table 1 indicates the since about 1996 and is quite literally the bandwidth demands of digital cinema and organization of 4:2:2, 4:4:4, and 4:4:4:4 savior of high definition interfacing and other uses like 12-bit, 4096 level signal data with respect to the available frame delivery at modest cost over medium-haul formats, refresh rates above 30 frames per rates. distances using RG-6 style video coax.
    [Show full text]