PROJECT PROPOSAL TOPIC: Morphological Analysis, Phytochemical Analysis and Silica Gel Chromatographic Study of Phenolic Compounds in Vegetable African Nightshades

Total Page:16

File Type:pdf, Size:1020Kb

PROJECT PROPOSAL TOPIC: Morphological Analysis, Phytochemical Analysis and Silica Gel Chromatographic Study of Phenolic Compounds in Vegetable African Nightshades PROJECT PROPOSAL TOPIC: Morphological analysis, phytochemical analysis and Silica Gel Chromatographic Study of phenolic compounds in Vegetable African Nightshades. BY Abu, Richard A. UR201400186 DEPARTMENT OF BIOLOGICAL SCIENCES FEDERAL UNIVERSITY, WUKARI SUPERVISED BY MR. EKONG, N.J EVALUATION OF PHYLOGENETIC RELATIONSHIP THAT EXIST AMONG SELECTED AFRICAN NIGHTSHADES (Solanum scabrum Mill., Solanum nigrum L. and Solanum villosum Mill.). INTRODUCTION African indigenous vegetables (AIVs) are important nutrient-rich foods consumed locally and in the sub-Saharan Africa region, with many also utilized for their medicinal properties (Keding G. et al 2007). Such AIVs, also called traditional African vegetables, are collected from the wild or cultivated to a limited extent and consumed or marketed, serving as an important income generating opportunity for the typical small-scale farmer, especially in such economically limited regions (Weinberg K. et al 2004). Adapted to the local environment, AIVs often provide more sustainable production than exotic or introduced crops such as European vegetables (Mal B. 2007). Efforts are being made to increase the farming and marketing of AIVs in an attempt to alleviate hunger and improve nutrition, and to increase farmer’s income, improving the local and regional economy (Mal B. 2007). African nightshades are among the most popular and as such high priority African traditional vegetables. They represent a wide group of botanically and genetically related plants belonging to approximately 30 species in the Solanum genus of the Solanaceae family, and are diversely referred to as garden huckleberries, vegetable nightshades, edible nightshades, garden nightshades, common nightshades, ‘S. nigrum complex’, or ‘S. nigrum’ and related species (Yang R-Y et al 2013). Despite their frequently reported nutritional attributes, Solanum species are also well known to contain toxic alkaloids, such as glycosides of solasodine and solanidine (Milner SE et al 2011). This safety concern is associated with the edible African Solanum nightshade species, as these compounds are known to be present in the fruits (Carle R 1981) and have limited the promotion of their cultivation and marketing. African nightshades are several species of plants in the section Solanum of the genus Solanum that are commonly consumed as leafy vegetables and herbs (Gaya, A. S.; et al 2007). African nightshades are grown in both high and lowland areas in West and East Africa, particularly in Nigeria and Cameroon. There is a large variation in diversity of the African nightshades, which have many nutritional and medicinal benefits, (Abukutsta-Onyango et al., 2013) even though the family of nightshade is commonly known as comprising dangerous weeds or poisonous plants. Species known as African nightshade include Solanum scabrum , Solanum villosum , Solanum nigrum , and Solanum americanum ( Drescher, A. W et al 2009). Other common names for African nightshade are Black nightshade and Narrow-leaved nightshade. (Biovision 2018) Local names of African nightshade include mnavu ( Swahili ), managu ( Kisii), namasaka ( Luhya ), osuga ( Luo ), isoiyot ( Kipsigis ), kitulu ( Kamba), ormomoi ( Maa ), ndunda ( Taita ), and nsugga ( Luganda ) (Biovision 2018). African nightshade is an erect dicot with many branches, growing 0.5 to 1.0 m high. [4] The plant has thin, oval leaves which are ~15 cm in length and purplish in colour. The plant has numerous flowers that are black or purple and round berries, which are about 0.75 cm in diameter, having small, flat, yellowish seeds. The berries of this plant can be black or orange, depending on the species. (Biovision 2018) There are many diversities in African nightshades related to growth patterns, leaf sizes, tastes (bitterness) flowering time, colour, as well as nutritional and nutraceutical value, along with quantities and composition of anti-nutrient factors (Gaya A.S et al 2007) Historically incorrect nomenclature, due to phenotypic plasticity, has created confusion in the taxonomy of African nightshades. For instance, S. scabrum and S. nigrum are not clearly distinguished in different parts of the world (Olet, Heun, & Lye, 2005), and S. nodiflorum is used interchangeably with S. americanum in African accessions (Manoko, van den Berg, Feron, van der Weerden, & Mariani, 2007) by both consumers and taxonomists. Identification and classification of new and previously described taxa is still being undertaken (Manoko, van der Weerden, van den Berg, & Mariani, 2012), and many more taxa remain unexplored. Key research tools for studying the genetic diversity of plants include morphological traits, biochemical analysis, and molecular markers (Xiang, 2000). In particular, molecular markers promise to be an effective tool in resolving the taxonomic relationships within the S. nigrum complex. This review highlights recent research on the genetic diversity of African nightshades, their cytological variability and biochemical composition, in line with important fundamentals in crop variety development. The taxonomic and nomenclature of African nightshades is complex due to extensive synonymy, frequent occurance of spontaneous inter-specific hybrids, existence of polyploidy series, phenotypic plasticity, inconsistent use of many local names and discordant genetic variation (Edmond and Chweya 1997). Taxonomic complexity associated with African nightshades has led to considerable confusion regarding the identification of popular nightshades vegetables. For example, most communities where these plants are cultivated and or consumed call them by a single name and grow more than one species together without any knowledge of their morphological differences. In light of these, the current study will sought to investigate the taxonomic relationship using the silica gel chromatography as well as the phytochemical and physiochemical constituents of three species in the nightshades group of the genera solanum (Solanoceae). STATEMENT OF THE PROBLEM Africa is richly endowed with plant genetic resources, with many well-adapted indigenous food crops that have long been grown on the continent. These crops play an important role in the food security of many resource poor farming families, and have potential value as a genetic resource for the global community [1, 2]. Hence it is sad that African researchers, policy-makers and farmers have neglected the potential of these crops in reducing food insecurity and poverty. Leafy vegetables, including several African Indigenous Vegetables (AIVs), are highly valued in the typical African diet as accompaniment to carbohydrate-based staples [3, 4]. The morphology, taxonomy and nomenclature of African nightshades is complex due to extensive synonymy, frequent occurrence of spontaneous inter-specific hybrids, existence of polyploidy series, phenotypic plasticity, inconsistent use of many local names and discordant genetic variation (Edmond and Chweya 1997). Taxonomic complexity associated with African nightshades has led to considerable confusion regarding the identification of popular nightshades vegetables. For example, most communities where these plants are cultivated and or consumed call them by a single name and grow more than one species together without any knowledge of their morphological differences. In light of this, the current study will sought to investigate the taxonomic relationship using the silica gel chromatography as well as the morphological and phytochemical constituents of three species in the nightshades group of the genera solanum (Solanoceae). AIMS AND OBJECTIVES The aim of this study is to analyze the morphological parameters, phytochemical constituents and silica gel chromatographic study of African Nightshades (S. scabrum Mill.; Solanum nigrum L.; and Solanum villosum Mill.). The specific objectives of this research are; To determine the morphological parameters of the selected species of the nightshades group of solanaceae (Solanum scabrum Mill.; Solanum nigrum L.; and Solanum villosum Mill.) To analyze the phytochemical constituents present in the selected species of the nightshades group of solanum section Solanaceae (Solanum scabrum Mill.; Solanum nigrum L.; and Solanum villosum Mill.) To determine the taxonomic relationship between the selected species using Silica Gel chromatography study. To help unwind complexities that exist among members of the nightshades groups of Solanum section solanaceae. JUSTIFICATION The findings from this research will provide information on the taxonomic relationships that exist among African nightshades, provide information on the phytochemicals contained in the plants and also educate cultivators and consumers in the area on the differences that exist among the plants and possible importance and risk associated with the consumption of the plants. MATERIALS AND METHODS Study Area Plant material The plant material, Solanum scabrum, Solanum nigrum, Solanum villosum were collected from Obudu Local Govt. Area of Cross River State between latitude 6033’N and 904’E, Kurumi Local Govt. Area of Taraba State between latitude 7050’N and 9046’E. Fresh specimen were collected and pressed for taxonomic identification while others were air dried at room temperature for extraction purposes and other studies, the fruits were also collected in field fresh and seeds extracted for planting. Phytochemical screening Phytochemical examinations were carried out for all the extracts as per the standard methods. 1. Detection of alkaloids: Extracts were
Recommended publications
  • Aghastani -1.Pdf
    Digital Repository Universitas Jember PEMBERIAN JUS BUAH PEPINO TERHADAP PENURUNAN KOLESTEROL TOTAL DARAH TIKUS WISTAR JANTAN YANG DIKONDISIKAN HIPERLIPIDEMIA SKRIPSI Oleh Aghastani Kurniawan NIM 032010101059 FAKULTAS KEDOKTERAN UNIVERSITAS JEMBER 2010 Digital Repository Universitas Jember PEMBERIAN JUS BUAH PEPINO TERHADAP PENURUNAN KOLESTEROL TOTAL DARAH TIKUS WISTAR JANTAN YANG DIKONDISIKAN HIPERLIPIDEMIA SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan pendidikan di Program Studi Pendidikan Dokter (S1) dan mencapai gelar Sarjana Kedokteran Oleh Aghastani Kurniawan NIM 032010101059 FAKULTAS KEDOKTERAN UNIVERSITAS JEMBER 2010 ii Digital Repository Universitas Jember PERSEMBAHAN Skripsi ini saya persembahkan untuk : 1. Almamater Fakultas Kedokteran Universitas Jember; 2. Ayahanda Sadji Priyanto Alm. dan ibunda Hj. Sri Sutarni Alm. tercinta, yang telah memberikan kasih sayang, doa, dan pengorbanan yang tiada terkira hingga ananda dapat meraih semua mimpi dan cita-cita ini; 3. Kakak-kakakku tersayang, yang telah memberikan dorongan dan semangat dalam hidupku; 4. Seluruh guru-guruku dari TK hingga perguruan tinggi yang selalu memberikan ilmu, pemahaman, serta membuka cakrawala dunia kami, dengan penuh ketekunan dan kesabaran; 5. Adikku tercinta, Rizqi Kamalah, yang setia menemani di saat suka dan duka; 6. Seluruh sahabat dan teman-temanku semuanya, yang tidak lelah memberi bantuan dan dorongan. Terima kasih kawan, atas semua kebaikan kalian. iii Digital Repository Universitas Jember MOTO Sesungguhnya
    [Show full text]
  • Floral Biology and the Effects of Plant-Pollinator Interaction on Pollination Intensity, Fruit and Seed Set in Solanum
    African Journal of Biotechnology Vol. 11(84), pp. 14967-14981, 18 October, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.1485 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Floral biology and the effects of plant-pollinator interaction on pollination intensity, fruit and seed set in Solanum O. A. Oyelana1 and K. O. Ogunwenmo2* 1Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Mowe, Ogun State, Nigeria. 2Department of Biosciences and Biotechnology, Babcock University, P.M.B. 21244, Ikeja, Lagos 100001, Lagos State, Nigeria. Accepted 20 April, 2012 Reproductive biology and patterns of plant-pollinator interaction are fundamental to gene flow, diversity and evolutionary success of plants. Consequently, we examined the magnitude of insect-plant interaction based on the dynamics of breeding systems and floral biology and their effects on pollination intensity, fruit and seed set. Field and laboratory experiments covering stigma receptivity, anthesis, pollen shed, load and viability, pollinator watch vis-à-vis controlled self, cross and pollinator- exclusion experiments were performed on nine taxa of Solanum: Solanum aethiopicum L., Solanum anguivi Lam., Solanum gilo Raddi, Solanum erianthum Don, Solanum torvum SW, Solanum melongena L. (‘Melongena’ and ‘Golden’) and Solanum scabrum Mill. (‘Scabrum’ and ‘Erectum’). Pollen shed commenced 30 min before flower opening attaining peak at 20 to 30 min and continued until closure. Stigma was receptive 15 to 30 min before pollen release, making most species primary inbreeders (100% selfed) but facultatively outbreeding (12.5 to 75%) through insect pollinators such as Megachile latimanus, Diplolepis rosae and Bombus pennsylvanicus.
    [Show full text]
  • SOLANACEAE 茄科 Qie Ke Zhang Zhi-Yun, Lu An-Ming; William G
    Flora of China 17: 300–332. 1994. SOLANACEAE 茄科 qie ke Zhang Zhi-yun, Lu An-ming; William G. D'Arcy Herbs, shrubs, small trees, or climbers. Stems sometimes prickly, rarely thorny; hairs simple, branched, or stellate, sometimes glandular. Leaves alternate, solitary or paired, simple or pinnately compound, without stipules; leaf blade entire, dentate, lobed, or divided. Inflorescences terminal, overtopped by continuing axes, appearing axillary, extra-axillary, or leaf opposed, often apparently umbellate, racemose, paniculate, clustered, or solitary flowers, rarely true cymes, sometimes bracteate. Flowers mostly bisexual, usually regular, 5-merous, rarely 4- or 6–9-merous. Calyx mostly lobed. Petals united. Stamens as many as corolla lobes and alternate with them, inserted within corolla, all alike or 1 or more reduced; anthers dehiscing longitudinally or by apical pores. Ovary 2–5-locular; placentation mostly axile; ovules usually numerous. Style 1. Fruiting calyx often becoming enlarged, mostly persistent. Fruit a berry or capsule. Seeds with copious endosperm; embryo mostly curved. About 95 genera with 2300 species: best represented in western tropical America, widespread in temperate and tropical regions; 20 genera (ten introduced) and 101 species in China. Some species of Solanaceae are known in China only by plants cultivated in ornamental or specialty gardens: Atropa belladonna Linnaeus, Cyphomandra betacea (Cavanilles) Sendtner, Brugmansia suaveolens (Willdenow) Berchtold & Presl, Nicotiana alata Link & Otto, and Solanum jasminoides Paxton. Kuang Ko-zen & Lu An-ming, eds. 1978. Solanaceae. Fl. Reipubl. Popularis Sin. 67(1): 1–175. 1a. Flowers in several- to many-flowered inflorescences; peduncle mostly present and evident. 2a. Fruit enclosed in fruiting calyx.
    [Show full text]
  • The October 2012 SOL Newsletter Is Here!
    Issue number 34 October 2012 Editor: Joyce Van Eck Co-editor: Ruth White Community News In this issue The 10th Solanaceae Conference: “geno versus pheno” Beijing, China Community News October 13 - 17, 2013 SOL 2013.......................p.1 th Dear Colleagues, it is our great pleasure to announce that the 10 Solanaceae Conference will be held at the Beijing Friendship Hotel in SOL Co-Chair Reorganization……..........p.2 Beijing, China, from October 13 - 17, 2013. On behalf of the organizing committee, we cordially invite you to take part in this conference. We plan to make this conference a memorable and Update on SOL Afri…….…p.4 Friendship Hotel, Beijing, China valuable scientific experience and communication for all the attendees. As in past years, SOL 2013 would bring together a spectrum of scientists working on different aspects of Research Updates Solanaceae ranging from biodiversity, genetics, development and genomics. With the availability of the high-quality genome sequence of tomato, studies of the SOL community have extended from structural ROOTOPOWER………..……p.5 genomics into virtually every aspect of functional genomics. SOL 2013 would be a forum to discuss the impact of this reference genome on different aspects of Solanaceae studies. Meanwhile, a battery of high- FISH Update Steve Stack’s throughput technologies, including transcriptomics, proteomics and metabolomics, are leading the way in Lab…………………………..… p.6 providing new insights into the inner workings of plant cells. Importantly, the cell biology toolbox, which is previously mainly restricted to animal and yeast cells, has finally been built up in the Solanaceae allowing researchers to establish the fundamental linkage between genotypes (geno) versus phenotypes (pheno).
    [Show full text]
  • Solanum Scabrum Mill.) Varieties Cultivated in the Mount Cameroon Region
    1 Growth and yield response to fertilizer application and nutritive quality of Huckleberry ( Solanum scabrum Mill.) varieties cultivated in the Mount Cameroon Region. Abstract This study evaluated the effects of fertilizer on growth, yield and the nutritive value of three varieties of huckleberry (“White stem”, “Bamenda” and “Foumbot”). The treatments were NPK (20:10:10) at levels 0, 100, 150, 200Kg/ha and 10 Mg/ha poultry manure and the experiment was a randomized complete block design with three replicates. Results indicated that plants supplied with 200 Kg NPK/ha fertilizer treatment had the highest plant height (66 cm) and leaf number (242) in “White stem” and “Bamenda” varieties respectively and these were significantly different from the control (P = 0.05). Leaf area was highest in “Foumbot” variety (343.1 cm 2) while longest tap root length and number of primary lateral roots were noted particularly in “White stem” control plants and this was significantly different (P = 0.05) from plants supplied with fertilizers Plants supplied with 10 Mg/ha poultry manure recorded highest total yield for “White stem” (44.83 Mg/ha) while plants supplied 200 Kg NPK/ha had maximum yield for the “Bamenda” and “Foumbot” varieties (36.96 and 31.84 Mg/ha respectively). The “White stem” variety had highest crude protein (303.8 mg/100g) and ß-carotene content (1.9 mg/100g); “Bamenda” variety had highest total lipid (8.15%), and crude fibre (14.15%) contents, while total ash was highest in “Foumbot” (16.54%). Appropriate fertilizer levels would considerably improve huckleberry yield as well as improve income of vegetable farmers.
    [Show full text]
  • Solanum (Solanaceae) in Uganda
    Bothalia 25,1: 43-59(1995) Solanum (Solanaceae) in Uganda Z.R. BUKENYA* and J.F. CARASCO** Keywords: food crops, indigenous taxa, key. medicinal plants, ornamentals, Solanum. Solanaceae. Uganda, weeds ABSTRACT Of the 41 species, subspecies and cultivar groups in the genus Solanum L. (Solanaceae) that occur in Uganda, about 30 are indigenous. In Uganda several members of the genus are utilised as food crops while others are put to medicinal and ornamental use. Some members are notorious weeds. A key to the species and descriptions of all Solanum species occurring in Uganda are provided. UITTREKSEL Van die 41 spesies, subspesiesen kultivargroepe indie genus Solanum L. (Solanaceae) wat in Uganda voorkom. is sowat 30 inheems. Verskeie lede van die genus word as voedselgewasse benut. terwyl ander vir geneeskundige en omamentele gebruike aangewend word. Sommige lede is welbekend as onkruide. n Sleutel tot die spesies en beskrvw ings van al die Solanum-spes\cs wat in Uganda voorkom word voorsien. CONTENTS C. Subgenus Leptostemonum (Dunal) Bitter ........ 50 Section Acanthophora Dunal ............................... 51 Introduction............................................................... 44 15. S. mammosum L............................................. 51 Materials and m ethods............................................ 45 16. S. aculeatissimum Jacq................................... 51 Key to species........................................................... 45 Section Aeuleigerum Seithe .................................. 51 Solanum L.................................................................
    [Show full text]
  • Dichotomous Keys to the Species of Solanum L
    A peer-reviewed open-access journal PhytoKeysDichotomous 127: 39–76 (2019) keys to the species of Solanum L. (Solanaceae) in continental Africa... 39 doi: 10.3897/phytokeys.127.34326 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Dichotomous keys to the species of Solanum L. (Solanaceae) in continental Africa, Madagascar (incl. the Indian Ocean islands), Macaronesia and the Cape Verde Islands Sandra Knapp1, Maria S. Vorontsova2, Tiina Särkinen3 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 2 Compa- rative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 3 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK Corresponding author: Sandra Knapp ([email protected]) Academic editor: Leandro Giacomin | Received 9 March 2019 | Accepted 5 June 2019 | Published 19 July 2019 Citation: Knapp S, Vorontsova MS, Särkinen T (2019) Dichotomous keys to the species of Solanum L. (Solanaceae) in continental Africa, Madagascar (incl. the Indian Ocean islands), Macaronesia and the Cape Verde Islands. PhytoKeys 127: 39–76. https://doi.org/10.3897/phytokeys.127.34326 Abstract Solanum L. (Solanaceae) is one of the largest genera of angiosperms and presents difficulties in identifica- tion due to lack of regional keys to all groups. Here we provide keys to all 135 species of Solanum native and naturalised in Africa (as defined by World Geographical Scheme for Recording Plant Distributions): continental Africa, Madagascar (incl. the Indian Ocean islands of Mauritius, La Réunion, the Comoros and the Seychelles), Macaronesia and the Cape Verde Islands. Some of these have previously been pub- lished in the context of monographic works, but here we include all taxa.
    [Show full text]
  • Genetic Diversity and Morphological Characterization of African Nightshade Entries (Section Solanum L.)
    Genetic diversity and morphological characterization of African nightshade entries (section Solanum L.) Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktorin der Gartenbauwissenschaften (Dr. rer. hort.) genehmigte Dissertation von Regina Chemutai Rono, M.Sc. (Kenya) 2018 Referent: Prof. Dr. rer. nat. Thomas Debener Korreferenten: Prof. Dr. rer. hort. Traud Winkelmann Prof. Mary Abukutsa-Onyango Tag der Promotion: 07.12.2018 Abstract Abstract African nightshade is an indigenous leafy vegetable in sub-Saharan Africa valued for its high nutrient content and therefore provide nutritional security and also potential to generate income especially to small scale farmers. Production is however below potential due to lack of superior varieties that are high yielding and tolerant to environmental stresses. Development of varieties through breeding programs has been initiated in order to supply farmers with quality seeds. The efforts to improve this crop however have been hampered by limited information available on intra- and interspecific genetic diversity. In this study new SSR markers developed using next generation sequencing and AFLP markers were used to assess genetic diversity and differentiation in 54 African nightshade entries. The genotypes comprised entries of two species, Solanum scabrum (Mill.) and S. villosum (Mill.) including developed lines and farmer cultivars. Morphological traits relevant for agronomic performance of the entries were also analysed. In addition to the diversity studies, the genome size and pollen viability parameters were determined. The molecular markers clearly distinguished the two species and S. scabrum was found to be less diverse as compared to S. villosum. Farmer cultivars had higher allelic richness and a larger number of unique alleles than developed lines.
    [Show full text]
  • Major Pests of African Indigenous Vegetables in Tanzania and the Effects Of
    i Major pests of African indigenous vegetables in Tanzania and the effects of plant nutrition on spider mite management Von der Naturwissenschaftlichen Fakultat der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktorin der Gartenbauwissenschaften (Dr. rer. hort) genehmigte Dissertation von Jackline Kendi Mworia, M.Sc. 2021 Referent: PD. Dr. sc. nat. Rainer Meyhöfer Koreferent: Prof. Dr. rer. nat. Dr. rer. hort. habil. Hans-Micheal Poehling Tag der promotion: 05.02.2020 ii Abstract Pest status of insect pests is dynamic. In East Africa, there is scanty information on pests and natural enemy species of common African Indigenous Vegetables (AIVs). To determine the identity and distribution of pests and natural enemies in amaranth, African nightshade and Ethiopian kale as well as pest damage levels, a survey was carried out in eight regions of Tanzania. Lepidopteran species were the main pests of amaranth causing 12.8% damage in the dry season and 10.8% in the wet season. The most damaging lepidopteran species were S. recurvalis, U. ferrugalis, and S. litorralis. Hemipterans, A. fabae, A. crassivora, and M. persicae caused 9.5% and 8.5% in the dry and wet seasons respectively. Tetranychus evansi and Tetranychus urticae (Acari) were the main pests of African nightshades causing 11%, twice the damage caused by hemipteran mainly aphids (5%) and three times that of coleopteran mainly beetles (3%). In Ethiopian kale, aphids Brevicoryne brassicae and Myzus persicae (Hemipterans) were the most damaging pests causing 30% and 16% leaf damage during the dry and wet season respectively. Hymenopteran species were the most abundant natural enemy species with aphid parasitoid Aphidius colemani in all three crops and Diaeretiella rapae in Ethiopian kale.
    [Show full text]
  • Developing Genomic Resources for African Nightshade (Solanum Scabrum) Breeding
    FELLOWSHIP SUMMARY REPORTS Developing genomic resources for African nightshade (Solanum scabrum) breeding Dr Peter Poczai Host: Prof Dr Celestina Mariani Radboud University Nijmegen, The Netherlands 26.3. – 26.6. 2019 Herby, I give my consent that the report can be posted in the Co-operative Research Programme’s website. 24.08.2019. Geneva, Switzerland 1. What were the objectives of the research project? Why is the research project important? In this project, we aimed to provide the complete sequences of the plastid and mitochondrial genomes of S. scabrum and all 19 Old World species. We aimed to analyze the organization and variation of the organellar genomes and compare it with currently available sequences of important solanaceous crops. We hope that the organellar genome sequences of African nightshades will initiate a holistic breeding approach in this underutilized crop and stimulate further breeding programs concerning traditional African vegetables (TAVs). We will also assess the phenotypic evaluation under controlled stress conditions: heat/drought tolerance of selected Solanum scabrum germplasm and collect transcriptomic data to further investigate genes involved in these conditions. 2. Were the objectives of the fellowship achieved? During the granted period we have collected samples of 21 species of black nightshades (Solanum sect. Solanum) including: S. alpinum, S. americanum, S. annuum, S. chenopodioides, S. emulans (=S. ptychanthum), S. hirtulum, S. memphiticum, S. nigrescens, S. nigrum, S. nitidibaccatum, S. opacum, S. pseudospinosum, S. pygmaeum, S. retroflexum, S. salamanceae, S. salicifolium, S. scabrum, S. tarderemotum, S. tweedianum, S. umalilaense and S. villosum. Leaf samples were rinsed with deionized water and 70% ethanol, and total genomic DNA was isolated using the NucleoSpin Plant II kit (Macherey-Nagel, Düren, Germany).
    [Show full text]
  • Volume 7 No. 4 2007
    Volume 7 No. 4 2007 Taxonomic Identification and Characterization of African Nightshades (Solanum L. Section Solanum) By Gideon Njau Mwai *1, John Collins Onyango1 and Mary O. Abukusta-Onyango1 Gideon Njau Mwai *1 Mary O. Abukusta-Onyango1 *Corresponding author Email: [email protected] 1Department of Botany and Horticulture, Maseno University P.O. Private Bag, 40105 Maseno, Kenya 1 Volume 7 No. 4 2007 ABSTRACT African nightshades play an important role in meeting the nutritional needs of rural households, and are reported as being particularly rich in protein, vitamin A, iron and calcium. Nightshades are among three top priority African indigenous vegetables identified for improvement and promotion through research. A major constraint facing this objective is the scantiness of taxonomic and nomenclatural knowledge on African nightshades resulting in extensive synonymy and confusion. As a consequence, the toxic species are difficult to discriminate from those with high nutritional value. It is also difficult to identify species with good agronomic traits for genetic enhancement. This study was conducted to identify, characterize, and delimit African nightshade species. Fifty accessions of Solanum section Solanum from eastern, southern and western Africa were raised in a greenhouse at the Botanical and Experimental Garden, Radboud University, Nijmegen, the Netherlands. A descriptor list with 48 vegetative and reproductive characters was developed and used to characterize flowering and fruiting plants. Counting of chromosome was done on root squash preparations from one week- old seedlings, aided by digital enhancement of microscopic images. Nine species were represented in the study material, including two diploids: Solanum americanum, and Solanum chenopodioides; five tetraploids: Solanum retroflexum, Solanum villosum, Solanum florulentum, Solanum grossidentatum and Solanum tarderemotum; and two hexaploids: Solanum nigrum and Solanum scabrum.
    [Show full text]
  • Study of the Origin of the Rarely Cultivated Edible Solanum Species: Morphological and Molecular Data
    BIOLOGIA PLANTARUM 54 (3): 543-546, 2010 BRIEF COMMUNICATION Study of the origin of the rarely cultivated edible Solanum species: morphological and molecular data P. POCZAI*, K. MÁTYÁS, J. TALLER and I. SZABÓ Department of Plant Science and Biotechnology, Georgikon Faculty, University of Pannonia, Festetics 7, Keszthely, H-8360, Hungary Abstract The present study applies RAPD technique and morphometric analysis to study the diversity of some accessions belonging to section Solanum. A total of 252 products were amplified with 23 12-mer arbitrary primer pairs, among which 210 were found to be polymorphic. Sixteen morphological characters were measured and used to compile a dendrogram. Both the morphological and RAPD marker analysis clearly separated the different accessions into similar groups. The results indicate that the analyzed cultivars with unknown origin could be derived from S. retroflexum. We found morphological differences among the S. scabrum subsp. scabrum accession which were not reflected in the molecular data. Presumably these accessions represent cultivated forms selected for their habit, fruit quantity and/or quality and leaf size, respectively. Additional key words: genetic diversity, RAPD, Solanum retroflexum, Solanum scabrum. ⎯⎯⎯⎯ The Solanum nigrum L. complex, commonly known as Williams et al. 1990) to investigate genetic diversity black nightshades, is one of the largest and most variable between different plant groups has been demonstrated by species group of the genus Solanum. It consists of about several studies (e.g. Cordeiro et al. 2008, Ray Choudhury 30 species, most of which originate from the New World et al. 2008, Refoufi and Esnault 2008, Yang et al. 2008 ). tropics, particularly South America (Edmonds 1972).
    [Show full text]