Dichotomous Keys to the Species of Solanum L
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Aqueous and Ethanolic Plant Extracts As Bio-Insecticides—Establishing a Bridge Between Raw Scientific Data and Practical Reality
plants Review Aqueous and Ethanolic Plant Extracts as Bio-Insecticides—Establishing a Bridge between Raw Scientific Data and Practical Reality Wilson R. Tavares 1 , Maria do Carmo Barreto 1,* and Ana M. L. Seca 1,2,* 1 cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal; [email protected] 2 LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal * Correspondence: [email protected] (M.d.C.B.); [email protected] (A.M.L.S.); Tel.: +351-296-650-184 (M.d.C.B.); +351-296-650-172 (A.M.L.S.) Abstract: Global demand for food production is causing pressure to produce faster and bigger crop yields, leading to a rampant use of synthetical pesticides. To combat the nefarious consequences of its uses, a search for effective alternatives began in the last decades and is currently ongoing. Nature is seen as the main source of answers to crop protection problems, supported by several examples of plants/extracts used for this purpose in traditional agriculture. The literature reviewed allowed the identification of 95 plants whose extracts exhibit insecticide activity and can be used as bio-pesticides contributing to sustainable agriculture. The option for ethanol and/or water extracts is more environmentally friendly and resorts to easily accessible solvents, which can be reproduced by farmers themselves. This enables a bridge to be established between raw scientific data and Citation: Tavares, W.R.; Barreto, a more practical reality. -
The Morelloid Clade of Solanum L. (Solanaceae) in Argentina: Nomenclatural Changes, Three New Species and an Updated Key to All Taxa
A peer-reviewed open-access journal PhytoKeys 164: 33–66 (2020) Morelloids in Argentina 33 doi: 10.3897/phytokeys.164.54504 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research The Morelloid clade of Solanum L. (Solanaceae) in Argentina: nomenclatural changes, three new species and an updated key to all taxa Sandra Knapp1, Franco Chiarini2, Juan J. Cantero2,3, Gloria E. Barboza2 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 2 Museo Botánico, IMBIV (Instituto Multidisciplinario de Biología Vegetal), Universidad Nacional de Córdoba, Casilla de Correo 495, 5000, Córdoba, Argentina 3 Departamento de Biología Agrícola, Facultad de Agronomía y Ve- terinaria, Universidad Nacional de Rio Cuarto, Ruta Nac. 36, km 601, 5804, Río Cuarto, Córdoba, Argentina Corresponding author: Sandra Knapp ([email protected]) Academic editor: L. Giacomin | Received 20 May 2020 | Accepted 28 August 2020 | Published 21 October 2020 Citation: Knapp S, Chiarini F, Cantero JJ, Barboza GE (2020) The Morelloid clade of Solanum L. (Solanaceae) in Argentina: nomenclatural changes, three new species and an updated key to all taxa. PhytoKeys 164: 33–66. https://doi. org/10.3897/phytokeys.164.54504 Abstract Since the publication of the Solanaceae treatment in “Flora Argentina” in 2013 exploration in the coun- try and resolution of outstanding nomenclatural and circumscription issues has resulted in a number of changes to the species of the Morelloid clade of Solanum L. (Solanaceae) for Argentina. Here we describe three new species: Solanum hunzikeri Chiarini & Cantero, sp. nov., from wet high elevation areas in Argentina (Catamarca, Salta and Tucumán) and Bolivia (Chuquisaca and Tarija), S. -
Effect of Gamma Irradiation, Packaging and Storage on the Microbiological Quality of Garden Eggs
International Journal of Nutrition and Food Sciences 2014; 3(4): 340-346 Published online August 10, 2014 (http://www.sciencepublishinggroup.com/j/ijnfs) doi: 10.11648/j.ijnfs.20140304.26 ISSN: 2327-2694 (Print); ISSN: 2327-2716 (Online) Effect of gamma irradiation, packaging and storage on the microbiological quality of garden eggs 1 2 3 2 Abraham Adu-Gyamfi , Nkansah Minnoh Riverson , Nusrut Afful , Victoria Appiah 1Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana 2Department of Nuclear Agriculture and Radiation Processing, School of Nuclear and Allied Sciences, University of Ghana, Accra, Ghana 3Biotechnology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana Email address: [email protected] (A. Adu-Gyamfi), [email protected] (N. M. Riverson), [email protected] (V. Appiah), [email protected] (N. Afful) To cite this article: Abraham Adu-Gyamfi, Nkansah Minnoh Riverson, Nusrut Afful, Victoria Appiah. Effect of Gamma Irradiation, Packaging and Storage on the Microbiological Quality of Garden Eggs. International Journal of Nutrition and Food Sciences. Vol. 3, No. 4, 2014, pp. 340-346. doi: 10.11648/j.ijnfs.20140304.26 Abstract: Garden eggs are important economic vegetable crops grown in most tropical countries. The effect of gamma irradiation (1 – 3 kGy), packaging (polyethylene) and storage (5 weeks at 29±1ºC) on the microbiological quality of three varieties of garden eggs ( Solanum aethiopicum GH 8772 and Solanum aethiopicum GH 8773, and Solanum torvum ) were studied. The population of aerobic mesophiles and yeasts and moulds were assessed by the method of serial dilution and pour plating. -
Solanum Elaeagnifolium Cav. R.J
R.A. Stanton J.W. Heap Solanum elaeagnifolium Cav. R.J. Carter H. Wu Name Lower leaves c. 10 × 4 cm, oblong-lanceolate, distinctly sinuate-undulate, upper leaves smaller, Solanum elaeagnifolium Cav. is commonly known oblong, entire, venation usually prominent in in Australia as silverleaf nightshade. Solanum is dried specimens, base rounded or cuneate, apex from the Latin solamen, ‘solace’ or ‘comfort’, in acute or obtuse; petiole 0.5–2 cm long, with reference to the narcotic effects of some Solanum or without prickles. Inflorescence a few (1–4)- species. The species name, elaeagnifolium, is flowered raceme at first terminal, soon lateral; Latin for ‘leaves like Elaeagnus’, in reference peduncle 0.5–1 cm long; floral rachis 2–3 cm to olive-like shrubs in the family Elaeagnaceae. long; pedicels 1 cm long at anthesis, reflexed ‘Silverleaf’ refers to the silvery appearance of and lengthened to 2–3 cm long in fruit. Calyx the leaves and ‘nightshade’ is derived from the c. 1 cm long at anthesis; tube 5 mm long, more Anglo-Saxon name for nightshades, ‘nihtscada’ or less 5-ribbed by nerves of 5 subulate lobes, (Parsons and Cuthbertson 1992). Other vernacu- whole enlarging in fruit. Corolla 2–3 cm diam- lar names are meloncillo del campo, tomatillo, eter, rotate-stellate, often reflexed, blue, rarely white horsenettle, bullnettle, silver-leaf horsenet- pale blue, white, deep purple, or pinkish. Anthers tle, tomato weed, sand brier, trompillo, melon- 5–8 mm long, slender, tapered towards apex, cillo, revienta caballo, silver-leaf nettle, purple yellow, conspicuous, erect, not coherent; fila- nightshade, white-weed, western horsenettle, ments 3–4 mm long. -
Etioline, a Steroidal Alkaloid from Solanum Diphyllum L. Magdi A
Cytotoxicity of 3-O-(β-D-Glucopyranosyl) Etioline, a Steroidal Alkaloid from Solanum diphyllum L. Magdi A. El-Sayeda,b,*, Abou El-Hamd H. Mohameda, Mohamed K. Hassana, Mohamed-Elamir F. Hegazyc, Sheikh J. Hossaind, Mohamed G. Shededa, and Shinji Ohtae a Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan. E-mail: [email protected] b Aswan-Faculty of Science, South Valley University, Aswan, 81528, Egypt c Chemistry of Medicinal Plant Department, National Research Center, Dokki, Cairo, Egypt d Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna-9208, Bangladesh e Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan * Author for correspondence and reprint requests Z. Naturforsch. 64 c, 644 – 649 (2009); received May 1/June 12, 2009 In continuation of our interest in phytochemical screening of the Egyptian fl ora for poten- tial drugs, the reinvestigation of the methanolic extract of the roots of Solanum diphyllum, which grows naturally in the south of Egypt and is recorded as new to the Egyptian fl ora, af- forded an interesting, highly cytotoxic compound, named 3-O-(β-D-glucopyranosyl) etioline [(25S)-22,26-epimino-3β-(β-D-glucopyranosyloxy) cholesta-5,22(N)-dien-16α-ol]. The chemi- cal structure of this compound was determined by comprehensive NMR studies, including DEPT, COSY, HMQC, and MS. The compound exhibited high cytotoxic effects against the cervical cancer cell line, Hela cells, with an IC50 value of 150 µg/mL. Key words: Solanum diphyllum, Steroidal Alkaloid, Cytotoxicity Introduction against various cancer cell lines and antiherpes ac- tivity (Nohara et al., 2007). -
ESTUDIO DE LA VEGETACION NATIVA EN PLANTACIONES DE EUCALYPTUS GRANDIS (MYRTACEAE) EN EL NORTE DE LA PROVINCIA DE CORRIENTES, REPUBLICA Argentinal
BONPLANDIA 9 (1-2): 1-18. 1996 ESTUDIO DE LA VEGETACION NATIVA EN PLANTACIONES DE EUCALYPTUS GRANDIS (MYRTACEAE) EN EL NORTE DE LA PROVINCIA DE CORRIENTES, REPUBLICA ARGENTINAl por WILFREDO H. BARRETT2 YSARA G. TRESSENS3 Summary Vascular plant species of the understory of Euca/yptus grandis plantations were studied in the northeastern departments of the Argentinian province of Corrientes. These plantations were located in red soil hills, in sandy river banks and in fossil sand dunes of the Paraná River. The inventory includes 243 native taxa corresponding to 66 families; 86% belong to the Dicotyledons of which most of them (70%) are woody species. The families best represented are: Leguminosae, Myrtaceae, So/anaceae, Compositae and Euphorbiaceae. Size, number of species and individuals within species decrease from the North to the Southwest associated to soillimiting factors and lesser rainfall. Most of the Dicotyledons have mechanisms for dispersal related to the animals (49%), mostly birds, followed by wind (25%). An important number of species (64%) belong to the native subtropical humid hardwood forest. Many overstory species of this forest compete succesfully with the eucalipts, such as: Cabra/ea canjerana, Patagonu/a americana, H%ca/yx ba/ansae, Tabebuia heptaphylla, al! important regional commercial timber. Also a great number of species living spontaneously in humid conditions, were found apparently wel! adapted to the new environment. Since most of the species of the understory of the Euca/yptus grandis plantations came from the native humid forest, it is possible to conclude that these plantations create environmental conditions which favor the migration of the humid forest over the sabanas and grasslands of the neighborhood. -
Invasive Solanum Spp. in Florida1 W
SS AGR 312 Natural Area Weeds: Invasive Solanum spp. in Florida1 W. A. Overholt, S, F. Enloe, C. A. Minteer, L. T. Markle, and K. A. Langeland2 Introduction included information on Jamaican nightshade and another relatively common species, Solanum capsicoides All. (red The Florida Exotic Pest Plant Council’s (FLEPPC) 2017 List soda apple), both of which can easily be confused with the of Invasive Plant Species includes two Category I and two invasive Solanum species. Category II Solanum species (Solanaceae) (FLEPPC 2007). Category I Solanum species identified by the Council are S. tampicense Dunal (wetland nightshade, aquatic soda apple) Identification and Florida and S. viarum Dunal (tropical soda apple). Category II Distribution Solanum species identified by the Council are S. diphyllum The four Solanum spp. on the FLEPPC’s 2017 list and the L. (twoleaf nightshade) and S. torvum Sw. (turkeyberry). two other species mentioned above can be identified using Solanum jamaicense Mill. (Jamaican nightshade) was morphological characteristics and also by the habitat in previously included as a Category II species in the 2009 which they are found. For example, wetland nightshade FLEPPC list but was removed in 2011 because of a lack of (S. tampicense) is found in wetlands, whereas the other occurrence data in natural areas. five species are typically found in more upland and often Category I invasive exotics are defined by the FLEPPC disturbed, habitats. Tropical soda apple is found both in as those plants that alter native plant communities by open areas with full sun (often in pastures) but also in displacing native species, changing community structure wooded hammocks. -
Solanum Capsicoides Click on Images to Enlarge
Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Solanum capsicoides Click on images to enlarge Family Solanaceae Scientific Name Solanum capsicoides All. Allioni, C. (1773) Auctuarium ad Synopsim Methodicam Stirpium Horti Regii Taurensis : 12. Type: Cultivated Flower. Copyright G. Sankowsky at Turin, origin unknown; holo: TO. Common name Devil's Apple; Nightshade; Apple, Devil's Weed * Leaves and flowers. Copyright G. Sankowsky Stem Usually flowers and fruits as a shrub about 1-2 m tall but also flowers when smaller. Leaves Leaf blades about 4-8 x 4-7 cm, hairy on both the upper and lower surfaces also with erect, straight about 4- 10 mm long spines present on both surfaces particularly along the midrib and main lateral veins. Petioles about 1.5-2.5 cm long. Leaf blade margins coarsely lobed with 2 or 3 lobes on each side. Twigs and petioles also armed with spines. Leaves and flowers. Copyright G. Sankowsky Flowers Inflorescence axis, pedicels and calyx armed with straight spines. Pedicels about 10-25 mm long. Calyx about 4-6 mm long, lobes about 2-3 mm long. Corolla about 20-30 mm diam. Anthers orange, about 5-7 mm long, filaments somewhat flattened or winged. Ovary clothed in fine short glandular hairs. Style short. Fruit Fruit, side views, cross section and seeds. Copyright W. T. Cooper Fruits depressed globular, about 20-35 mm diam. Pedicels spiny. Calyx green, spiny, persistent at the base of the fruit. -
Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a)
Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena) Saad Serfraz, Vikas Sharma, Florian Maumus, Xavier Aubriot, Andrew Geering, Pierre-Yves Teycheney To cite this version: Saad Serfraz, Vikas Sharma, Florian Maumus, Xavier Aubriot, Andrew Geering, et al.. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena). Frontiers in Plant Science, Frontiers, 2021, 12, 10.3389/fpls.2021.683681. hal-03328857 HAL Id: hal-03328857 https://hal.inrae.fr/hal-03328857 Submitted on 30 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fpls-12-683681 July 22, 2021 Time: 17:32 # 1 ORIGINAL RESEARCH published: 23 July 2021 doi: 10.3389/fpls.2021.683681 Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena) Saad Serfraz1,2,3, Vikas Sharma4†, Florian Maumus4, Xavier Aubriot5, Andrew D. W. Geering6 and Pierre-Yves Teycheney1,2* -
Eyre Peninsula NRM Board PEST SPECIES REGIONAL MANAGEMENT PLAN Solanum Elaeagnifolium Silverleaf Nightshade
Eyre Peninsula NRM Board PEST SPECIES REGIONAL MANAGEMENT PLAN Solanum elaeagnifolium Silverleaf nightshade INTRODUCTION Synonyms Solanum dealbatum Lindl., Solanum elaeagnifolium var. angustifolium Kuntze, Solanum elaeagnifolium var. argyrocroton Griseb., Solanum elaeagnifolium var. grandiflorum Griseb., Solanum elaeagnifolium var. leprosum Ortega Dunal, Solanum elaeagnifolium var. obtusifolium Dunal, Solanum flavidum Torr., Solanum obtusifolium Dunal Solanum dealbatum Lindley, Solanum hindsianum Bentham, Solanum roemerianum Scheele, Solanum saponaceum Hooker fil in Curtis, Solanum texense Engelman & A. Gray, and Solanum uniflorum Meyer ex Nees. Silver nightshade, silver-leaved nightshade, white horse nettle, silver-leaf nightshade, tomato weed, white nightshade, bull-nettle, prairie-berry, satansbos, silver-leaf bitter-apple, silverleaf-nettle, and trompillo, prairie berry Biology Silverleaf nightshade Solanum elaeagnifolium Cav. is a seed- or vegetatively-propagated deep-rooted summer-growing perennial geophyte from the tomato family Solanaceae [1]. This multi-stemmed plant grows to one metre tall, with the aerial growth normally dying back during winter (Figure 1B). The plants have an extensive root system spreading to over two metres deep. These much branched vertical and horizontal roots bear buds that produce new aerial growth each year [2], in four different growth forms (Figure 1A): Figure 1: A. Summary of silverleaf nightshade growth patterns. from seeds germinating from spring through summer; from Source: [4]. B. Typical silverleaf nightshade growth cycle. buds above soil level giving new shoots in spring; from buds Source: [5]. at the soil surface; and from buds buried in the soil, which regenerate from roots (horizontal or vertical) [1]. Origin The life cycle of the plant is composed of five phases (Figure Silverleaf nightshade is native to northeast Mexico and 1B). -
Red Data List Special Edition
Newsletter of the Southern African Botanical Diversity Network Volume 6 No. 3 ISSN 1027-4286 November 2001 Invasive Alien Plants Part 2 Southern Mozambique Expedition Living Plant Collections: Lowveld, Mozambique, Namibia REDSABONET NewsDATA Vol. 6 No. 3 November LIST 2001 SPECIAL EDITION153 c o n t e n t s Red Data List Features Special 157 Profile: Ezekeil Kwembeya ON OUR COVER: 158 Profile: Anthony Mapaura Ferraria schaeferi, a vulnerable 162 Red Data Lists in Southern Namibian near-endemic. 159 Tribute to Paseka Mafa (Photo: G. Owen-Smith) Africa: Past, Present, and Future 190 Proceedings of the GTI Cover Stories 169 Plant Red Data Books and Africa Regional Workshop the National Botanical 195 Herbarium Managers’ 162 Red Data List Special Institute Course 192 Invasive Alien Plants in 170 Mozambique RDL 199 11th SSC Workshop Southern Africa 209 Further Notes on South 196 Announcing the Southern 173 Gauteng Red Data Plant Africa’s Brachystegia Mozambique Expedition Policy spiciformis 202 Living Plant Collections: 175 Swaziland Flora Protection 212 African Botanic Gardens Mozambique Bill Congress for 2002 204 Living Plant Collections: 176 Lesotho’s State of 214 Index Herbariorum Update Namibia Environment Report 206 Living Plant Collections: 178 Marine Fishes: Are IUCN Lowveld, South Africa Red List Criteria Adequate? Book Reviews 179 Evaluating Data Deficient Taxa Against IUCN 223 Flowering Plants of the Criterion B Kalahari Dunes 180 Charcoal Production in 224 Water Plants of Namibia Malawi 225 Trees and Shrubs of the 183 Threatened -
Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
EENY-214 Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo2 Introduction Because of its wide distribution over the world, its ability to tolerate cooler climates better than most other species of The Mediterranean fruit fly, Ceratitis capitata (Wiede- tropical fruit flies, and its wide range of hosts, it is ranked mann), is one of the world’s most destructive fruit pests. first among economically important fruit fly species. Its The species originated in sub-Saharan Africa and is not larvae feed and develop on many deciduous, subtropical, known to be established in the continental United States. and tropical fruits and some vegetables. Although it may be When it has been detected in Florida, California, and Texas, a major pest of citrus, often it is a more serious pest of some especially in recent years, each infestation necessitated deciduous fruits, such as peach, pear, and apple. The larvae intensive and massive eradication and detection procedures feed upon the pulp of host fruits, sometimes tunneling so that the pest did not become established. through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, only the earlier varieties of citrus are grown, because the flies develop so rapidly that late-season fruits are too heav- ily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly.