Drug Target Informatics

Total Page:16

File Type:pdf, Size:1020Kb

Drug Target Informatics DrugDrug TargetTarget InformaticsInformatics … and answers to the questions: What is a drug target? How many such targets are there?*) Tudor I. Oprea Division of Biocomputing University of New Mexico School of Medicine [email protected] *) P. Imming, C. Sinning, A. Meyer, Nature Rev. Drug Discov 2006, 5: 821-834 *) J. Overington, B. Al-Lazikani, A.L. Hopkins, Nature Rev. Drug Discov 2006, 5: 993-996 Drug Discovery Informatics 2 The University of New Mexico Copyright © Tudor I. Oprea, 2008. All rights reserved Division of BIOCOMPUTING OutlineOutline • Phases of Drug Discovery - recap • Target Informatics: How many Drug Targets? – Examples by Drug – Examples by Target Class • Oral Drug Targets: Can Literature be corrected? • Errors in Drug Target Informatics – What X-ray crystallographers won’t tell you • The Physical Basis of the Rule of Five TargetTarget IdentificationIdentification inin PreclinicalPreclinical DiscoveryDiscovery Target Hit Lead Lead Clinical Identification Identif. Identif. optim. Candidate Human genetics Mouse genetics Identification Validation Production The key in target identification is mass production of pure protein for structural studies ModernModern TechnologiesTechnologies inin PreclinicalPreclinical DiscoveryDiscovery Target Hit Lead Lead Clinical Identification Identif. Identif. optim. Candidate Synthetic Compounds Natural Products High Throughput Synthesis and Screening ModernModern TechnologiesTechnologies inin PreclinicalPreclinical DiscoveryDiscovery Target Hit Lead Lead Clinical Identif Identif. Identif. optim. Candidate R2 R1 N R3 " " R4 Combinatorial & Medicinal Toxicogenomics Chemistry ModernModern TechnologiesTechnologies inin PreclinicalPreclinical DiscoveryDiscovery Target Hit Lead Lead Clinical Identif Identif. Identif. optim. Candidate NH2 O N O H O O Structure-based Drug Design Transgenic animals Zanamivir (inhaled; Relenza®) Clinically relevant disease models first anti-influenza drug (1999) Study metabolism & toxicology in Oseltamivir (orally available prodrug, “human”-ized conditions Tamiflu ®) launched in 2001 TheThe AttritionAttrition RateRate inin DrugDrug DiscoveryDiscovery Increased knowledge and value HTS Hits HTS Actives HTS Drug Candidates Lead Series Drug re ailu of f sk 1,000,000 d ri ease Incr 2,000 1,200 50-200 1 0.1 Increased experimental error rate TheThe MolecularMolecular PharmacopoeiaPharmacopoeia DrugDrug TargetsTargets && DisDis--easeease • Literature estimates the number of drug targets between 5,000 (high estimate) to 500 (targets hit by current drugs) – Definition: A target is a macro-molecular structure (defined by at least a molecular mass) that undergoes a specific interaction with therapeutics (chemicals administered to treat or diagnose a disease). The target-drug interaction results in clinical effect(s). – Imming, Sinning & Meyer considered the ’intended’ (not side-effect) targets for drugs; validation in knock-out models - a plus; receptor (ant)agonism, enzyme inhibition were also considered proof; 1-3 targets/drug were considered [was this OK?!]. – Overington, Al-Lazikani & Hopkins considered protein targets for FDA- approved drugs only (~1200 drugs from the Orange Book). They did make allowances for ”non-intended” drug targets for, e.g., ritonavir – an HIV- protease inhibitor given in combination with other such inhibitors because it slows down their metabolism via CYP3A4 inhibition (thus CYP3A4 was considered a drug target for ritonavir). [this was better]. • Part of the problem: there is no “right” definition for health (e.g, free from dis-ease). In the case of sickness, do we “cure”, do we “treat” patients, or do we heal them? AspirinAspirin –– thethe ““firstfirst drugdrug”” O O • COX-1; Prostaglandin G/H synthase 1 O • COX-2; Prostaglandin G/H synthase 2 Acts as suicide inhibitor O • Platelet glycoprotein IIb of IIb/IIIa complex, or antigen CD41 Acts as competitive antagonist (μM inhibitor) (used as Baby Aspirin as antiaggregant) • Phospholipase A2 (PDB code 1OXR) Acts as competitive antagonist (μM inhibitor) History: Felix Hoffmann was believed to have developed aspirin for F. Bayer & Co., to help his rheumatic father. Arthur Eichengrün claimed in 1949 that the work had been done under his direction. Walter Sneader analyzed archival data from Bayer, as well as published material and concluded that Eichengrün's claim is valid. Acetylsalicylic acid was synthesised under Eichengrün's direction, and it would not have been introduced in 1899 without his intervention W. Sneader, British Medical Journal 2000, 321:1591–1594 IndomethacinIndomethacin –– anan antianti--inflammatoryinflammatory Anti-inflammatory; antipyretic; analgesic O • COX-1; Prostaglandin G/H synthase 1 (6.9) • COX-2; Prostaglandin G/H synthase 2 (6.05) • PLA2; Phospholipase A2 (8.0) acts as reversible, competitive inhibitor, with affinity in N O O O the sub-micromolar to nanomolar range • IL-1; interleukin 1 (6.5) acts as antagonist of PGE2 production (sub-μM) Cl (the above targets clearly related to inflammation) • Prostanoid DP2 receptor; GPR44 (7.5) Indomethacin is clinically used as tocolytic agent effective in preventing pre-term labour because it acts as full agonist on Prostanoid DP2 receptors DexamethasoneDexamethasone–– anotheranother antianti--inflammatoryinflammatory O Chiral O History: G.E. Arth discovered (at Merck) that 16α- O O substituted steroids are metabolically more stable. He H soon discovered that this also reduced the mineralo- cortoicoid, and enhanced the anti-inflammatory F H activity. Dexamethasone (1958) is more potent than O hydrocortisone, with a longer duration of action. Glucocorticoid; anti-inflammatory; diagnostic aid (Cushing Syndrome, depression) • Glucocorticoid receptor (8.28) – as competitive antagonist • IL-4; interleukin 4 (8.33) & IL-5; interleukin 5 (8.46) •TNF-α; tumor necrosis factor alpha (7.7); IFN-γ; interferon-gamma (10.0) (the above targets clearly related to inflammation) • Anti-Target (?): Mineralocorticoid receptor (7.48) • Anti-Target: PXR; Pregnane X receptor, as agonist Dexamethasone is used to treat inflammatory and autoimmune conditions, e.g., rheumatoid arthritis; and to counteract the development of brain edema; to prevent virilisation of a female fetus in congenital adrenal hyperplasia. Also used to counteract side-effects of antitumor treatment in cancer patients undergoing chemotherapy. AripiprazoleAripiprazole –– aa ““dirtydirty drugdrug”” exampleexample O • Target Meas Value Activity N •D2 Ki 0.34 nM partial agonist •D3 Ki 0.8 nM antagonist •D4 Ki 44 nM antagonist •5HT Ki 1.7 nM partial agonist O 1A •5HT2A Ki 3.4 nM antagonist •5HT2C Ki 15 nM antagonist •5HT7 Ki 39 nM antagonist •alphaAR Ki 57 nM antagonist N 1 •H1 Ki 61 nM antagonist N • 5HT reuptake Ki 98 nM antagonist • Aripiprazole is an antipsychotic and neuroleptic with Cl efficacy in schizophrenia and bipolar disorder. Its mechanism of action is unknown (as per FDA label), Cl although the above activities were observed. TamoxifenTamoxifen –– aa ““cleanclean drugdrug”” exampleexample OH • Estrogen receptor – intended CYP2D6, 2B6 2C9, 2C19, 3A drug target. TAM & metabolites antagonize dimer formation; ERα monomer + TAM can act HC3 CH3 HC3 CH3 N N as agonist (NFkB, AP-1) O CH3 O CH3 • GPR30 – 4-OH TAM agonist TAM 4OHTAM •ERRγ (estrogen-related CYP3A4/5 CYP3A4/5 response receptors, also class OH 3 NHRs) – 4OHTAM, CYP2D6 antagonist • Emopamil binding protein; 3β- HC CH HC CH 3 3 3 3 hydroxysteroid-Δ7-8 isomerase; NH NH O O cholestenol delta-isomerase (TAM, inhibitor) N-desmethylTAM Endoxifen • Type I sigma receptor (TAM & Desta, Z et al JPET 2004, 310:1062-1075 metab., antagonists) • PXR; Pregnane X receptor Tamoxifen is the gold standard “antiestrogen” therapy, used as the first line therapy in Estrogen positive breast cancers. Although its mechanism of action is “known” (as per FDA label), TAM has nanomolar affinity to all the above targets. AmantadineAmantadine –– aa ““simplesimple drugdrug”” exampleexample • D1 dopamine receptor agonist • D2 dopamine receptor agonist • N-methyl D-aspartate receptor subtype 2D (Glutamate [NMDA] receptor subunit epsilon 4) - antagonist at the NH2 Phencyclidine binding site Used in Parkinson’s disease • Antiviral against Influenza A virus by interfering with the viral M2 membrane ion channel; appears effective on all Influenza A viral strains • Antiviral against feline immunodeficiency virus Used as antiviral • Side effect 1: hERG (probably). Demonstrated to produce QT-prolongation (with risk for congenital long QT patients) • Side effect 2: anticholinergic-like effects (dry mouth, urinary retention, and constipation) – do not appear to be mediated by direct binding to cholinergic receptors AcyclovirAcyclovir –– UsingUsing ViralViral MachineryMachinery NH • DNA polymerase from Herpes Simplex Virus 2 H N • DNA polymerase from Herpes Zoster Virus N O In vitro and in vivo inhibitor against herpes simplex virus types 1 (HSV-1), 2 (HSV-2), and varicella-zoster virus N N (VZV). O However, Acyclovir is a prodrug that requires conversion by viral thymidine kinases (TK), as encoded by HSV and VZV. These convert acyclovir into acyclovir OH monophosphate; this is further converted into diphosphate by cellular guanylate kinase ,and into triphosphate by cellular enzymes. • KITH_HHV1 (Q9QNF7) • KITH_HHV23 (P04407) • KITH_VZV7 (P14342) The above are SwissProt identifier for the 3 TK enzymes that are targeted by the prodrug ClorpromazineClorpromazine –– AnotherAnother antianti--Viral?Viral? Antiemetic; antipsychotic; neuroleptic Cl Clorpromazine
Recommended publications
  • Interview with Pierre Pichot
    PSYCHOPHARMACOLOGY AND THE HISTORY OF PSYCHIATRY PIERRE PICHOT Could we begin with your recollections of the 1955 Paris meeting, which was effectively the first world wide meeting on chlorpromazine. The meeting was organised in Paris by Jean Delay. It was supported by Specia, the pharmaceutical firm which had produced chlorpromazine, which was a branch of the Rhone Poulenc Group. For the first time people engaged in what was called psychopharmacology came together. They came from many countries, including the United States. The efficacy of the drug and the mechanism of action were discussed. However, at that time the biochemistry of the brain, as it exists now, was unknown. It was only at the beginning of the 60s, that we began to speak of the role of the neurotransmitters in the action of both neuroleptic drugs and antidepressants and of their potential abnormalities in the disease process. So in practice 1955 was only a meeting on therapy with chlorpromazine. I have always been very much impressed by the fact that chlorpromazine, which had been introduced only 3 years before, was already used all over the world. Theoretical ideas take usually a very long time to travel from one country to another, and sometimes they never make it. I quote always, the case of Karl Jaspers’ General Psychopathology, which is considered in the German speaking world as one of the basic books of psychiatry. This was published in 1913 but appeared in English translation only in 1963, 50 years later and, even then, a paper published in the American Journal of Psychiatry wrote ingenuously that, until this publication, many psychiatrists in the United States had not realised that Jaspers was not only a philosopher, but also a psychiatrist.
    [Show full text]
  • Assessing Neurotoxicity of Drugs of Abuse
    National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Assessing Neurotoxicity of Drugs of Abuse 136 U.S. Department of Health and Human Services • Public Health Service • National Institutes of Health Assessing Neurotoxicity of Drugs of Abuse Editor: Lynda Erinoff, Ph.D. NIDA Research Monograph 136 1993 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGMENT This monograph is based on the papers and discussions from a technical review on “Assessing Neurotoxicity of Drugs of Abuse” held on May 20-21, 1991, in Bethesda, MD. The technical review was sponsored by the National Institute on Drug Abuse (NIDA). COPYRIGHT STATUS NIDA has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the U.S. Department of Health and Human Services. The U.S. Government does not endorse or favor any specific commercial product or company.
    [Show full text]
  • Characterization of Multiple Sites of Action of Ibogaine
    ——Chapter 6—— CHARACTERIZATION OF MULTIPLE SITES OF ACTION OF IBOGAINE Henry Sershen, Audrey Hashim, And Abel Lajtha Nathan Kline Institute Orangeburg, New York 10962 I. Introduction.................................................................................................................. II. Issues Related to Ibogaine in the Treatment of Drug Dependence............................. A. Dopamine as a Primary Site of Drug-Mediated Responses .................................. B. Ibogaine or Its Metabolite and Acute versus Long-Term Effect........................... C. Single or Multiple Sites of Action of Ibogaine ..................................................... III. Effect of Ibogaine on Drug-Induced Behavior............................................................ IV. Binding Site Activity ................................................................................................... A. Relevant Site of Action.......................................................................................... V. Functional Activity ...................................................................................................... VI. Stimulant Drug Actions/Behaviors.............................................................................. VII. Current Non-Ibogaine Drug Treatment Protocols ....................................................... VIII. Conclusions.................................................................................................................. References...................................................................................................................
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Influence of Antipsychotic and Anticholinergic Loads on Cognitive Functions in Patients with Schizophrenia
    Hindawi Publishing Corporation Schizophrenia Research and Treatment Volume 2016, Article ID 8213165, 10 pages http://dx.doi.org/10.1155/2016/8213165 Research Article Influence of Antipsychotic and Anticholinergic Loads on Cognitive Functions in Patients with Schizophrenia Michael Rehse,1,2 Marina Bartolovic,1 Katlehn Baum,3 Dagmar Richter,1 Matthias Weisbrod,1,3 and Daniela Roesch-Ely1 1 Department of Psychiatry, University of Heidelberg, 69115 Heidelberg, Germany 2Psychiatrisches Zentrum Nordbaden, 69168 Wiesloch, Germany 3Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, 76307 Karlsbad, Germany Correspondence should be addressed to Daniela Roesch-Ely; daniela [email protected] Received 14 October 2015; Revised 19 February 2016; Accepted 7 March 2016 AcademicEditor:L.Citrome Copyright © 2016 Michael Rehse et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Many patients with schizophrenia show cognitive impairment. There is evidence that, beyond a certain dose of antipsychotic medication, the antipsychotic daily dose (ADD) may impair cognitive performance. Parallel to their D2 receptor antagonism, many antipsychotics show a significant binding affinity to cholinergic muscarinic receptors. Pharmacological treatment with a high anticholinergic daily dose (CDD) significantly impairs attention and memory performance. To examine the relationships between individual cognitive performance and ADD and/or CDD, we conducted a retrospective record-based analysis of a sample of = 104 in patients with a diagnosis of schizophrenia, all of whom had completed a comprehensive neuropsychological test battery. To calculate the individual ADD and CDD, the medication at the time of testing was converted according to equivalence models.
    [Show full text]
  • OSAMOSAM Ohioohio Substance Substance Abuse Abuse Monitoring Monitoring Network Network Surveillancesurveillance of of Drug Drug Abuse Abuse Trends Trends
    OSAMOSAM OhioOhio Substance Substance Abuse Abuse Monitoring Monitoring Network Network SurveillanceSurveillance of of Drug Drug Abuse Abuse Trends Trends in the State of Ohio June 2018 - January 2019 Lake Ashtabula Fulton Lucas Williams Ottawa Geauga Cuyahoga Defiance Henry Wood Sandusky Erie Lorain Trumbull Huron Summit Portage Paulding Seneca Medina Putnam Hancock Mahoning Van Wert Wyandot Crawford Ashland Wayne Stark Columbiana Allen Richland Hardin Marion Mercer Auglaize Holmes Carroll Morrow Tuscarawas Jefferson Logan Knox Shelby Union Delaware Coshocton Harrison Champaign Darke Licking Miami Guernsey Belmont Franklin Muskingum Clark Madison Montgomery Preble Fairfield Perry Noble Monroe Greene Pickaway Fayette Morgan Hocking Washington Butler Warren Clinton Ross Athens Vinton Hamilton Highland Clermont Pike Meigs Jackson Brown Adams Scioto Gallia Lawrence Akron-Canton regionLegend Akron-Canton region Columbus region Dayton region Athens region Dayton region Toledo region Cincinnati region Toledo region Cleveland region Youngstown region Cleveland region Youngstown region Ohio Substance Abuse Monitoring Network Surveillance of Drug Abuse Trends in the State of Ohio June 2018 - January 2019 Prepared by: Ohio Department of Mental Health and Addiction Services Lori Criss, Director • Mike DeWine, Governor Office of Quality, Planning and Research R. Thomas Sherba, OSAM Principal Investigator — PhD, MPH, LPCC Sarah Balser, OSAM Coordinator — MPH, MSW, LSW, CHES Jessica Linley, OSAM Quantitative Data Analyst — PhD, MSW, LSW Table of Contents
    [Show full text]
  • The Anti-Addiction Drug Ibogaine and the Heart: a Delicate Relation
    Molecules 2015, 20, 2208-2228; doi:10.3390/molecules20022208 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation Xaver Koenig * and Karlheinz Hilber * Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria * Authors to whom correspondence should be addressed; E-Mails: [email protected] (X.K.); [email protected] (K.H.); Tel.: +43-1-40160-31232 (X.K.); +43-1-40160-31230 (K.H.); Fax: +43-1-40160-931300 (X.K. & K.H.). Academic Editor: Patricia Valentao Received: 24 October 2014 / Accepted: 26 November 2014 / Published: 29 January 2015 Abstract: The plant indole alkaloid ibogaine has shown promising anti-addictive properties in animal studies. Ibogaine is also anti-addictive in humans as the drug alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug and despite safety concerns, ibogaine is currently used as an anti-addiction medication in alternative medicine in dozens of clinics worldwide. In recent years, alarming reports of life-threatening complications and sudden death cases, temporally associated with the administration of ibogaine, have been accumulating. These adverse reactions were hypothesised to be associated with ibogaine’s propensity to induce cardiac arrhythmias. The aim of this review is to recapitulate the current knowledge about ibogaine’s effects on the heart and the cardiovascular system, and to assess the cardiac risks associated with the use of this drug in anti- addiction therapy. The actions of 18-methoxycoronaridine (18-MC), a less toxic ibogaine congener with anti-addictive properties, are also considered.
    [Show full text]
  • Outpatient OUD Treatment
    Webcast Wednesday: Outpatient OUD Treatment Michael Baca-Atlas, MD, FASAM Clinical Assistant Professor UNC Department of Family Medicine UNC WakeBrook Primary Care 12/2/2020 Disclosure/Conflict of Interest I have no actual or potential conflicts of interest in relation to this program and no disclosures. Objectives: • Describe the epidemiology of opioid use and addiction at the national and state levels, highlighting impact of COVID-19 • Review key principles of addiction medicine including definitions, the brain disease model and SUD diagnostic criteria • Discuss three FDA approved treatment options for OUD, with a focus on various buprenorphine formulations. • Review important adjunct medications to providing care to individuals with OUD including PrEP, PEP and Naloxone • Describe the recent expansion of Tele-BH treatment for OUD Treatment of OUD: ASAM Placement Criteria The ASAM Criteria: Treatment Criteria for Addictive, Substance-Related, and Co-Occurring Conditions (2013) Levels of Care Treatment of OUD: ASAM Placement Criteria The ASAM Criteria: Treatment Criteria for Addictive, Levels of Care Substance-Related, and Co-Occurring Conditions (2013) Inpatient OUD Treatment Inpatient OUD Treatment Detox Evidence-Based Treatment Inpatient OUD Treatment Project SHOUT - Inpatient MOUD https://drive.google.com/drive/folders/0BzCWVzSBFKcTNzhOWXlvYXkxenM Case • 34 yo G2P1102 F with hx opioid and tobacco use disorders who presents to your clinic to establish care. • She reports using intranasal heroin daily and smokes 1 pack of cigarettes daily. Case • 34 yo G2P1102 F with hx opioid and tobacco use disorders who presents to your clinic to establish care. • She reports using intranasal heroin daily and smokes 1 pack of cigarettes daily. • Reports hx overdoses and has not received formal treatment in the past.
    [Show full text]
  • Multi-Target Approach for Drug Discovery Against Schizophrenia
    Review Multi-Target Approach for Drug Discovery against Schizophrenia Magda Kondej 1, Piotr Stępnicki 1 and Agnieszka A. Kaczor 1,2,* 1 Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodźki St., Lublin PL-20093, Poland; [email protected] (M.K.); [email protected] (P.S.) 2 School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, Kuopio FI-70211, Finland * Correspondence: [email protected]; Tel.: +48-81-448-7273 Received: 3 September 2018; Accepted: 6 October 2018; Published: 10 October 2018 Abstract: Polypharmacology is nowadays considered an increasingly crucial aspect in discovering new drugs as a number of original single-target drugs have been performing far behind expectations during the last ten years. In this scenario, multi-target drugs are a promising approach against polygenic diseases with complex pathomechanisms such as schizophrenia. Indeed, second generation or atypical antipsychotics target a number of aminergic G protein-coupled receptors (GPCRs) simultaneously. Novel strategies in drug design and discovery against schizophrenia focus on targets beyond the dopaminergic hypothesis of the disease and even beyond the monoamine GPCRs. In particular these approaches concern proteins involved in glutamatergic and cholinergic neurotransmission, challenging the concept of antipsychotic activity without dopamine D2 receptor involvement. Potentially interesting compounds include ligands interacting with glycine modulatory binding pocket on N-methyl-D-aspartate (NMDA) receptors, positive allosteric modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, positive allosteric modulators of metabotropic glutamatergic receptors, agonists and positive allosteric modulators of α7 nicotinic receptors, as well as muscarinic receptor agonists.
    [Show full text]
  • Characterizing the Pharmacological Profile of Mephedrone and Determining the Abuse Liability Mechanisms
    CHARACTERIZING THE PHARMACOLOGICAL PROFILE OF MEPHEDRONE AND DETERMINING THE ABUSE LIABILITY MECHANISMS A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY by Iman A. Saber December 2017 Examining Committee Members: Ellen Walker, Advisory Chair, Department of Pharmaceutical Sciences Wayne Childers, Department of Pharmaceutical Sciences Ellen Unterwald, Department of Pharmacology, Center for Substance Abuse and Research Sarah Jane Ward, Department of Pharmacology, Center for Substance Abuse and Research Scott Rawls, Department of Pharmacology, Center for Substance Abuse and Research © Copyright 2017 by Iman A. Saber All Rights Reserved ! ii! ABSTRACT Illicit drug use has been a growing concern over the past few decades. The rise in use of illegal drugs drove the government and law enforcement to aggressively tackle this problem and crackdown on the illicit use of drugs. However, this sparked a further interest in ‘legal highs.’ Before 2011, among the newly popular ‘legal highs’ was ‘Bath Salts.’ Cathinone is a monoamine alkaloid and the active ingredient found in the leaves of the khat plant. The psychoactive form of bath salts may contain a mixture of synthesized cathinones, including, 4-methyl-N-methcathinone (mephedrone), 3,4-methylenedioxy-N- methylcathinone (methylone) and methylenedioxypyrovalerone (MDPV). These three are commonly found in bath salts. One of the major psychoactive ingredients in bath salts is mephedrone. Mephedrone grew in popularity due to its low price, accessibility, and the shortage of MDMA, thus making mephedrone the prime drug to sell as a ‘legal high’ up until 2011 when it became banned in the United States.
    [Show full text]
  • Why Ketamine? Handouts
    Objectives Be familiar with the pharmacology, dosing, and Why Ketamine? administration of Ketamine Understand the indications, contraindications, Jennifer Davis, M.D. benefits, and side effects of Ketamine Hospice and Palliative Care Center May 13, 2011 Know the various uses of Ketamine and its abuse potential History History Developed in early 1960s and FDA approved in 1970 According to DEA, 80% seized is from Mexico First used in soldiers in Vietnam War for warfare Most commonly used in clubs at raves surgical procedures th Classified as schedule III drug August 1999 2002 statistic, almost 3% of 12 grade students admitted to using ketamine in the last year Outlawed in United Kingdom January 2006 Rave? History The Scientist by John Lilly Journeys into the Bright World by Marcia Moore and Howard Alltounian The Essential Psychedelic Guide by D.M. Turner 1 Pharmacology Dissociative anesthetic and analgesic that binds the phencyclidine (PCP) site Noncompetitively blocks the excitatory NMDA- glutamate receptor, a calcium channel in the transmission of pain signals via dorsal horn NMDA receptor plays a role in opioid tolerance Pharmacology Pharmacology Also interacts with other calcium and sodium Central sensitization: persistent noxious stimuli lead channels, dopamine receptors, cholinergic to progressively higher pain intensity via NMDA transmission, noradrenergic and serotoninergic receptor hyperexcitation reuptake, mu/delta/kappa opioid receptors, monoaminergic and muscarinic receptors, and Wind up phenomenon: repeated
    [Show full text]
  • Dopamine and Norepinephrine Transporter Inhibition in Cocaine Addiction: Using Mice
    Dopamine and Norepinephrine Transporter Inhibition in Cocaine Addiction: Using Mice Expressing Cocaine-Insensitive Transporters DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bradley Joseph Martin, B.S. Neuroscience Graduate Studies Program The Ohio State University 2011 Dissertation Committee: Howard Haogang Gu, PhD., Advisor Gary L. Wenk, PhD Lane J. Wallace, PhD Robert L. Stephens, Jr., PhD Copyright by Bradley Joseph Martin 2011 Abstract Cocaine’s effects are predominately mediated by inhibiting the reuptake transporters for dopamine, serotonin, and norepinephrine. How each of these transporters contributes to cocaine’s effects is unclear, but such knowledge would aid in efforts to design rational treatments for cocaine addiction. To directly test the contribution of each of these transporters in cocaine’s effects, three transgenic knockout mouse lines were previously created wherein each transporter gene was individually deleted. These knockout mice studies suggest that no single transporter is critical for mediating cocaine’s rewarding effects. However, this hypothesis contradicts pharmacological studies which indicate that the dopamine transporter (DAT) is critical for cocaine’s rewarding effects. Our lab hypothesized that the compensatory adaptations of knockout mice were responsible for this discrepancy. To avoid compensatory adaptations, our lab developed transporter knockin mice expressing a mutated, yet functional, transporter that is insensitive to cocaine inhibition. Unlike transporter knockout mice, these cocaine-insensitive transporter mice retain functioning neurotransmitter systems. We have previously used cocaine-insensitive dopamine transporter mice to reestablish the hypothesis that inhibiting the dopamine transporter is critical for cocaine’s rewarding effects.
    [Show full text]