Taf4b and Jun/Activating Protein-1 Collaborate to Regulate the Expression of Integrin Α6 and Cancer Cell Migration Properties

Total Page:16

File Type:pdf, Size:1020Kb

Taf4b and Jun/Activating Protein-1 Collaborate to Regulate the Expression of Integrin Α6 and Cancer Cell Migration Properties Published OnlineFirst March 30, 2010; DOI: 10.1158/1541-7786.MCR-09-0159 Molecular Signaling and Regulation Cancer Research TAF4b and Jun/Activating Protein-1 Collaborate to Regulate the Expression of Integrin α6 and Cancer Cell Migration Properties Margarita Kalogeropoulou1, Angeliki Voulgari1, Vassiliki Kostourou2, Raphael Sandaltzopoulos3, Rivka Dikstein4, Irwin Davidson5, Laszlo Tora4, and Alexander Pintzas1 Abstract The TAF4b subunit of the transcription factor IID, which has a central role in transcription by polymerase II, is involved in promoter recognition by selective recruitment of activators. The activating protein-1 (AP-1) fam- ily members participate in oncogenic transformation via gene regulation. Utilizing immunoprecipitation of en- dogenous protein complexes, we documented specific interactions between Jun family members and TATA box binding protein–associated factors (TAF) in colon HT29 adenocarcinoma cells. Particularly, TAF4b and c-Jun were found to colocalize and interact in the nucleus of advanced carcinoma cells and in cells with epithelial-to- mesenchymal transition (EMT) characteristics. TAF4b was found to specifically regulate the AP-1 target gene involved in EMT integrin α6, thus altering related cellular properties such as migration potential. Using a chro- matin immunoprecipitation approach in colon adenocarcinoma cell lines, we further identified a synergistic role for TAF4b and c-Jun and other AP-1 family members on the promoter of integrin α6, underlining the existence of a specific mechanism related to gene expression control. We show evidence for the first time of an interde- pendence of TAF4b and AP-1 family members in cell type–specific promoter recognition and initiation of tran- scription in the context of cancer progression and EMT. Mol Cancer Res; 8(4); 554–68. ©2010 AACR. Introduction apoptosis (5, 6), cancer, and epithelial-to-mesenchymal transition (EMT; ref. 7). TAF4b was first identified as a The binding of the transcription factor IID (TFIID) tissue-specific TFIID subunit, present only in a limited complex, composed of the TATA box-binding protein number of complexes, and was later shown to be necessary (TBP) and 14 TBP-associated factors (TAF), to promoter for ovarian follicle development, proliferation, and function DNA is responsive to cellular signals and constitutes the (8). TAF4b shares high homology with the COOH-termi- first step in transcription. A number of different TFIID nal part of TAF4 in contrast to its coactivator NH2-terminal forms with functionally distinct properties exist, among domain (9). TAF4b contains a nuclear export signal allowing which the TAF10-free TFIID, the TAF4b-containing it to shuttle between the nucleus and the cytoplasm (10), TFIID, the TAF6δ-containing TFIID, the TBP-free although it displays DNA-binding capacity when incorpo- TFIID, and the seven TAF complex have been described rated into the TFIID (11). Even though there is no evidence (1, 2). Notably, several studies suggest that TAFs are im- for a direct sequence-specific contact between DNA and portant in specific events like cell cycle regulation (3, 4), TAF4b, the involvement of TAF4b in direct promoter- selective recognition and subsequent recruitment of acti- vators in a cell type–specific manner has been suggested Authors' Affiliations: 1Laboratory of Signal Mediated Gene Expression, Institute of Biological Research and Biotechnology, National Hellenic (12). Indeed, transcriptional induction of the activating Research Foundation, Athens, Greece; 2Biomedical Sciences Research protein-1 (AP-1) family member c-Jun by TAF4b in gran- Center “Alexander Fleming”, Vari, Greece; 3Laboratory of Gene ulosa cells has recently been proposed (13). As a member Expression, Molecular Diagnosis, and Modern Therapeutics, Department of the AP-1 transcription factor, c-Jun participates in the of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, Alexandroupolis, Greece; 4Department of Biological Chemistry, control of cellular responses, mainly by converting extra- Weizmann Institute of Science, Rehovot, Israel; and 5Department of cellular signals into specific gene expression profiles via the Functional Genomics, Institut de Génétique et de Biologie Moléculaire et general transcription machinery. Altering the transcrip- Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, Illkirch Cedex, France tion of target genes, c-Jun has been shown to interact with Note: Supplementary data for this article are available at Molecular the coactivator CBP (14) and with TAF7 in HEK293 and Cancer Research Online (http://mcr.aacrjournals.org/). COS cells (15). Corresponding Author: Alexander Pintzas, National Hellenic Research c-Jun follows a two-stage activation pattern including a Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece. step of phosphorylation by mitogen-activated protein ki- Phone: 30-21072-73753; Fax: 30-21072-73755. E-mail: [email protected] nases (ERK, JNK, p38) and a subsequent selective forma- doi: 10.1158/1541-7786.MCR-09-0159 tion of dimers whose nature defines the activation of a ©2010 American Association for Cancer Research. specific subset of AP-1 binding site containing target genes 554 Mol Cancer Res; 8(4) April 2010 Downloaded from mcr.aacrjournals.org on September 27, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst March 30, 2010; DOI: 10.1158/1541-7786.MCR-09-0159 TAF4b and c-Jun Regulate Cell Migration Properties (16, 17). Notably, AP-1 activity is frequently elevated in SDS-PAGE and transferred to a nitrocellulose membrane transformed cell lines due to an oncogene-specific upregu- (Pall Corporation). The antibodies used for immunoblot- lation of the AP-1 family members c-Jun, JunB, Fra-1, and ting are described in Supplementary Data. Signals were vi- Fra-2 (18, 19). Different types of tumors have been related sualized using enhanced chemiluminescence (Amersham to RAS-protein activation, which in turn, regulate the ac- Biosciences) after exposure to Kodak Super RX film. All tivity of AP-1 (20). For instance, c-Jun, which is frequently experiments were repeated at least three times. Representa- implicated in the acquisition of invasive properties in ag- tive images are shown. gressive forms of cancer (21), is required for in vitro cellular transformation by oncogenic RAS partially via a phosphor- RNA Extraction and Reverse Transcription-PCR ylation mechanism (22, 23). RNA was prepared from sampled cells by the TRIzol re- Colorectal carcinogenesis occurs through the accumula- agent (Invitrogen). Reverse transcription was carried out tion of gene alterations in tumor suppressor genes and on- using the SuperScript Reverse Transcriptase (Invitrogen) cogenes including RAS (24), leading to invasion/metastasis and oligo(15)-(dT), following the instructions of the manu- (25). EMT, occurring during the last steps of cancer pro- facturer. Primers are described in the Supplementary Data. gression prior to metastasis, is controlled by a number of Values were measured using the Image-Quant software regulators resulting in a loss of cell-cell adhesion, mediated (Amersham Biosciences). All experiments were repeated at by repression of E-cadherin, whereas vimentin and other least three times. Representative images are shown. mesenchymal proteins like matrix metalloproteinases and fibronectin are upregulated (26). Importantly, activation Real-time PCR and maintenance of EMT can be achieved by the signaling Real-time quantification was carried out using a Bio-Rad cascade of an oncogenic form of Harvey RAS (Ha-RAS; iCycler and the iQ5 Multicolor Real-time PCR detection ref. 27). Even though the phenomenon of EMT reflects system (Bio-Rad). Cycling conditions included a denatur- a transient state in vivo, by constitutively expressing the ing step of 3 min at 95°C followed by 40 cycles at 95°C for mutated Ha-RASV12 in the intermediate colon adenoma 40 s and annealing/elongation at 60°C for 40 s. All genes Caco-2 cell line, we have created a cell line (Caco-H) were tested in triplicate. Values were normalized to glycer- which adopts and maintains an EMT state (28). aldehyde-3-phosphate dehydrogenase (GAPDH). Results In this study, focusing on the investigation of Jun family were analyzed on the iCycler software. members and their interplay with TAFs in colon cancer and metastasis, we have identified an interaction between c-Jun and TAF4b and have evaluated its effect in the reg- Immunoprecipitation μ ulation of integrin α6, an EMT-related AP-1 target gene. Nuclear protein extracts (100 g) were incubated over- μ The implication of other AP-1 family members in this night at 4°C under rotation with 5 g of c-Jun, JunB, mechanism suggests a dynamic switch between these pro- JunD, and TAF4b (9) antibodies in a total volume of μ teins and their interacting partners in the control of 500 L of 100 mmol/L NaCl immunoprecipitation buffer, μ transcription. adding 25 L of dry Protein A-Sepharose matrix CL-4B (Amersham Biosciences) over a period of 2 h, followed Materials and Methods by three washing steps with 500 mmol/L of KCl immuno- precipitation buffer and 100 mmol/L of KCl immunopre- Propagation and Treatment of Cell Lines cipitation buffer. To detect specific interactions with TAFs, Caco-2, HT29, and HCT116 cells were obtained Western blotting analysis of the immunoprecipitated com- from American Type Culture Collection and cultured plexes was done by immunoblotting with TAF antibodies. in DMEM supplemented with 10% fetal bovine serum,
Recommended publications
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Gene-Set Libraries from Chip-X Experiments to Decode the Transcription Regulome Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, Avi Ma‘Ayan
    ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, Avi Ma‘ayan To cite this version: Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, et al.. ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome. 1st Cross-Domain Con- ference and Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013, Regensburg, Germany. pp.416-430. hal-01506771 HAL Id: hal-01506771 https://hal.inria.fr/hal-01506771 Submitted on 12 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome Yan Kou1, Edward Y. Chen1, Neil R. Clark1, Qiaonan Duan1, Christopher M. Tan1, Avi Ma‘ayan1,* 1Department of Pharmacology and Systems Therapeutics, Systems Biology Center New York (SBCNY), Icahn School of Medicine at Mount Sinai, New York, NY 10029 * To whom correspondence should be addressed: avi.maayan[at]mssm.edu Abstract. ChIP-seq experiments provide a plethora of data regarding transcription regulation in mammalian cells.
    [Show full text]
  • Dual Functions of TAF7L in Adipocyte Differentiation
    RESEARCH ARTICLE elife.elifesciences.org Dual functions of TAF7L in adipocyte differentiation Haiying Zhou1,2, Tommy Kaplan3,4, Yan Li5, Ivan Grubisic2,6, Zhengjian Zhang5, P Jeremy Wang7, Michael B Eisen1,3, Robert Tjian1,2* 1Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States; 2Li Ka Shing Center For Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States; 3Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States; 4School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel; 5Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 6UC Berkeley-UCSF Graduate Program in Bioengineering, Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States; 7Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, United States Abstract The diverse transcriptional mechanisms governing cellular differentiation and development of mammalian tissue remains poorly understood. Here we report that TAF7L, a paralogue of TFIID subunit TAF7, is enriched in adipocytes and white fat tissue (WAT) in mouse. Depletion of TAF7L reduced adipocyte-specific gene expression, compromised adipocyte differentiation, and WAT development as well. Ectopic expression of TAF7L in myoblasts reprograms these muscle precursors into adipocytes upon induction. Genome-wide mRNA-seq expression profiling and ChIP-seq binding studies confirmed that TAF7L is required for activating adipocyte-specific genes via a dual mechanism wherein it interacts with PPARγ at enhancers and TBP/Pol II at core promoters.
    [Show full text]
  • Crystal Structure of a TAF1-TAF7 Complex in Human Transcription Factor IID Reveals a Promoter Binding Module
    Cell Research (2014) 24:1433-1444. npg © 2014 IBCB, SIBS, CAS All rights reserved 1001-0602/14 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module Hui Wang1, 2, Elizabeth C Curran1, Thomas R Hinds1, 2, Edith H Wang1, Ning Zheng1, 2 1Department of Pharmacology, 2Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA The general transcription factor IID (TFIID) initiates RNA polymerase II-mediated eukaryotic transcription by nucleating pre-initiation complex formation at the core promoter of protein-encoding genes. TAF1, the largest in- tegral subunit of TFIID, contains an evolutionarily conserved yet poorly characterized central core domain, whose specific mutation disrupts cell proliferation in the temperature-sensitive mutant hamster cell line ts13. Although the impaired TAF1 function in the ts13 mutant has been associated with defective transcriptional regulation of cell cycle genes, the mechanism by which TAF1 mediates transcription as part of TFIID remains unclear. Here, we present the crystal structure of the human TAF1 central core domain in complex with another conserved TFIID subunit, TAF7, which biochemically solubilizes TAF1. The TAF1-TAF7 complex displays an inter-digitated compact architecture, featuring an unexpected TAF1 winged helix (WH) domain mounted on top of a heterodimeric triple barrel. The single TAF1 residue altered in the ts13 mutant is buried at the junction of these two structural domains. We show that the TAF1 WH domain has intrinsic DNA-binding activity, which depends on characteristic residues that are commonly used by WH fold proteins for interacting with DNA.
    [Show full text]
  • Non-Canonical TAF Complexes Regulate Active Promoters in Human Embryonic Stem Cells
    University of Massachusetts Medical School eScholarship@UMMS Program in Gene Function and Expression Publications and Presentations Molecular, Cell and Cancer Biology 2012-11-13 Non-canonical TAF complexes regulate active promoters in human embryonic stem cells Glenn A. Maston University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/pgfe_pp Part of the Genetics and Genomics Commons Repository Citation Maston GA, Zhu LJ, Chamberlain L, Lin L, Fang M, Green MR. (2012). Non-canonical TAF complexes regulate active promoters in human embryonic stem cells. Program in Gene Function and Expression Publications and Presentations. https://doi.org/10.7554/eLife.00068. Retrieved from https://escholarship.umassmed.edu/pgfe_pp/211 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Program in Gene Function and Expression Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. RESEARCH ARTICLE elife.elifesciences.org Non-canonical TAF complexes regulate active promoters in human embryonic stem cells Glenn A Maston1,2, Lihua Julie Zhu1,3, Lynn Chamberlain1,2, Ling Lin1,2, Minggang Fang1,2, Michael R Green1,2* 1Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, United States; 2Howard Hughes Medical Institute, Chevy Chase, United States; 3Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States Abstract The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs).
    [Show full text]
  • Structures of Three Distinct Activator–TFIID Complexes
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Structures of three distinct activator–TFIID complexes Wei-Li Liu,1 Robert A. Coleman,1 Elizabeth Ma,1 Patricia Grob,2 Joyce L. Yang,1 Yixi Zhang,1 Gina Dailey,1 Eva Nogales,2 and Robert Tjian1,3 1Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94720, USA; 2Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Sequence-specific DNA-binding activators, key regulators of gene expression, stimulate transcription in part by targeting the core promoter recognition TFIID complex and aiding in its recruitment to promoter DNA. Although it has been established that activators can interact with multiple components of TFIID, it is unknown whether common or distinct surfaces within TFIID are targeted by activators and what changes if any in the structure of TFIID may occur upon binding activators. As a first step toward structurally dissecting activator/TFIID interactions, we determined the three-dimensional structures of TFIID bound to three distinct activators (i.e., the tumor suppressor p53 protein, glutamine-rich Sp1 and the oncoprotein c-Jun) and compared their structures as determined by electron microscopy and single-particle reconstruction. By a combination of EM and biochemical mapping analysis, our results uncover distinct contact regions within TFIID bound by each activator. Unlike the coactivator CRSP/Mediator complex that undergoes drastic and global structural changes upon activator binding, instead, a rather confined set of local conserved structural changes were observed when each activator binds holo- TFIID.
    [Show full text]
  • TAF7 Monoclonal Antibody (M01), Clone
    TAF7 monoclonal antibody (M01), chromosome 5. The protein encoded by this gene is a clone 2C5 component of the TFIID protein complex, a complex which binds to the TATA box in class II promoters and Catalog Number: H00006879-M01 recruits RNA polymerase II and other factors. This particular subunit interacts with the largest TFIID Regulatory Status: For research use only (RUO) subunit, as well as multiple transcription activators. The protein is required for transcription by promoters Product Description: Mouse monoclonal antibody targeted by RNA polymerase II. [provided by RefSeq] raised against a partial recombinant TAF7. References: Clone Name: 2C5 1. Core promoter factor TAF9B regulates neuronal gene expression. Herrera FJ, Yamaguchi T, Roelink H, Tjian Immunogen: TAF7 (AAH32737, 130 a.a. ~ 224 a.a) R Elife (Cambridge). 2014 Jul 8;3:e02559. doi: partial recombinant protein with GST tag. MW of the 10.7554/eLife.02559. GST tag alone is 26 KDa. 2. Taf7l cooperates with Trf2 to regulate spermiogenesis. Zhou H, Grubisic I, Zheng K, He Y, Sequence: Wang PJ, Kaplan T, Tjian R Proc Natl Acad Sci U S A. FIWNHGITLPLKNVRKRRFRKTAKKKYIESPDVEKEVK 2013 Oct 15;110(42):16886-91. doi: RLLSTDAEAVSTRWEIIAEDETKEAENQGLDISSPGMS 10.1073/pnas.1317034110. Epub 2013 Sep 30. GHRQGHDSLEHDELREIFN 3. Dual functions of TAF7L in adipocyte differentiation. Zhou H, Kaplan T, Li Y, Grubisic I, Zhang Z, Wang PJ, Host: Mouse Eisen MB, Tjian R. elife. 2013;2:e00170. doi: Reactivity: Human 10.7554/eLife.00170. Epub 2013 Jan 8. Applications: ELISA, IF, IHC-P, RNAi-Ab, S-ELISA, WB-Ce, WB-Re, WB-Tr (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Isotype: IgG2a Kappa Storage Buffer: In 1x PBS, pH 7.4 Storage Instruction: Store at -20°C or lower.
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]
  • Integrative Framework for Identification of Key Cell Identity Genes Uncovers
    Integrative framework for identification of key cell PNAS PLUS identity genes uncovers determinants of ES cell identity and homeostasis Senthilkumar Cinghua,1, Sailu Yellaboinaa,b,c,1, Johannes M. Freudenberga,b, Swati Ghosha, Xiaofeng Zhengd, Andrew J. Oldfielda, Brad L. Lackfordd, Dmitri V. Zaykinb, Guang Hud,2, and Raja Jothia,b,2 aSystems Biology Section and dStem Cell Biology Section, Laboratory of Molecular Carcinogenesis, and bBiostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and cCR Rao Advanced Institute of Mathematics, Statistics, and Computer Science, Hyderabad, Andhra Pradesh 500 046, India Edited by Norbert Perrimon, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, and approved March 17, 2014 (received for review October 2, 2013) Identification of genes associated with specific biological pheno- (mESCs) for genes essential for the maintenance of ESC identity types is a fundamental step toward understanding the molecular resulted in only ∼8% overlap (8, 9), although many of the unique basis underlying development and pathogenesis. Although RNAi- hits in each screen were known or later validated to be real. The based high-throughput screens are routinely used for this task, lack of concordance suggest that these screens have not reached false discovery and sensitivity remain a challenge. Here we describe saturation (14) and that additional genes of importance remain a computational framework for systematic integration of published to be discovered. gene expression data to identify genes defining a phenotype of Motivated by the need for an alternative approach for iden- interest. We applied our approach to rank-order all genes based on tification of key cell identity genes, we developed a computa- their likelihood of determining ES cell (ESC) identity.
    [Show full text]
  • Structural and Functional Insight Into TAF1–TAF7, a Subcomplex of Transcription Factor II D
    Structural and functional insight into TAF1–TAF7, a subcomplex of transcription factor II D Suparna Bhattacharyaa, Xiaohua Loua,b, Peter Hwangc, Kanagalaghatta R. Rajashankard, Xiaoping Wange, Jan-Åke Gustafssonb, Robert J. Fletterickc, Raymond H. Jacobsone, and Paul Webba,1 aGenomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030; bCenter for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204; cUniversity of California Medical Center, San Francisco, CA 94158; dThe Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439; and eDepartment of Molecular Biology and Biochemistry, MD Anderson Cancer Center, Houston, TX 77030 Contributed by Jan-Åke Gustafsson, May 13, 2014 (sent for review April 17, 2014; reviewed by Fraydoon Rastinejad and Stephen K. Burley) Transcription factor II D (TFIID) is a multiprotein complex that copy numbers and mutations are reported in high-grade serous nucleates formation of the basal transcription machinery. TATA ovarian cancer (8). binding protein-associated factors 1 and 7 (TAF1 and TAF7), two TAF1, the largest subunit of TFIID, plays a particularly im- subunits of TFIID, are integral to the regulation of eukaryotic tran- portant role in TFIID complex activity (9, 10). Unlike other scription initiation and play key roles in preinitiation complex (PIC) TAFs, it spans two lobes (from C through A) within the trilobed assembly. Current models suggest that TAF7 acts as a dissociable structure of TFIID, as indicated by EM and immunomapping inhibitor of TAF1 histone acetyltransferase activity and that this studies, with the TAF1 C terminus located in the A lobe (3, 11).
    [Show full text]
  • A Unified Nomenclature for TATA Box Binding Protein (TBP)-Associated Factors (Tafs) Involved in RNA Polymerase II Transcription
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press CORRESPONDENCE A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription La`szlo`Tora1 Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, CNRS/INSERM/ULP, F-67404 ILLKIRCH Cedex, CU de Strasbourg, France Initiation of transcription by RNA polymerase II (Pol II) The unified nomenclature is based on the following requires general transcription factors to assemble the Pol considerations: II pre-initiation complex (PIC) (Hampsey 1998). PIC as- 1. It now appears evident from a comparison of Dro- sembly on both TATA-containing and TATA-less pro- sophila, human, and yeast TFIID that there is an es- moters can be nucleated by the general transcription fac- sential or “core” set of TAFs that are conserved across tors TFIID or B-TFIID, which are comprised of the many species. These 13 evolutionarily conserved TATA-binding protein (TBP) and TBP-associated factors TAFs (Sanders and Weil 2000) have been aligned with (TAF s) (Bell and Tora 1999; Albright and Tjian 2000). II their orthologs from different species and designated More than 10 years ago, the first TAF s were discovered II TAF1 to TAF13 (see Table 1). After extensive discus- in Drosophila and in human cells (Dynlacht et al. 1991; sions this nomenclature was chosen because of its Tanese et al. 1991). These proteins were identified in simplicity and because it complies with guidelines biochemically stable complexes with TBP and named endorsed by both the Saccharomyces Genome Data- after their electrophoretic mobility in polyacrylamide base (SGD) and the human HUGO Gene Nomencla- gels.
    [Show full text]
  • The HUSH Complex Cooperates with TRIM28 to Repress Young Retrotransposons and New Genes
    Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Research The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes Luisa Robbez-Masson,1 Christopher H.C. Tie,1 Lucia Conde,2 Hale Tunbak,1 Connor Husovsky,1 Iva A. Tchasovnikarova,3 Richard T. Timms,3 Javier Herrero,2 Paul J. Lehner,3 and Helen M. Rowe1 1Infection and Immunity, University College London, London WC1E 6BT, United Kingdom; 2Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom; 3Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom Retrotransposons encompass half of the human genome and contribute to the formation of heterochromatin, which pro- vides nuclear structure and regulates gene expression. Here, we asked if the human silencing hub (HUSH) complex is nec- essary to silence retrotransposons and whether it collaborates with TRIM28 and the chromatin remodeler ATRX at specific genomic loci. We show that the HUSH complex contributes to de novo repression and DNA methylation of an SVA retro- transposon reporter. By using naıvë versus primed mouse pluripotent stem cells, we reveal a critical role for the HUSH com- plex in naıvë cells, implicating it in programming epigenetic marks in development. Although the HUSH component FAM208A binds to endogenous retroviruses (ERVs) and long interspersed element-1s (LINE-1s or L1s), it is mainly required to repress evolutionarily young L1s (mouse-specific lineages <5 million years old). TRIM28, in contrast, is necessary to repress both ERVs and young L1s. Genes co-repressed by TRIM28 and FAM208A are evolutionarily young, or exhibit tissue-specific expression, are enriched in young L1s, and display evidence for regulation through LTR promoters.
    [Show full text]