PROTEIN-PROTEIN INTERACTION MAP of Arabidopsis Thaliana GENERAL TRANSCRIPTION FACTORS A, B, D, E, and F

Total Page:16

File Type:pdf, Size:1020Kb

PROTEIN-PROTEIN INTERACTION MAP of Arabidopsis Thaliana GENERAL TRANSCRIPTION FACTORS A, B, D, E, and F PROTEIN-PROTEIN INTERACTION MAP OF Arabidopsis thaliana GENERAL TRANSCRIPTION FACTORS A, B, D, E, AND F By SHAI JOSHUA LAWIT A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Shai Joshua Lawit This document is dedicated to my family, both genetic and scientific. ACKNOWLEDGMENTS I thank my dearest wife, Kristel Lynn, for her undying support for me. I also thank my son, Benjamin Owen, for constant interest in this document as I wrote and unending smiles and hugs at all times. I thank my parents and all of my family for instilling me with a desire for education and excellence. Of course, I have a great appreciation for the members of the Gurley lab (past, present, and future) who continually contribute to this field of research. John Davis and the members of his lab (especially Chris Dervinis for helping me to get access to the Poplar genomic sequences and Ram Kishore Alavalapati for running all the PAUP analyses) deserve special thanks for technical assistance, collaboration, and helpful discussions. I would finally like to thank William B. Gurley, Eva Czarnecka-Verner, Robert Ferl, Alice Harmon, Karen Koch, Donald McCarty, Thomas Yang, Robert R. Schmidt, Waltraud I. Dunn, and the entire teaching faculty who have molded me into the scientist that I am. iv TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES........................................................................................................... viii LIST OF FIGURES ........................................................................................................... ix ABSTRACT...................................................................................................................... xii CHAPTER 1 INTRODUCTION TO THE LITERATURE ...............................................................1 General Transcription Factors ......................................................................................1 TATA Binding Protein and TFIID........................................................................3 TATA Binding Protein-Associated Factors ..........................................................6 Histone-like TAFs ..........................................................................................6 TAF1 family...................................................................................................8 Other TAFs and interactions of TFIID.........................................................13 Alternative TBP- or TAF-Containing Complexes ..............................................17 TAFs: Required Factors or Optional Accessories...............................................23 Interplay of GTFs ................................................................................................26 Transcriptional Activators That Bind DNA ...............................................................36 2 PHYLOGENETIC ANALYSIS OF POPLAR, Arabidopsis AND OTHER PLANT GENERAL TRANSCRIPTION FACTORS ..............................................................51 Introduction.................................................................................................................51 Methods ......................................................................................................................53 Results.........................................................................................................................56 TFIIA Large and Small Subunits ........................................................................56 TFIIB Family.......................................................................................................57 Representative TFIID Components.....................................................................58 TFIIEα and TFIIEβ Subunits ..............................................................................59 TFIIFα and TFIIFβ Subunits ..............................................................................60 Discussion...................................................................................................................60 TFIIA Large and Small Subunits ........................................................................60 TFIIB Family.......................................................................................................62 Representative TFIID Components.....................................................................65 v TFIIEα and TFIIEβ Subunits ..............................................................................68 TFIIFα Family.....................................................................................................68 TFIIFβ Family.....................................................................................................69 3 BINARY PROTEIN-PROTEIN INTERACTIONS OF THE Arabidopsis thaliana GENERAL TRANSCRIPTION FACTOR IID..........................................................89 Introduction.................................................................................................................89 Materials and Methods ...............................................................................................90 Results.........................................................................................................................96 Discussion...................................................................................................................98 4 BINARY PROTEIN-PROTEIN INTERACTIONS OF Arabidopsis TFIIA, TFIIB, TFIID, TFIIE, AND TFIIF .......................................................................................118 Introduction...............................................................................................................118 Materials and Methods .............................................................................................119 Results.......................................................................................................................121 Discussion.................................................................................................................123 5 DISCUSSION...........................................................................................................147 TFIIA Large and Small Subunits..............................................................................147 TFIIB Family............................................................................................................149 TFIID Components...................................................................................................152 TFIIEα and TFIIEβ Subunits ...................................................................................154 TFIIFα and TFIIFβ Subunits....................................................................................155 Conclusion ................................................................................................................157 APPENDIX A NUCLEOTIDE AND AMINO ACID SEQUENCES OF GENERAL TRANSCRIPTION FACTORS................................................................................161 TFIIA Small Subunit Sequences ..............................................................................161 TFIIA Large Subunit Sequences ..............................................................................163 TFIIB Family Sequences ..........................................................................................165 TATA Binding Protein Sequences ...........................................................................172 TAF6 Sequences.......................................................................................................176 TAF9 Sequences.......................................................................................................179 TAF10 Sequences.....................................................................................................182 TAF11 Sequences.....................................................................................................185 TFIIEα Sequences ....................................................................................................186 TFIIEβ Sequences ....................................................................................................189 TFIIFα Sequences ....................................................................................................192 TFIIFβ Sequences.....................................................................................................194 vi B AMINO ACID MULTIPLE SEQUENCE ALIGNMENTS FOR CORE DOMAINS OF THE GENERAL TRANSCRIPTION FACTORS .............................................197 TFIIA Small Subunit Alignment ..............................................................................197 TFIIA Large Subunit Alignment ..............................................................................198 TFIIB Family Alignment..........................................................................................200 TBP Alignment.........................................................................................................205 TAF6 Alignment.......................................................................................................208 TAF9 Alignment.......................................................................................................211
Recommended publications
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Gene-Set Libraries from Chip-X Experiments to Decode the Transcription Regulome Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, Avi Ma‘Ayan
    ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, Avi Ma‘ayan To cite this version: Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, et al.. ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome. 1st Cross-Domain Con- ference and Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013, Regensburg, Germany. pp.416-430. hal-01506771 HAL Id: hal-01506771 https://hal.inria.fr/hal-01506771 Submitted on 12 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome Yan Kou1, Edward Y. Chen1, Neil R. Clark1, Qiaonan Duan1, Christopher M. Tan1, Avi Ma‘ayan1,* 1Department of Pharmacology and Systems Therapeutics, Systems Biology Center New York (SBCNY), Icahn School of Medicine at Mount Sinai, New York, NY 10029 * To whom correspondence should be addressed: avi.maayan[at]mssm.edu Abstract. ChIP-seq experiments provide a plethora of data regarding transcription regulation in mammalian cells.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Molecular Structure of Promoter-Bound Yeast TFIID
    ARTICLE DOI: 10.1038/s41467-018-07096-y OPEN Molecular structure of promoter-bound yeast TFIID Olga Kolesnikova 1,2,3,4, Adam Ben-Shem1,2,3,4, Jie Luo5, Jeff Ranish 5, Patrick Schultz 1,2,3,4 & Gabor Papai 1,2,3,4 Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP- associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolu- 1234567890():,; tion better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. 1 Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France. 2 Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France. 3 Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France. 4 Université de Strasbourg, Illkirch 67404, France. 5 Institute for Systems Biology, Seattle, WA 98109, USA. These authors contributed equally: Olga Kolesnikova, Adam Ben-Shem. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) or to G.P.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Pathway Analysis of Breast, Colorectal, Pancreatic Cancers and Glioblastoma
    Pathway analysis ofbreast, colorectal, pancreatic cancers and glioblastoma Dongyan Song Degree project inbiology, Bachelor ofscience, 2009 Examensarbete ibiologi 30 hp tillkandidatexamen, 2009 Biology Education Centre, Uppsala University and Department ofGenetics and Pathology Supervisor: Tobias Sjöblom Pathway analysis of breast, colorectal, pancreatic cancers and glioblastoma Summary Cancer is a genetic disease, and due to the multi-step progression, mutated genes accumulate in genome, leading to a gene spectrum with a few frequently mutated genes and a bunch of infrequently mutated genes. Because of the complexity of mutation profile in gene level, this study tries to analyze cancer mutations in a pathway level, implemented as clusters in this case. Initial attempts used phylogenetic analysis, which gave a result that breast and colorectal cancers cannot be distinguished from each other only by information of mutated genes but pancreatic cancers and glioblastoma formed a cluster distinguishing with patients with pancreatic cancer or glioblastoma. Thus, to some extent, the pattern of mutated genes can distinguish different cancers or different patients with same cancer type, but the results are not clear enough to give a conclusion. So, I implemented network methodology to study mutational pathway patterns in breast, colorectal, pancreatic cancers and glioblastoma. The initial network was constructed based on gene-gene interaction pairs identified from literature mining and the STRING database. PubMed IDs were retrieved with Entrez Gene IDs as queries, and via checking the overlap of PubMed IDs, 135,863,922 potential gene-gene interaction pairs were found. Negative logarithms of co-occurrence probabilities were calculated and the number of pairs was reduced by setting the significance level at 99.7% in the Poisson distribution.
    [Show full text]
  • Molecular Mechanisms of Ribosomal Protein Gene Coregulation
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Molecular mechanisms of ribosomal protein gene coregulation Rohit Reja, Vinesh Vinayachandran, Sujana Ghosh, and B. Franklin Pugh Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair res- olution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20–50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1–TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences.
    [Show full text]
  • TAF10 Complex Provides Evidence for Nuclear Holo&Ndash;TFIID Assembly from Preform
    ARTICLE Received 13 Aug 2014 | Accepted 2 Dec 2014 | Published 14 Jan 2015 DOI: 10.1038/ncomms7011 OPEN Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules Simon Trowitzsch1,2, Cristina Viola1,2, Elisabeth Scheer3, Sascha Conic3, Virginie Chavant4, Marjorie Fournier3, Gabor Papai5, Ima-Obong Ebong6, Christiane Schaffitzel1,2, Juan Zou7, Matthias Haffke1,2, Juri Rappsilber7,8, Carol V. Robinson6, Patrick Schultz5, Laszlo Tora3 & Imre Berger1,2,9 General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID—a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)— assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8–TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core–TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo–TFIID, regulated by nuclear import of preformed cytoplasmic submodules. 1 European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France. 2 Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France. 3 Cellular Signaling and Nuclear Dynamics Program, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404 Illkirch, France.
    [Show full text]
  • Structure and Mechanism of the RNA Polymerase II Transcription Machinery
    Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Structure and mechanism of the RNA polymerase II transcription machinery Allison C. Schier and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA RNA polymerase II (Pol II) transcribes all protein-coding ingly high resolution, which has rapidly advanced under- genes and many noncoding RNAs in eukaryotic genomes. standing of the molecular basis of Pol II transcription. Although Pol II is a complex, 12-subunit enzyme, it lacks Structural biology continues to transform our under- the ability to initiate transcription and cannot consistent- standing of complex biological processes because it allows ly transcribe through long DNA sequences. To execute visualization of proteins and protein complexes at or near these essential functions, an array of proteins and protein atomic-level resolution. Combined with mutagenesis and complexes interact with Pol II to regulate its activity. In functional assays, structural data can at once establish this review, we detail the structure and mechanism of how enzymes function, justify genetic links to human dis- over a dozen factors that govern Pol II initiation (e.g., ease, and drive drug discovery. In the past few decades, TFIID, TFIIH, and Mediator), pausing, and elongation workhorse techniques such as NMR and X-ray crystallog- (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis raphy have been complemented by cryoEM, cross-linking for Pol II transcription regulation has advanced rapidly mass spectrometry (CXMS), and other methods. Recent in the past decade, largely due to technological innova- improvements in data collection and imaging technolo- tions in cryoelectron microscopy.
    [Show full text]
  • TAF15 Is Important for Cellular Proliferation and Regulates the Expression of a Subset of Cell Cycle Genes Through Mirnas
    Oncogene (2013) 32, 4646–4655 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE TAF15 is important for cellular proliferation and regulates the expression of a subset of cell cycle genes through miRNAs M Ballarino1, L Jobert1,4, D Dembe´le´ 1, P de la Grange2, D Auboeuf3 and L Tora1 TAF15 (formerly TAFII68) is a member of the FET (FUS, EWS, TAF15) family of RNA- and DNA-binding proteins whose genes are frequently translocated in sarcomas. By performing global gene expression profiling, we found that TAF15 knockdown affects the expression of a large subset of genes, of which a significant percentage is involved in cell cycle and cell death. In agreement, TAF15 depletion had a growth-inhibitory effect and resulted in increased apoptosis. Among the TAF15-regulated genes, targets of microRNAs (miRNAs) generated from the onco-miR-17 locus were overrepresented, with CDKN1A/p21 being the top miRNAs- targeted gene. Interestingly, the levels of onco-miR-17 locus coded miRNAs (miR-17-5p and miR-20a) were decreased upon TAF15 depletion and shown to affect the post-transcriptional regulation of TAF15-dependent genes, such as CDKN1A/p21. Thus, our results demonstrate that TAF15 is required to regulate gene expression of cell cycle regulatory genes post-transcriptionally through a pathway involving miRNAs. The findings that high TAF15 levels are needed for rapid cellular proliferation and that endogenous TAF15 levels decrease during differentiation strongly suggest that TAF15 is a key regulator of maintaining a highly proliferative rate of cellular homeostasis. Oncogene (2013) 32, 4646–4655; doi:10.1038/onc.2012.490; published online 5 November 2012 Keywords: FUS/EWS/TAF15 (FET) proteins; miRNAs; transcription; proliferation; neuronal differentiation; neuroblastoma INTRODUCTION possible role of TAF15 in additional steps of RNA metabolism.
    [Show full text]
  • Dual Functions of TAF7L in Adipocyte Differentiation
    RESEARCH ARTICLE elife.elifesciences.org Dual functions of TAF7L in adipocyte differentiation Haiying Zhou1,2, Tommy Kaplan3,4, Yan Li5, Ivan Grubisic2,6, Zhengjian Zhang5, P Jeremy Wang7, Michael B Eisen1,3, Robert Tjian1,2* 1Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States; 2Li Ka Shing Center For Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States; 3Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States; 4School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel; 5Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 6UC Berkeley-UCSF Graduate Program in Bioengineering, Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States; 7Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, United States Abstract The diverse transcriptional mechanisms governing cellular differentiation and development of mammalian tissue remains poorly understood. Here we report that TAF7L, a paralogue of TFIID subunit TAF7, is enriched in adipocytes and white fat tissue (WAT) in mouse. Depletion of TAF7L reduced adipocyte-specific gene expression, compromised adipocyte differentiation, and WAT development as well. Ectopic expression of TAF7L in myoblasts reprograms these muscle precursors into adipocytes upon induction. Genome-wide mRNA-seq expression profiling and ChIP-seq binding studies confirmed that TAF7L is required for activating adipocyte-specific genes via a dual mechanism wherein it interacts with PPARγ at enhancers and TBP/Pol II at core promoters.
    [Show full text]
  • Crystal Structure of a TAF1-TAF7 Complex in Human Transcription Factor IID Reveals a Promoter Binding Module
    Cell Research (2014) 24:1433-1444. npg © 2014 IBCB, SIBS, CAS All rights reserved 1001-0602/14 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module Hui Wang1, 2, Elizabeth C Curran1, Thomas R Hinds1, 2, Edith H Wang1, Ning Zheng1, 2 1Department of Pharmacology, 2Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA The general transcription factor IID (TFIID) initiates RNA polymerase II-mediated eukaryotic transcription by nucleating pre-initiation complex formation at the core promoter of protein-encoding genes. TAF1, the largest in- tegral subunit of TFIID, contains an evolutionarily conserved yet poorly characterized central core domain, whose specific mutation disrupts cell proliferation in the temperature-sensitive mutant hamster cell line ts13. Although the impaired TAF1 function in the ts13 mutant has been associated with defective transcriptional regulation of cell cycle genes, the mechanism by which TAF1 mediates transcription as part of TFIID remains unclear. Here, we present the crystal structure of the human TAF1 central core domain in complex with another conserved TFIID subunit, TAF7, which biochemically solubilizes TAF1. The TAF1-TAF7 complex displays an inter-digitated compact architecture, featuring an unexpected TAF1 winged helix (WH) domain mounted on top of a heterodimeric triple barrel. The single TAF1 residue altered in the ts13 mutant is buried at the junction of these two structural domains. We show that the TAF1 WH domain has intrinsic DNA-binding activity, which depends on characteristic residues that are commonly used by WH fold proteins for interacting with DNA.
    [Show full text]